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EVALUATION OF A LOW-POWER HADOOP CLUSTER
BASED ON THE ZYNQ ARM-FPGA SOC

Ovidiu PLUGARIU1, Alexandru CALIN2, and Lucian PETRICA3

Distributed computing is important to many web and scientific ap-
plications. The quest for lower power dissipation and energy consumption
in distributed applications has led to the implementation of ARM proces-
sor based distributed systems. The advent of integrated accelerators such
as Field Programmable Gate Arrays (FPGA) promises to provide further
reductions in power, but it is yet unclear to the scientific community how
FPGAs should be utilized to maximize their benefit to the distributed sys-
tem. To answer this research question, in this paper we evaluate a ARM-
FPGA distributed system which utilizes the Xilinx Zynq SoC as processor
and Apache Hadoop as a programming environment and task scheduler. We
evaluate the system on industry-standard benchmarks: MRBench, TestDF-
SIO, Wordcount. Compared to a similar system with x86 processors, the
ARM-based system dissipates 5 times less power. Additionally, we observe
that all applications are IO bound on the ARM system, which indicates that
the most efficient use for FPGAs in such a system is for offloading IO
compression algorithms.
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1. Introduction

All modern web-based applications, ranging from web analytics, to search,
and social network infrastructure, must process thousands of requests per sec-
ond. These applications therefore require vast amounts of computing power,
i.e. hundreds to thousands of co-located, networked servers which work si-
multaneously and collaboratively to process information and generate results.
This type of computing infrastructure is called a cluster, and the process of
collaborative task solving is called distributed computing. Modern distributed
computing occurs in data centers, facilities which house interconnected servers
and associated components, such as networking and storage systems [1]. As
such, data-center efficiency dictates the profitability of most on-line businesses.
The majority of data-center operational expenditure is the cost for electrical
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energy for servers and cooling equipment, which may be reduced by improving
the energy-efficiency of the server processors utilized.

Low-power computing is an area of great interest for industry and academia
because it enables reductions in the cost of distributed computing in data-
centers. Low-power servers based on ARM processors have the potential of
increased efficiency - more operations per Watt and per Joule, compared to
servers which utilize processors of the x86 and PowerPC architectures, which
are faster at the cost of significantly greater power dissipation [2]. With the ad-
vent of mass-produced ARM-based computing hardware such as the Raspberry
Pi, it has even become possible for enthusiasts to construct cheap, energy-
efficient clusters [3, 4, 5]. By utilizing SDCard storage instead of expensive
disk drives, and by utilizing exclusively passive cooling, this new class of clus-
ter opens up distributed computing to virtually anyone.

Despite the potential of these low-power clusters to replace x86 clusters
in some applications, to our knowledge there is no comparison in the scientific
literature between the two types of cluster on industry-standard benchmarks.
Without such a comparison it is difficult to evaluate the computational ca-
pability and efficiency of low-power clusters. How much more efficient is a
low-power cluster compared to a x86 cluster? Are applications on these clus-
ters IO-bound because of the slow speed of the SDCard storage? On the
answers to these questions depends the feasibility of new lines of research. For
example, it is possible to utilize IO compression to reduce the amount of data
transferred to and from storage, but the overhead of compression and decom-
pression typically reduces overall application performance even further [6]. A
potential solution lies with combined use of ARM processors and Field Pro-
grammable Gate Arrays (FPGAs), a type of accelerator capable of emulating
digital circuits at high speed [7]. FPGAs may be utilized to offload computa-
tionally difficult tasks from the ARM CPU, including the IO compression and
decompression [8, 9].

In this paper we present an evaluation of a low-power, passively cooled
computing cluster similar to the previously mentioned Raspberry Pi clusters,
but based on Zynq-7000 ARM-FPGA Systems-on-Chip (SoC). We evaluate
the cluster utilizing industry-standard benchmarks for distributed computing.
In previous work on ARM-FPGA clusters in [10], the authors offload signal
processing applications, i.e. a FIR filter, to the Zynq FPGA. Instead of taking
this ad-hoc route, our benchmarks aim to identify the principal computational
and IO weaknesses of our cluster, when compared to a x86 cluster, in order
to help the research community to formulate a coherent strategy to utilize the
FPGA to mask or minimize these weaknesses. We determine that application
execution is almost universally IO-bound on our ARM-FPGA cluster, which
indicates that IO compression on FPGA is a potentially useful and unique
scenario for ARM-FPGA SoCs compared to ARM SoCs.



Evaluation of a Low-Power Hadoop Cluster based on the Zynq ARM-FPGA SoC 127

2. Low-Power Distributed Computing with Hadoop

Apache Hadoop [11] is an open-source software framework written in Java
for distributed storage and distributed processing of very large data sets on
computer clusters built from commodity hardware, i.e., any computer with a
Linux operating system. The core of Apache Hadoop consists of a storage mod-
ule, the Hadoop Distributed File System (HDFS) [12], a programming model,
MapReduce [13], and a task scheduler, YARN (Yet Another Research Nego-
tiator) [14]. HDFS splits files into large blocks and distributes them amongst
the nodes in the cluster for storage. To process the data, YARN transfers
packaged MapReduce code for nodes to execute in parallel on the data stored
locally. This approach takes advantage of data locality nodes manipulating
the data that they have on hand to allow the data to be processed without
moving it between nodes, and therefore faster and more efficiently.

A Hadoop cluster consists of a single master node and multiple worker
nodes. The master node hosts several management services: a Job Tracker,
Task Tracker, NameNode, and DataNode. A worker node acts as both a
DataNode and TaskTracker, though it is possible to have data-only worker
nodes and compute-only worker nodes. In a larger cluster, the HDFS is man-
aged through a dedicated NameNode server to host the file system index, and a
secondary NameNode that can generate snapshots of the namenode’s memory
structures, thus preventing file-system corruption and reducing loss of data.

The MapReduce Engine consists of one JobTracker, to which client appli-
cations submit MapReduce jobs. The JobTracker pushes work out to available
TaskTracker nodes in the cluster, striving to keep the work as close to the
data as possible. If a TaskTracker fails or times out, that part of the job is
rescheduled.

MapReduce is a programming model for data processing. Hadoop can
run MapReduce programs written in various languages ( Java, Ruby, Python,
C++ etc.). Most importantly, MapReduce programs are inherently paral-
lel, thus putting very large-scale data analysis into the hands of anyone with
enough machines at their disposal. MapReduce works by breaking the pro-
cessing into two phases: the map phase and the reduce phase. Each phase has
key-value pairs as input and output, the types of which may be chosen by the
programmer. The programmer also specifies two functions: the map function
and the reduce function.

A typical Hadoop cluster (Figure 1) has one NameNode who coordinates
a list of DataNodes. The NameNode splits the tasks to the DataNodes, who
performs the actual computing. The speed of the computation performed by
the cluster is the result of the node-network aggregate, which is given by the
nodes hardware architecture and the speed of the network. The Secondary
NameNode is optional and is used to assure redundancy for the NameNode.
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Fig. 1. Hadoop cluster architecture [15]

3. The ARM and x86 Clusters

3.1. The ARM Processing Cluster

In Figure 2 we present the block diagram of the ARM processor cluster
utilized in our experiments. The cluster does not consist entirely of ARM
processors, as the master node is a x64 CPU HP ProLiant server, with suf-
ficient RAM for executing the NameNode of HDFS which maintains the file
system and metadata for all processes. It also ensures load balancing and the
replication of data. These cluster maintenance tasks generate many processes,
thereby a powerful x86 CPU and a larger memory is preferred to an ARM
processor. The NameNode has a dual-core 64bit Intel Core CPU operating at
3GHz, 200GB hard-drive and 2GB RAM memory. The operating system is
Ubuntu 14.04.2 LTS.

The JobTracker schedules all data processing tasks to ARM nodes. These
are implemented with ZedBoard development boards, each equipped with a
Xilinx XC7Z020 Zynq SoC, which integrates a dual-core ARM Cortex-A9 at
667MHz and an FPGA. The board is also equipped with 512MB of DDR mem-
ory and a 8GB SD card for storage. The SD card is rated for approximately
14MB/s write speed and a cached read speed of 364.36MB/s. Each ZedBoard
system executes a Xillinux operating system, which is a Linux distribution
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Fig. 2. Architecture of ARM Zedboard cluster

based upon Ubuntu LTS 14.04 for ARM. The ZedBoards are capable of Giga-
bit Ethernet networking, however as we do not propose to benchmark network
performance, the boards are connected to each-other and the ProLiant server
through a 100Mb switch, as illustrated in Figure 2.

3.2. The x86 Processing Cluster

The x86 Hadoop cluster consists of commodity computers co-located in-
side a laboratory, with hostnames Catalyst01 to Catalyst15. For reasons such
as ease of deployment and dependency isolation, we utilize Linux contain-
ers (LXC) as a way of hosting the Hadoop environment. We selected Linux
Containers (LXC) because it is a lightweight virtualization technology for com-
puters running GNU/Linux, facilitating cluster deployment while not hinder-
ing performance significantly. Inside of an LXC container on each physical
computer executes Ubuntu 14.04 Trusty (32 bit) that hosts the Hadoop en-
vironment. Containers communicate through a software network bridge on
the Host OS of the physical node. A schema of how the Hadoop components
can be found throughout the cluster can be seen in Figure 3. A generic rela-
tionship between two host computers and their corresponding isolated Hadoop
environment is depicted in Figure 4.

Two types of hardware nodes have been utilized, which have the following
specifications:
• HDD: 70GB,RAM : 2GB, CPU: Intel Pentium 4 CPU @ 3.00GHz, Host

OS : LinuxMint LMDE Cinnamon Edition, LXC OS: Ubuntu 14.04 (32
bit)
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Fig. 3. Hadoop components in the x86 cluster

Fig. 4. Architecture of x86 cluster

• HDD: 224GB, RAM: 3GB, CPU: Intel Celeron CPU E3400 @ 2.60GHz,
Host OS : LinuxMint LMDE Cinnamon Edition, LXC OS: Ubuntu 14.04
(32 bit)

The complete Hadoop cluster totals 15 computers with 1 master NameNode
and 14 slave nodes, for the purpose of this paper, only 8 slave nodes have been
utilized, 4 of each hardware configuration. We selected only 8 nodes in order
to provide a meaningful comparison to the 8-node ARM cluster with regard
to processing performance. As is the case with the ARM cluster, only slave
nodes process data.

4. Evaluation

We perform a performance evaluation of both clusters utilizing standard
Hadoop benchmarks designed to evaluate all aspects of Hadoop performance.
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4.1. Wordcount

The Wordcount benchmarking application counts all the occurences of a
word from a given set of text files in HDFS, using MapReduce. The input for
this benchmarking application is the Wikipedia Corpus [16], totaling 9.6 GB
of text after it is processed into a corpus database. Wordcount is an evaluation
of compound Hadoop performance (HDFS and MapReduce), but because the
computation is exceedingly simple, i.e. repeated string comparison, Wordcount
is more IO intensive than computationally intensive.

We loaded the Wikipedia text corpus into HDFS and performed Word-
count utilizing all 8 nodes of each cluster type. The ARM cluster processed the
corpus in 19386 seconds (5.23 hours) while the x86 cluster completed Word-
count in 1982 seconds (0.55 hours). The x86 cluster performed almost 10 times
faster compared with the ARM cluster. Because the data transfer speed of the
SD card, which is the principal storage device on the Zedboards, is an order
of magnitude slower than a mechanical hard drive, HDFS performance is a
bottleneck for the ARM cluster.

4.2. Terasort

Terasort is the most well-known Hadoop benchmark. The goal of Tera-
sort is to sort 1TB of data (or any other size) as fast as possible in a distributed
fashion. This benchmark exercises both the HDFS and the MapReduce layers
of the cluster. Since the computed algorithm is more complex than that of
Wordcount, Terasort is focused more on computing performance and less on
HDFS performance. We generated unsorted data sets ranging in size from 0.5
GBytes up to 3 GBytes in 0.5 GByte increments, utilizing the Teragen software
bundled with Terasort. We loaded the generated data-sets into HDFS.

Figure 5 illustrates the performance of the two clusters while executing
Terasort. For both clusters, the time required to completely sort the data-set
is proportional to the size of the data-set. The x86 cluster is on average two
times faster, for all dataset sizes. The advantage over the ARM cluster is less
than with Wordcount because Terasort is less IO-bound, and more compute-
intensive.

4.3. MRBench

MRBench executes a small Hadoop job in a loop for a large number of
times, evaluating the performance of the job management mechanisms of the
cluster. The number of jobs launched is the key parameter of MRBench. As
such it is a very complimentary benchmark to the large-scale TeraSort bench-
mark suite because MRBench checks whether small job runs are responsive
and running efficiently on the cluster. It focuses on the MapReduce layer
as its impact on the HDFS layer is very limited. However, MRBench is not
computationally intensive for slave nodes, but instead stresses the JobTracker.
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Fig. 5. Terasort results

Fig. 6. MRBench results

We executed MRBench with a number of jobs ranging from 1 to 100.
Figure 6 presents the performance comparison of the two clusters on MRBench.
It is immediately evident that jobs are started and managed more slowly on
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the ARM cluster. Despite the fact that the JobTracker of the ARM cluster
is a traditional x86 server, the under-powered ARM processors of the slave
nodes take longer to respond to requests and overall MRBench performs 3
times better on x86 than on the ARM cluster.

4.4. TestDFSIO

Test DFSIO is a benchmark for read/write operations from and to HDFS.
It is useful for discovering IO performance bottlenecks. We perform several
evaluations for a data volume of 2GB split equally into an increasingly larger
number of files. The purpose of this evaluation is to identify how the data
granularity is affecting the IO speed of the Hadoop cluster.

The most notable metrics for TestDFSIO are Throughput and Average
IO rate, expressed in MBytes/second. Both metrics are computed from the size
of the file written (or read) by the individual map tasks, and the time elapsed
for reading or writing. Equation 1 calculates the throughput of a TestDFSIO
job which utilizes N map tasks. The average IO rate is defined in Equation 2.
The index i ∈ [1, N ] denotes the individual map tasks, while Si denotes the
file size read or written by the map task, and Ti denotes the time required to
perform the read or write of the file.

Throughput(N) =

∑N
n=1 Si∑N
n=1 Ti

(1)

AverageIOrate(N) =
1

N

N∑
n=1

Si

Ti

(2)

Table 1

Average TestDFSIO Performance

Operation Average I/O (MB/s)

x86 Cluster HDFS Read 23.47
ARM Cluster HDFS Read 9.7
x86 Cluster HDFS Write 5.95

ARM Cluster HDFS Write 2.1

Average performance for both reads and writes is summarized in Table 1.
Figure 7 illustrates the average read IO throughput of the two clusters under
evaluation. Except when handling large files, the read throughput is 2-3 times
greater on the x86 cluster, which utilizes mechanical hard-disks.

Write performance is illustrated in Figure 8. Similarly to reads, the x86
cluster outperforms the ARM cluster. For both clusters, write performance
degrades when files become smaller, as the HDFS file management overhead
becomes more time-consuming than the actual writes to the storage devices of
the cluster nodes.
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Fig. 7. TestDFSIO Read Average I/O

Fig. 8. TestDFSIO Write Average I/O
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4.5. Power Dissipation

We evaluate the power dissipation of the ARM cluster in order to pro-
vide a rough comparison of the two clusters for this important data-center
metric. We utilize a Ubiquity mPower Pro smart power outlet, with power
measurement capability. The ARM and x86 cluster average power dissipation
is recorded during the execution of the distributed computing benchmarks and
presented in Table 2. We note that the power dissipated in the ARM cluster
mostly by the name-node server, at 190 Watts. The worker ARM nodes dissi-
pate a maximum of 20 Watts together. By taking into account the execution
times for the Wordcount, Terasort, and MRBench benchmarks, we have also
calculated the energy consumed by each cluster to compute the benchmarks.
The ARM cluster is more energy-efficient on all benchmarks except Word-
count, which is IO bound on the ARM cluster and where the performance
difference between the two systems is the most pronounced.

Table 2

Power Dissipation

Computing System ARM Cluster x86 Cluster

Power Dissipation (W) 210 1200
Wordcount Energy (MJ) 4.07 2.38

Terasort Energy (MJ) 0.73 1.92
MRBench Energy (MJ) 0.07 0.12

5. Conclusions

We have presented a comparative evaluation of two Hadoop clusters,
equipped with x86 and ARM processors respectively. The ARM cluster was
constructed from low-cost, commercially available ZedBoard development boards,
which are frequently utilized in the research community for FPGA offloading
applications. We utilized tha standard set of Hadoop benchmarks to determine
the relative performance of the clusters.

From our evaluations it has become evident that IO throughput, in both
reads and writes, is the principal drawback of the ARM cluster as presented
in our work. Despite this fact, the ARM cluster dissipates five times less
power than the x86 cluster and is more energy-efficient on most benchmarks.
Our results guide future work towards solving the IO bottleneck through e.g.
FPGA offload of Hadoop compression, in order to further increase possible
power and energy benefits of the ARM cluster.
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