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THE ENTROPY OF COUNTABLE DYNAMICAL SYSTEMS

A. Ebrahimzadeh®, M. Ebrahimi?

In [2, 3], entropy of dynamical systems on a probability space and on an
algebraic structure with countable partitions is introduced. In this paper we prove
some results about it and compare to the finite case. The aim of this note is to
express conditions under which the entropy of a dynamical system is zero.
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1. Introduction

One of the applied branches of mathematics is the entropy of a dynamical
system. It has been widely applied since in a variety of fields, including physics,
chemistry, engineering, biology, economics, anthropology, general systems theory,
information theory, psychotherapy, sociology, urban planning, and others. The en-
tropy concept originated in thermodynamics in the mid-nineteenth century. Shannon
in the 1940s was concerned with the problems of the transmission of information in
the presence of noise. We assume the reader is familiar with the definition of mea-
sure [6], dynamical system [7]. The entropy of a finite partition, p, of a probability
space (X, 8.m) is defined as

H(p) =—> m(A;)logm(4;),
i=1

where p = {41, ...4,,} C . The entropy of dynamical system on an algebraic struc-
ture with finite partitions is defined by Riecan [5]. The entropy of dynamical system
on a probability space and on the algebraic structure with countable partitions is
introduced in [2, 3]. In this paper we define A = B for two countable partitions
A, B of a probability space (X, 3, m) and for two countable partitions A, B in the
algebraic structure. We prove some properties about the entropy and conditional
entropy and compare to the finite case. At the end we express some conditions under
which the entropy of a dynamical system is zero.

2. The Entropy on Probability Space with Countable Partitions

Definition 2.1. Let (X, 3, m) be a probability space, a partition of (X,B,m) is a
disjoint collection of elements of 5 whose union is X .
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Definition 2.2. Let A= {A; :i € N}, B={B; : j € N} be countable partitions of
(X, B,m). Their join is the partition
AVB={A;NB;:ijeN}.
Definition 2.3. Let A = {A; : i € N} be a countable partition of probability space
(X, 8,m). The entropy of A is defined in [2] by
H(A) = —logsupm(A;).
i€EN
Definition 2.4. Let A= {A; : i € N}, B={B; :i € N} be two countable partitions
of probability space (X, 3,m). The entropy of A given B is defined in [2] by
sup; jen m(Ai (1 Bj)
supjen m(B;)

H(A|B) = —log

Definition 2.5. Let (X1, (1,m1), (X2, 82, m2) be two probability spaces. A trans-
formation T : X1 — X9 is measure preserving if

i) T7'62 C fi;

ii) ml(T_lBg) = mz(Bg), VBy € 5.

Definition 2.6. [2] A probability dynamical system is a complex (X, 3, m,T) where
(X, B,m) is a probability space and T : X — X is a measure-preserving transfor-
mation.

Definition 2.7. Let A and B be countable partitions of (X, 3,m). We write A C° B
if for every A; € A there exists Cj € B such that m(A; A C;) =0. We write A= B
if AC’° B and B C° A.

Proposition 2.1. If A = {A;:ie€ N}, B={C;:j €N} and C = {Dj : k € N}
be countable partitions of (X, 3, m). Then

i) If A= B then H(A) = H(B);

ii) If A= C then H(A|B) = H(C|B);
iii) If B = C then H(A|B) = H(A|C).

Proof.
i) Since A C° B, for every i € N there is j € N, such that
m(AZ N Cj) = m(C]) = m(AZ)
So
{m(4;) :i e N} C {m(Cj) :j € N}.
It follows that
supm(A;) < supm(Cy).
1€EN JEN
On the other hand B C° A similarly implies sup ey m(Cj) < sup;en m(4;).
Hence
supm(A;) = sup m(Cj).
1EN JEN
ii) By definition it is sufficient to show that

sup m(A; NCj) = sup m(D, N Cy).
i,jEN k,jEN
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Since A C° C' then for every i € N there is k € N, such that
m(Dk — AZ) = O,m(AZ — Dk) =0.

Hence we have

m(Dk N CJ) = m(Dk N (A UA; ) N CJ)
< m((Dx — 4;) N Cy) + m((D N A; N Cy)
< m(Dy — A4;) + m(4; N Cy)
= m(A4;NCj).
So for every j € N
(2.1) m(Dk N C]) < m(Az N C])

On the other hand

m(A;NCy) = m(A;N (DU Dg)NCy)
= m((Dk NA;N CJ) U (Al N DN CJ))
< m(Dk N C]) + m(A, — Dk)
= m(Dk N C])
So for every j € N
(2.2) m(A,-ﬂCj) < m(DkﬂCj).
Hence (2.1) and (2.2) imply that for every ¢ € N there exists k € N, such that
for any j € N,
m(AZ N C]) = m(Dk N CJ)
Thus

{m(AZﬁC]) 11,7 EN} - {m(kaC]) 2k, g EN}.
It follows that

sup m(A; NCj) < sup m(Dy N Cy).
i,jEN k.jEN

Now on the other hand D C° A similarly implies that

sup m(Dy N Cj) < sup m(A4; N Cy).
ijEN k,jEN

iii) Since B = C, by (i) we have
diamB = diamC.
Also since B = C, by (ii) we have

diam(AV B) = diam(AV C).
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So we can write

H(A|B)

= — logsup

= —log

= — logsup

€N
diam(A

€N

= H(A|0).

diam(A; <7 B)

diamB
V B)

diamB
diam(A

o)

diamC
diam(A; 7 C)

diamC

Proposition 2.2. Let A = {A;:i € N} and B = {C}: j € N} be two countable
partitions of (X, 5, m) with B C® A. Then H(A|B) = 0.

Proof.

Since B C° A, for every j € N there is i € N, such that

So

On the other hand diam(AV B) < diamn. Hence H(A|B) = — log

{m(C]) 17 € N} C{m(4; ﬂCj) 11,5 € N}.
It follows that sup;en m(Cj) < sup; jen m(A; N Cj) and it means
diamn < diam(AV B).

m(AZ N Cj) = m(Cj)

diam(AVB)

diamn

=0.m

Remark. If A and B are two finite partitions of (X, 5, m) such that H(A|B) =
0 then A C° B. (see [8]). But if A and B be two countable partitions of (X, 3, m)
such that H(A|B) = 0 then it does not imply B C® A or A C° B necessarily. In
order to show this, we present the following example.

Example 2.1. Let X = (0,1] and m be Lebesgue measure. If A = {A;:i € N} and
B ={Cj:j € N} such that

and for i > 6,

And

Ay = (1/2,1],
Ag = (1/3,1/2],
Az = (5/12,1/3],
Ay =(1/4,5/12],
]

As = (1/5,1/4],
A= (%’ i i i
Cl = (1/2’ 1]a

Cy=(5/12,1/2],
Cs3=(1/3,5/12],
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and for j >4,
1
c;=(1/j,—]

A and B are countable partitions of probability space (X, 3, m) because | J;=, A; =
Uj21 Cj = X and {A; :i € N}, {Cj : j € N} are disjoint separately. Now we have
diam(AV B) = sup m(A; N Cj) = m(A1 NCy) =m(1/2,1] =1/2.

1,J€EN
It follows that H(A|B) = 0.
But
m(Ag N CQ) = 1/12 #* 2/12 = m(AQ),m(AQ N CQ) £ 0.
So B ¢° A. Also
m(A4 N 04) = 1/12 75 2/12 = m(C4),m(A4 N 04) 75 0.
So A¢° B.

Definition 2.8. Let T : X — X be a measure-preserving transformation of prob-
ability space (X, B, m) and A be a countable partition of (X,3,m). The entropy of
T relative to A is defined by

h(T, A) = H(A| V2, T A).
Definition 2.9. Let T : X — X be a measure-preserving transformation of prob-
ability space (X, 3,m). The entropy of T is defined by
B(T) = sup h(T, A),
A

where the supremum is taken over all countable partitions of (X, 3, m).

Corollary 2.1. Let T' be a measure-preserving transformation of probability space
(X,B,m). Let A be a countable partition of (X,B,m). If V2, TA C° A, then
h(T,A)=0.

Proof.
It holds from Proposition 2.2.

Corollary 2.2. Let T' be a measure-preserving transformation of probability space
(X, B,m). If for every countable partition A of (X, [, m) we have V{2, T~*A C° A,
then h(T) = 0.

Proof.
By using of corollary 2.1, it is clear.

3. The Entropy on an Algebraic Structure with Countable Partitions

All definitions in this section are from [2, 3]. Let F' be a non-empty totally
ordered set. Also let @, ® be two binary operations on F' and 1 be a constant
element of F' such that

loa=a>a®b,
for any b € F.

Definition 3.1. A function m : F — [0,1] is called F-measure when for any
a,b,ce F
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m(a®b) <mla
vii) If m(a) = m(1) then m(a ®b) = m(b);
viil) If m(a) < m(b) then m(a ®¢) < m(b® c).

i) m(aeb) =m(b&a), mla®b) =m(boa);
i) ma@ (b®c)) =m((a®b) &), mao (b)) =m((a®b)®c);
iii) m(a@(b@ ) =m((a®b)d(a®c)), mad (boc))=m((a®b)© (asc));
iv) m(®r a;) = > iy m(ai), for any n € N;
V) Ifa<bthenm(a)§ m(b);
i)
)

Definition 3.2. A countable partition in F is a sequence A = {a;}ien C F such
that

i) m(l) =372 mlai);

i) > 22, m(a; ©b) = m(b), for any b e F.
Definition 3.3. Let A = {a;}ien and B = {bj}jen be two countable partitions in
F. Their join is

AVB = {ai®bj ta; € A,bj € B,i,j EN},
if A# B, and
AVA = A.

Definition 3.4. Let A = {a;}ien be a countable partition in F. The entropy of A is
defined in [3] by
H(A) = —logsupm(a;).
€N
Definition 3.5. Let A = {a; : i € N}, B = {b; : j € N} be two countable partitions
in F'. The conditional entropy of A given B is defined in [3] by
sup; jen m(a; © by)
SUPjeN m(b;)
Definition 3.6. Let A = {a;}ien be a countable partition in F'. The diameter of A
s defined by

H(A|B) = —log

diam(A) = sup m(a;).
€N

Definition 3.7. Let G be a non-empty subset of F. We say G is m—set when there
exists k € [0,1] such that m(a) =k, for any a € G. In this case we set m(G) = k.
Definition 3.8. A function u: F — F is m- preserving transformation when
i) u=t(a) is an m-set with k = m(a), for any a € F;
ii) u'(a ®b) is an m—set and
m(u(a ® b)) =m(u(a) ®ut(b)),
for any a,b € F;
iii) u(a ®b) and u(a) ® u=t(b) are m—sets and
m(uH(a®b)) =m(u""(a) ©u"t (b)),
for any a,b € F.
Definition 3.9. Let A and B be countable partitions in F'. We write A C° B if for

every a; € A, ¢j € B we have m(a; ® ¢j) = m(cj) or m(a; ® ¢;) =0 . We write
A=Bif AC°B and B C° A.
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Proposition 3.1. If A,B,C are countable partitions in F'. Then
i) If A= B then H(A) = H(B);
ii) If A= C then H(A|B) = H(C|B);
iii) If B = C then H(A|B) = H(A|C).
Proof.
i) Let A={a;:i€ N}, B={c;:j € N}. Since A= B, for every a; € A, ¢; € B
we have m(a; © ¢;) = m(cj) = m(a;) or m(a; © ¢;) = 0. So

supm(a;) = sup m(c;).
iEN JEN

ii) Since A = C, then AV B=CV B. So by (i),
H(A|B) = H(AvVB)-H(B)
= H(CVB)-H(B)
H(C|B).
iii) Since B = C, then AV B = AV C. Hence by (i),
H(A|B) = H(AV B)— H(B)
= H(AvC)—H(C)
H(A|C).
|

Proposition 3.2. Let A = {a;:i € N} and B = {c¢j: j € N} be two countable
partitions in F' with B C° A. Then H(A|B) = 0.

Proof.
Since B C° A, for every j € N there is ¢ € N, such that
m(a; © ¢j) = m(c;).
So
{m(c;) : j € N} C {m(a; ®¢j) :4,j € N}.
It follows that sup;cn m(cj) < sup; jenym(a; © ¢;) and it means

diamB < diam(A V B).

On the other hand diam(A V B) < diamn. Hence H(A|B) = — log% =0m

Definition 3.10. Let u be an m- preserving transformation of probability and A be
a countable partition in F', The entropy of u relative to A is defined by

h(u, A) = H(A| V2, u A).

Definition 3.11. Let u be an m- preserving transformation in F. The entropy of
u 18 defined by

h(u) = sup h(u, A),
A
where the supremum is taken over all countable partitions in F.

Corollary 3.1. Let u be an m- preserving transformation in F'. Let A be a countable
partition in F. If V2, u™A C® A, then h(u, A) = 0.
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Proof.
It holds from Proposition 3.2.

Corollary 3.2. Let u be an m- preserving transformation in F'. If for every count-
able partition A in F we have V2 u'A C° A, then h(u) = 0.

Proof.
By corollary 3.1, it is clear.

4. Conclusion

This paper has defined A = B for two countable partitions A, B in a prob-
ability space (X, 3,m) and in an algebraic structure separately. We proved some
properties about entropy and conditional entropy. It is shown by an example that
if A and B are two countable partitions of (X, 3, m) such that H(A|B) = 0, then
necessarily it does not imply B C° A or A C° B. At the end we expressed some
conditions under which the entropy of dynamical system is zero.
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