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CHARACTERIZING (p,7)-QUASI-EINSTEIN SOLITONS IN THE
FRAMEWORK OF SYNECTIC LIFT METRIC

Lokman Bilen'!, Aydin Gezer?, Seyma Tombag®

Abstract: In this paper, we explore the structure of (p,T)-quasi-FEinstein
solitons in relation to the synectic lift metric on the tangent bundle T M of a Riemannian
manifold (M, g). Utilizing an adapted frame for our analysis, we investigate the neces-
sary and sufficient conditions for the structures (TM,§,\, V f) and (TM,g,\, €f) to
qualify as (p, T)-quasi-Einstein solitons, where § denotes the synectic lift metric on the
tangent bundle T M.
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1. Introduction

Let M be an n—dimensional manifold, and let T M represent its tangent bundle. We
use % (M) to denote the collection of all tensor fields of type (r, s) on M. Similarly, 37 (M)
refers to the corresponding collection of tensor fields on T'M. Additionally, this paper will
always consider everything within the C'*°—category, and the manifolds discussed will be
assumed to be connected and of dimension n > 1.

The tangent bundle T'M is a fundamental concept in differential geometry, providing
a systematic way to examine and apply tangent vectors throughout the manifold. It en-
capsulates the local linear structure of the manifold and facilitates the extension of vector
space concepts to the manifold context. The exploration of tangent bundle geometry dates
back to Sasaki’s influential paper published in 1958 [23], where he introduced a method to
construct a metric g on the tangent bundle T'M of a differentiable manifold M based on a
given Riemannian metric g on M. This metric, now referred to as the Sasaki metric, has
become a cornerstone in differential geometry. In subsequent years, researchers explored
various classical lifts of the metric g from M to T'M in their pursuit of alternative lifted
metrics with notable properties (see [1, 9, 5, 16, 26]). Among these, the synectic lift metric
g has emerged as one of the significant metrics. In this paper, we focus on the synectic
lift metric on the tangent bundle of a Riemannian manifold. Our aim is to investigate the
necessary and sufficient conditions for the structures (T'M, g,\, V' f) and (TM, g,\, f)
to be classified as (p, 7)-quasi-Einstein solitons, where g denotes the synectic lift metric on
the tangent bundle T'M.

A geometric soliton structure is a unique geometric arrangement on a manifold that
displays self-similar behavior when subjected to geometric flows. In differential geometry,
solitons are intimately connected to the solutions of partial differential equations (PDEs),
especially within the framework of geometric flows like the Ricci flow or mean curvature flow.
In this context, solitons represent configurations that evolve in a consistent, self-similar way
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during the flow process. Solitons are crucial for analyzing the long-term dynamics of geo-
metric flows and serve as key tools for exploring the topology and geometry of the manifolds
involved. In physics, solitons typically refer to stable formations that resist dispersal, and
geometric solitons can have similar interpretations in fields like general relativity and string
theory. In [14], the authors study some soliton structure (almost Ricci and almost Yamabe
solitons) on tangent bundle, in [25], investigated Ricci, Yamabe and gradient Ricci-Yamabe
solitons of the twisted-Sasaki metric on the tangent bundle over a statistical manifold. Also
explored natural Ricci soliton on tangent and unit tangent bundle in the paper [2], Yam-
abe and quasi-Yamabe solitons on Euclidean submanifolds worked by Chen and Deshmukh
[8]. Many more studies have been carried out on soliton structures over the years (see
[6, 11, 13, 18, 20]).

A quasi-Einstein soliton generalizes the notion of an Einstein soliton, which is itself a
specific instance of a Ricci soliton. Within the realm of differential geometry and geometric
flows, these solitons offer valuable insights into the structure and dynamics of manifolds
under particular conditions. A quasi-Einstein soliton modifies the soliton equation by incor-
porating an additional function, commonly denoted as f. The equation for a quasi-Einstein
soliton is typically written as:

Ric+ V2 f — pdf @ df = Ag.

In this equation, V2 f refers to the Hessian of the smooth function f, while df ®df denotes the
tensor product of the differential of f. The constants A and p introduce flexibility in modeling
the geometry of the manifold, often resulting in solutions that describe non-homogeneous or
more intricate geometric structures. Essentially, quasi-Einstein solitons provide an expanded
framework for examining self-similar solutions to geometric flows, broadening the scope of
Einstein and Ricci solitons to include more general and complex geometric configurations.

Einstein manifolds are of crucial importance in both mathematics and physics. Within
Riemannian and semi-Riemannian geometry, there is considerable interest in exploring Ein-
stein manifolds and their various generalizations. Recently, several extensions of Einstein
manifolds have been introduced, including quasi-Einstein manifolds [12], generalized quasi-
Einstein manifolds [7], n-quasi-Einstein manifolds, and (p, 7)-quasi-Einstein manifolds [17],
among others. Additionally, in [10], the authors studied perfect fluid spacetimes character-
ized by a Lorentzian metric that incorporates (m, p)-quasi-Einstein solitons and provided an
example of an almost co-Kéhler manifold exhibiting (m, p)-quasi-Einstein solitons. In [22],
the authors investigated (m, p)-quasi-Einstein solitons on 3-dimensional trans-Sasakian man-
ifolds, demonstrating that a closed (m, p)-quasi-Einstein soliton on a 3-dimensional trans-
Sasakian manifold is either cosymplectic or Einstein under certain conditions, and they also
presented an application of this soliton.

The equation characterizing a (p, 7)-quasi-Einstein soliton is generally expressed as
follows:

1
Ric+ V2f — ;df@df = (pr+ N)g,

where V2f denotes the Hessian of a smooth function f, and df ® df represents the tensor
product of the differential of f. In this context, r stands for the scalar curvature, while A,
7, and p are scalars. In this paper, we explore the necessary and sufficient conditions for
the structures (T'M, g, \, V f) and (T M, g, \, € f) to qualify as (p, 7)-quasi-Einstein solitons,
with g being the synectic lift metric on the tangent bundle T'M.
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2. Preliminaries
2.1. The adapted frame on tangent bundle

Consider an n-dimensional Riemannian manifold M equipped with a Riemannian
metric g, and let TM denote its tangent bundle. This article utilizes the C*° category to
provide a thorough explanation, particularly focusing on connected manifolds. We examine
the natural projection 7w : TM — M with special attention to systems of local coordinates.

When a local coordinate system (U, z%) is established on M,,, it induces a correspond-
ing local coordinate system (7= (U), #, 2" = u?) on TM, where i =n+i=n+1,...,2n.
In this context, (u’) represents the Cartesian coordinates in each tangent space T, M for all
p € U, with p being an arbitrary point in U.

The Levi-Civita connection associated with the Riemannian metric g is denoted by
V. In the context of the horizontal distribution defined by V and the vertical distribution
defined by ker 7, we establish the following local frame:

0 s O

E; = E -y Fisa—yh, i=1,...,n,
and
Ef:i i=n+1,...,2n
i ayl ) ) ’ )
where I'?, denotes the Christoffel symbols of g. The local frame {Eg} = (E;, E5) is referred
9

to as the adapted frame. Consider a vector field X = X* 557- Lhe horizontal and vertical
lifts of X with respect to the adapted frame are defined as follows:

X = X'E;,
and
VX = X'F;.
In the tangent bundle TM, the local 1-form system (dz‘,dy) acts as the dual frame
to the adapted frame {E3}, where

oyt = H(dx') = dy* + y°T% .da".
We will first present the following lemma, which will be useful later on.

Lemma 2.1. Let (M,g) a Riemannian manifold and TM its tangent bundle. The Lie
brackets of the adapted frame in TM satisfy the following identities [26]:

[Ej,Ei] = ¢'R,Es,
[Ej7 Ef] - F?iEa
58] = o,

where R, 5, represents the components of the Riemannian curvature tensor of (M, g).

2.2. The synectic lift metric on tangent bundle

In the context of a manifold (M, g), various Riemannian or pseudo-Riemannian met-
rics can be defined on its tangent bundle T M. These metrics are constructed by lifting the
original Riemannian metric ¢g in a natural manner and are referred to as g-natural metrics.
In [3], the authors identified the complete family of Riemannian g-natural metrics, which
depend on six arbitrary functions of the norm of a vector v € TM.

As noted above, different Riemannian or pseudo-Riemannian metrics on T'M have
been formulated using natural lifts of the original metric g. One such metric is known as
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the synectic lift metric on the tangent bundle T'M. In this paper, we introduce the synectic
lift metric as a new natural, non-rigid metric on TM. We then establish the necessary
and sufficient conditions for (T'M, g, A,V f) and (T M, g, \,© f) structures to be (p, 7)-quasi-
Einstein solitons under the synectic lift metric on the tangent bundle T'M.

Definition 2.1. Let g be a Riemannian metric with components g;; on M. We define the
metric
g= aijda:ida:j + 29ijd3:i5yj,

which is non-degenerate and can be considered as a pseudo-Riemannian metric on T M. This
metric is referred to as the synectic lift metric, where a = (ai;) is a symmetric (0,2)-type
tensor field on M.

The synectic lift metric §, which can be expressed as § = ©g+ Va, has the following
matriz form in terms of the induced coordinates:

==y _ [ aij +09i;  gij )

For more details, see [24].

In the adapted frame {Eg}, the synectic lift metric and its inverse are represented as

follows:
~ (= _ Qij  Gij
b= = (2 ).

. _ 0 gk

1_ _

g =9 = < gk _ait >

Here, g and Va denote the complete lift and vertical lift of ¢ and a to T M, respectively.

For the Levi-Civita connection associated with the synectic lift metric, we have the
following:

and

Lemma 2.2. The Levi-Civita connection V of the synectic lift metric § on the tangent
bundle is expressed as follows [4]:

Ve E; = THEc+ (M} +y°R)) Ex,
Ve.E; = 0,

v k

Ve E; = T§Eg

Ve E; = 0,

where MZE = 1 g*" (Vian; + Vjani — Vyaij) is a tensor of type (1,2). Additionally, R?jk
denotes the components of the Riemannian curvature tensor field R associated with the
Levi-Clivita connection V of the Riemannian metric g.

Lemma 2.3. Let TM denote the tangent bundle of a Riemannian manifold (M, g), and let
g represent the associated synectic lift metric. In the adapted frame {Eg}, the Riemannian
curvature tensor R of the Levi-Civita connection V associated with the synectic lift metric
g on the tangent bundle exhibits the following properties:

P, k k

Rmij = Rmij )

pok k k s k k

R = Vil = VM, +y* (ViR = ViR,,,b),
p ko _ k

Rmﬁ Rng ’
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with all other components being zero. Here, Mz’; = %gkh (Vian; + Vjan: — Vpaij) is a tensor
of type (1,2). Additionally, F?j and R?jk denote the components of the Levi- Civita connection
V of the Riemannian metric g and its Riemannian curvature tensor on M, respectively (see,

also [15]).

Lemma 2.4. Let TM denote the tangent bundle of a Riemannian manifold (M,g), and
let g represent the associated synectic lift metric. In the adapted frame {Eg}, the Ricci
curvature tensor R of the Levi-Civita connection V associated with the synectic lift metric
g on the tangent bundle exhibits the following properties:

Rij = Rij, Ry = Rij = Ry =0,
where R;; = kaj represents the Ricci curvature tensor of the manifold M (see, also [15]).

Lemma 2.5. Let TM denote the tangent bundle of a Riemannian manifold (M,g), and
let g represent the associated synectic lift metric. The scalar curvature 7 of the Levi-Civita
connection NV corresponding to the synectic lift metric § on the tangent bundle is equal to
zero (see, also [15]).

3. Main Results

Einstein solitons are of great importance in both mathematics and physics, making
their study within the realms of Riemannian and semi-Riemannian geometry particularly
intriguing. Recently, various extensions of Einstein solitons have been introduced, including
quasi-Einstein solitons, generalized quasi-Einstein solitons, m-quasi-Einstein solitons, and
(p, 7)-quasi-Einstein solitons. In this research, we concentrate on the examination of (p, 7)-
quasi-Einstein solitons on the tangent bundle, utilizing the synectic lift metric.

In a Riemannian manifold, a metric g is referred to as a generalized quasi-Einstein
soliton if there exist smooth functions f, o, and 3 such that the following equation holds:

Ric+ Hessf — adf ® df = (g.

Specifically, if 5 € R and o = 0, this soliton reduces to a gradient Ricci soliton. On the
other hand, if a = % and 8 € R, the equation simplifies to an m-quasi-Einstein soliton,
where m € N. The concept of a generalized quasi-Einstein soliton was introduced by Catino
[7], and Huang and Wei [17] later proposed examining the (m, p)-quasi-Einstein soliton as a
specific case of this framework.

Definition 3.1. In a Riemannian manifold, a metric g is termed an (m, p)-quasi-Einstein
soliton if there exists a smooth function f: M — R along with constants 7, p, A\ € R (where
0 < 7 < o0) such that the following equation holds:

Ric+ Hessf — %df ®df = (pr+ N)g. (1)

Here, r represents the scalar curvature, and Hessf (or V2f) is the Hessian form of the
smooth function f on M. The importance of these manifolds is highlighted by recent studies
on the m-Bakry-Emery Ricci tensor Ricl' (see [19], [21]), which is defined as follows:

1
Ric}" = Ric+ Hessf — —df @ df.
T

For any smooth function f defined on M, the vertical lift of f to the tangent bundle
TM is given by vV f = f, while the complete lift of f to T'M is defined as ¢ f = y*0,f. To
introduce our primary concept, we denote the Hessian operator of the vertical and complete
lifts of any smooth function f on M with respect to the synectic lift metric.
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The Hessian operator of the metric g for a smooth function f is defined by
(Hessgf) (X, Y)=XY f— (VxY) f,

where X,Y € S3(TM). In local coordinates, this can be expressed as
(vf)ﬂ—y = aﬂa'yf - Fg'ya(lf = fﬁ'y - Fg'yfom

with v = j,j and 8 = i,i. Here, Opf = 325 f = fs and 930, f = 325 5% f = fsy, while
00080 f = fapy. From this point onward, we will use this representation throughout the
paper.

To elucidate our main topic, we will provide essential information about the Hessian
operator (with respect to the synectic lift metric) for any smooth function f defined on M.

Lemma 3.1. Let f be a smooth function defined on a Riemannian manifold (M,g). The
Hessian (with respect to the synectic lift metric) of its vertical lift can be expressed as follows:

(V2V5),, = a0f ~Thows = (Vf),,.
(1), - o
(), = 0
<V2 Vf)ﬁ — 0.

The auxiliary lemmas that will be utilized in our study are presented below.

Lemma 3.2. For any smooth function f on M, the vertical lift of f to TM 1is defined as
V= f, while the complete lift of f to TM is given by © f = y*0sf. The dual 1-form of V f
is denoted by df. The following equations can thus be established:

i. d Vf ®d Vf = fifjdxidxj,

ii. dCfedCf=yyfisfipdaide’ +y° fis fida'dy + fif;dy'dy’,
where fg = %f and fgy = %a%f'
Theorem 3.1. Let (M, g) be a Riemannian manifold, and let the synectic lift metric on the

tangent bundle TM be given by § = a;jdxidx? + 2g,;dx'6y’. The structure (TM,q," f,\) is
considered a (p, T)-quasi-Einstein soliton if and only if the following conditions are satisfied:

i. A=0,
i. 7fifj =Rij + (V2f),;-
Here, 7 = 0 denotes the scalar curvature of g, while R represents the Ricci curvature tensor

of g. Additionally, R and r are the Riemannian curvature tensor and scalar curvature of
the Levi-Civita connection V of the Riemannian metric g, respectively. Moreover, we define

fs=0sf = 32 f and fay = 950, f = 3252 f.

Proof. If the expression (%2 Vf) in Lemma 3.1 is used in (1), we have

~ ~ 1 ~ ~
Ry + (V2 Vf)ij ——d"fod'f = (F+NG,

Rzy+(v2f) _7f1fj = /\aij (2)
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and

s (V2VF) = N
= )‘gij
Y (3)

Substituting equation (3) in the equation (2), we get
1
—fifi=Rij + (V21),; -

Conversely by a routine calculation, we can check that in any case i —1ii of the theorem.
So the proof is completed. O

0
0

Lemma 3.3. Let f be a smooth function on a Riemannian manifold (M, g). The Hessian of
its complete lift, with respect to the synectic lift metric, is given by the following expressions:

(v2© f)ij = ¥ (ViVife = RS fu) — ME fi,
(@2 Cf)ij = V.fj,

(@2 Cf),_j = fi,

(v2 Cf)” = 0.

Theorem 3.2. Let (M,g) be a Riemannian manifold, and let § = a;jdz'dz? + 2g;;dz' 5y’
denote the synectic lift metric on the tangent bundle TM. The structure (TM,§,¢ f, \) is
classified as a (p, T)-quasi-Einstein soliton if and only if the following conditions are satisfied:

i A=—-Ly'g fi fj,

i Vi, = R fr.

141. = ME e

w. g" fhsflazj =0,

v. fifij =0, fisfip =0,
where 7 = 0 represents the scalar curvature of g, and R is the Ricci curvature tensor of
g. Additionally, R and r denote the Riemannian curvature tensor and scalar curvature of
the Levi-Civita connection V of the Riemannian metrz’c g, respectively. The derivatives are

defined as fg = Ogf = (%Bf and fgy = 00 f = amﬁ am f- The term MZ’E s given by

1
Ml]; = 5gkh (Viahj + vjahi - vhaij) .

Proof. If the expression (62 Cf) ~in Lemma 3.3 is used in (1), we obtain
ij

~ ~ 1 ~ ~
B+ (V2 €f) ———df@d®f = (o7 + \) G
17 T
1
Rz] + ys (vzvij - sz] fk‘) fk‘ - ;ysypfiSfjp - _)\a’L]
from which, we get
M} firo = —Xayj, (4)

vlvjfs = Rszg fk
and

fisfjp =0.
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If the expression (62 Cf) _or (62 Cf)f in Lemma 3.3 is used in (1), we have

ij i
1 S
==y fisfi = Agij-
o
Contracting with ¢¥/ both sides in last equation, we get
1 s ij
A= ——y°g" fisfj.
nr
Substituting above equation into equation (4), we obtain

Rij — M fi = iy‘“’g’”fhsfzaij
nr
from which, we have
Rij = M fi
and
9" frs fraij = 0.

If the expression (62 Cf)ﬁ in Lemma 3.3 is used in (1), we get
ij

fifi =0.

If the above calculations are followed in reverse, the statements of the theorem easily
accesible. So the proof is completed. O

Conclusion

In this paper, we have thoroughly examined the structure of (p, T)-quasi-Einstein
solitons on the tangent bundle TM of a Riemannian manifold (M, ¢g) under the framework
of the synectic lift metric g. By employing an adapted frame, we derived necessary and
sufficient conditions for the structures (TM,g," f,\) and (T M, 3,C f,\) to be classified as
(p, 7)-quasi-Einstein solitons.

We found that the conditions imposed on A, the derivatives of f, and the curvature
tensors significantly constrain the geometry of the manifold. Specifically, we established that
for (TM,3,” f,\) to be a (p, 7)-quasi-Einstein soliton, A must be zero, and the relationship
between the Hessian of f and the Ricci curvature tensor must hold as indicated. In contrast,
for (TM, §,¢ f,\), a more intricate set of conditions involving ), the Riemannian curvature
tensor, and the complete lift of f emerged, highlighting the delicate interplay between the
geometry of the manifold and the behavior of the smooth function f.

Our findings contribute to a deeper understanding of quasi-Einstein solitons within
the context of synectic lift metrics, expanding the existing literature on solitonic structures
in Riemannian geometry. Future work may extend this analysis to explore the implications
of these conditions on specific classes of Riemannian manifolds and their geometric prop-
erties, as well as investigate the potential applications of (p,7)-quasi-Einstein solitons in
mathematical physics. The study of these solitonic structures promises to unveil further in-
sights into the rich tapestry of geometric phenomena arising from the interplay of curvature
and functional dynamics.
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