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LEGENDRE MULTI-WAVELETS TO SOLVE OSCILLATING

MAGNETIC FIELDS INTEGRO-DIFFERENTIAL EQUATIONS

Y. Khan1, M. Ghasemi1, S. Vahdati2, M. Fardi3

In this paper, we consider an integro-differential equation which describes
the charged particle motion for certain configurations of oscillating magnetic fields.
We use the continuous linear Legendre multi-wavelets on the interval [0, 1) to solve
this equation. Illustrative examples are included to demonstrate the validity and
applicability of the new technique.
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1. Introduction

In recent years, there has been an increase usage among scientists and engi-
neers to apply wavelet technique to solve both linear and nonlinear problems [1-5].
The main advantage of the wavelet technique is its ability to transform complex
problems into a system of algebraic equations. The overview of this method can be
found in [6-15]. In this research, an integro-differential equation which describes the
charged particle motion for certain configurations of oscillating magnetic fields is
considered. We use linear Legendre multi-wavelets on the interval [0, 1) to solve this
problem. Numerical examples are provided to show the high accuracy, simplicity
and efficiency of this method.

2. Wavelets and Linear Legendre multi-wavelets

Wavelet constitutes a family of functions which is constructed from dilation
and translation of a single function called the mother wavelet. When the dilation
parameter a and the translation parameter b vary continuously, we have the following
family of continuous wavelets as [16]:

ψa,b (t) = |a|−1 ψ

(
t− b

a

)
, a, b ∈ R, a ̸= 0.

If we restrict the parameters a and b to the discrete values a = a−k
0 , b = nb0a

−k
0 ,

where a0 > 1, b0 > 0, n, and k are positive integers, we obtain the following discrete
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wavelets:

ψn,k (t) = |a|
k
2 ψ

(
ak0t− nb0

)
,

which form a wavelet basis for L2(R). In particular, when a0 = 2 and b0 = 1
then ψn,k (t) form an orthogonal basis [16]. The linear Legendre multi-wavelets are
described in [6]. Khellat [6] used this kind of wavelets to solve an optimal control
problem. To construct the linear Legendre multi-wavelets, we first define scaling
functions ϕ0(x) and ϕ1(x) as:

ϕ0(t) = 1, ϕ1(t) =
√
3 (2t− 1) , 0 ≤ t < 1.

Now let ψ0(t) and ψ1(t) be the corresponding mother wavelets, then by Multiresolu-
tion of analysis and applying suitable conditions [6] on ψ0(t) and ψ1(t) the explicit
formula for linear Legendre mother wavelets is obtained as:

ψ0 (t) =

{
−
√
3 (4t− 1) , 0 ≤ t < 1

2 ,√
3 (4t− 3) , 1

2 ≤ t < 1,
(1)

ψ1 (t) =

{
6t− 1, 0 ≤ t < 1

2 ,
6t− 5, 1

2 ≤ t < 1.
(2)

The family
{
ψj
kn

}
=

{
2

k
2ψj

(
2kt− n

)}
, where k is any nonnegative integer, n =

0, 1, · · · , 2k − 1 and j = 0, 1, forms an orthogonal basis for L2(R).

3. Linear Legendre multi-wavelets operational matrix of integration

Let us define:

Ψ (t) =
[
ϕ0(t), ϕ1(t), ψ

0
00 (t) , ψ

1
00 (t) , · · · , ψ0

M0 (t) , ψ
0
M1 (t) , · · · , (3)

ψ0
M(2M−1)

(t) , · · ·ψ1
M0 (t) , ψ

1
M1 (t) , · · ·ψ1

M(2M−1)
(t)

]T
,

where M is a nonnegative integer. The integration of the vector Ψ (t) defined in (3
) can be obtained as: ∫ t

0
Ψ(τ) dτ ≈ PΨ(t) , (4)

where P is a 2M+2 × 2M+2 matrix given by [6]:

P =

[
P2M+1×2M+1 Q2M+1×2M+1

−QT
2M+1×2M+1 R2M+1×2M+1

]
. (5)

The submatrix P2M+1×2M+1 in equation (5) is generated by:

P2×2 =

[
1
2

√
3
6

−
√
3
6 0

]
, (6)

and the submatrix R2M+1×2M+1 is generated by the formula:

R2M+1×2M+1 =

√
3

24
× 1

2M

[
O I
−I O

]
, (7)
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for M = 0, 1, 2, · · · , where O and I are 2M × 2M zero and identity matrices, respec-
tively. To generate the submatrix Q2M+1×2M+1 (M = 1, 2, · · · ), suppose it has the
block form:

Q2M+1×2M+1 =

[
S O
T O

]
, (8)

where S and T are 2M × 2M matrices and O is a zero matrix. To characterize S, let
Q2M×2M has the form:

Q2M×2M = [C1 C2 · · ·C2M−1 O O · · ·O] , (9)

where Ci(1 ≤ i ≤ 2M−1) and O is a 2M × 1 column matrix. Then S can be obtained
by:

S =

√
2

8
[C1 C1 C2 C2 · · ·C2M−1 C2M−1 ] . (10)

Hence, we need Q2×2 which has the following matrix

Q2×2 =
1

8

[
0 0
1 0

]
. (11)

To obtain matrix T, we begin by:

T2×2 =

√
2

23

[ −1 1√
3
2

√
3
2

]
, (12)

and for M ≥ 2, we consider:

K1 =
1
2

[
I O
O O

]
, K2 =

1
2

[
O I
O O

]
, K3 =

1
2

[
O O
I O

]
, K4 =

1
2

[
O O
O I

]
,

where I is the identity matrix and O is a zero matrix of dimension 2M−2 × 2M−2. If
we put H = T2M−1×2M−1 , then T can be characterized as:

T =

[
K1H K3H
K2H K4H

]
. (13)

Hence, the matrix P in Equation (5) is obtained by using Equations (7) and (8).

4. Applying linear Legendre multi-wavelets to the problem

In this section we use the linear Legendre multi-wavelets to approximate the
functions. Then by substituting of these approximations in the linear integro-
differential equation and using the collocation points, the equation will be trans-
formed into a system of algebraic equations.

4.1. Function approximation

A function f(t) defined over [0, 1) may be expanded as:

f (t) = f0ϕ0 (t) + f1ϕ1 (t) +

∞∑
k=0

1∑
j=0

∞∑
n=0

f jknψ
j
kn (t) , (14)

where:
f0 = ⟨f(t), ϕ0(t)⟩, f1 = ⟨f(t), ϕ1(t)⟩, f jkn = ⟨f(t), ψj

kn(t)⟩. (15)



54 Y. Khan, M. Ghasemi, S. Vahdati, M. Fardi

In Equation (15), ⟨., .⟩ denotes the inner product. If the infinite series of Equation
(14) is truncated, then it can be written as:

f (t) ≈ f0ϕ0 (t) + f1ϕ1 (t) +

M∑
k=0

1∑
j=0

2k−1∑
n=0

f jknψ
j
kn (t) = F TΨ(t) , (16)

where Ψ (t) is defined in (3) and F is given by:

F =
[
f0, f1, f

0
00, f

1
00, · · · , f0M0, f

0
M1, · · · , (17)

f0
M(2M−1)

, · · · , f1M0, f
1
M1, · · · f1M(2M−1)

]T
.

4.2. Oscillating magnetic field integro-differential equations

Consider the following integro-differential equation [17]:

d2y

dt2
= −a(t)y(t) + b(t)

∫ t

0
cos(wps)y(s)ds+ g(t), (18)

where a(t), b(t) and g(t) are given periodic functions of time which may be easily
found in the charged particle dynamics for some field configurations. Taking for
instance the three mutually orthogonal magnetic field components Bx = B1 sin(wpt),
By = 0 and Bz = B0, the nonrelativistic equations of motion for a particle of mass
m and charge q in this field configuration are:

m
d2x

dt2
= q

(
B0
dy

dt

)
, (19)

m
d2y

dt2
= q

(
B1 sin(wpt)

dz

dt
−B0

dx

dt

)
, (20)

m
d2z

dt2
= q

(
−B1 sin(wpt)

dy

dt

)
. (21)

By integration of (18) and (21) and replacement of the time first derivatives of
z and x in (20) one gets (18) with:

a(t) = w2
c + w2

f sin
2 (wpt) , b(t) = w2

fwp sin (wpt) , (22)

g(t) = wf (sin (wpt)) z
′(0) + w2

cy(0) + wcx
′(0), (23)

where wc = qB0
m and wf = qB1

m . Making the additional simplification by seting
x′(0) = 0 and y(0) = 0, Equation (18) is finally written as:

d2y

dt2
= −

(
w2
c + w2

f sin
2 (wpt) y + wf (sin (wpt)) z

′(0)
)

(24)

+w2
fwp sin (wpt)

∫ t

0
cos(wps)y(s)ds.

In this paper, we consider the Equation (18) with the following initial conditions:

y(0) = α, y′(0) = β. (25)

Second order derivative of the function y(t) in Equation (18) exists, so:
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y (t) =

∫ t

0

(∫ x

0
y′′ (s) ds+ y′ (0)

)
dx+ y (0) . (26)

Approximating the functions y (s) and y′′ (s) with respect to the basis functions by
(16) gives:

y (s) ≈ Y TΨ(s) , y′′ (s) = Y ′′TΨ(s) . (27)

Substituting Equation ( 27) into Equation (26) and using Equation (4), we obtain:

Y TΨ(t) ≈ Y ′′TP 2Ψ(t) + ty′ (0) + y (0) . (28)

In Equation (28), two functions ty′ (0) and y (0) can be approximated as:

ty′ (0) ≈ HTΨ(t) , y (0) ≈ KT Ψ(t) , (29)

so:

Y T ≈ Y ′′TP 2 +HT +KT . (30)

Combining Equations (18) and (28), yields:

Y ′′T
(
Ψ(t) + a(t)P 2Ψ(t)− b(t)P 2

∫ t

0
cos(wps)Ψ (s) ds

)
= g(t)− a(t)

(
ty′(0) + y(0)

)
+ b(t)

∫ t

0
cos(wps)

(
sy′(0) + y(0)

)
ds. (31)

Now, let ti = 1, 2, · · · , 2M+2 be 2M+2 appropriate points in interval [0, 1) . Putting
t = ti into (31), we have a linear system of 2M+2 algebraic equations of 2M+2 un-
known coefficients corresponding to y′′ (t) . Solving this system of algebraic equations
and substituting the result into Equation (30) lead us to find Y T .

5. Illustrative examples

To reformulate the mentioned method and to prove its efficiency for solving
the general Equation (18), we consider this equation for different values of a(t),
b(t) and g(t), where we can derive respective analytical solutions. In the considered
cases, we choose the collocation points:

ti =
2i− 1

2M+3
, i = 1, 2, · · · , 2M+2. (32)

The computations for these examples were performed using Maple 14.

Example 1. Consider Equation (18) with:

wp = 2, a(t) = cos(t), b(t) = sin

(
t

2

)
,

g(t) = cos(t)− t sin(t) + cos(t) (t sin(t) + cos(t))

− sin

(
t

2

)(
2

9
sin(3t)− t

6
cos(3t) +

t

2
cos(t)

)
and α = 1, β = 0. The exact solution of this problem is given by y(t) = t sin(t) +
cos(t)(see [18]). The numerical solution for Example 1 is obtained by the method in
section 4 with M = 3. Table 1 represents the numerical results of this example.
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Example 2. Next, consider Equation (18) with:

wp = 1, a(t) = − sin(t), b(t) = sin (t) ,

g(t) =
1

9
e−

t
3 − sin(t)

(
e−

t
3 + t

)
− sin (t)

(
− 3

10
cos(t)e−

t
3 +

9

10
e−

t
3 sin(t) + cos(t) + t sin(t)− 7

10

)
.

Table 1. Numerical results of Example 1

t Exact Solution Approximate Solution Absolute Error
0 1. 0.9958923638 4. 107 6× 10−3

0.1 1.004987507 1.006711649 1. 724 1× 10−3

0.2 1.019800444 1.019729643 7. 080 1× 10−5

0.3 1.043992551 1.043967189 2. 536 3× 10−5

0.4 1.076828331 1.078484444 1. 656 1× 10−3

0.5 1.117295331 1.116769872 5. 254 6× 10−4

0.6 1.164121099 1.164117090 4. 009 3× 10−6

0.7 1.215794568 1.216007719 2. 131 5× 10−4

0.8 1.270591582 1.270604841 1. 325 9× 10−5

0.9 1.326604187 1.326616801 1. 261 4× 10−5

and α = 1, β = 2
3 . y(t) = e−

t
3 + t is the exact solution of this Equation [18]. We

solve this example using the proposed method with M = 3. Table 2 indicates the
numerical results of this example.

Table 2. Numerical results of Example 2

t Exact Solution Approximate Solution Absolute Error
0 1. 0.9995324854 4. 675 2× 10−4

0.1 1.067216100 1.067409867 1. 937 7× 10−4

0.2 1.135506985 1.135498873 8. 110 1× 10−6

0.3 1.204837418 1.204831254 6. 164 1× 10−6

0.4 1.275173319 1.275363888 1. 905 7× 10−4

0.5 1.346481725 1.346379637 1. 020 9× 10−4

0.6 1.418730753 1.418729558 1. 195× 10−6

0.7 1.491889566 1.491932333 4. 276 7× 10−5

0.8 1.565928338 1.565927886 4. 523 2× 10−7

0.9 1.640818221 1.640830867 1. 264 6× 10−5
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Example 3. Finally, we consider Equation (18) [18], with:

wp = 3, a(t) = 1, b(t) = sin (t) + cos(t),

g(t) = −t3 + t2 − 11t+ 4− (sin(t) + cos(t))(
− t

3

3
sin(3t)− t3

3
cos(3t)− 13

27
cos(3t)− 13

9
t sin(3t)

+
t2

3
sin(3t) +

16

27
sin(3t) +

2

9
t cos(3t) +

13

27

)
,

and α = 2, β = −5. y(t) = −t3 + t2 − 5t+ 2 is the exact solution of this equation.
We apply the method with M = 3. The exact solution, approximate solution and
absolute error are listed in Table 3.

Table 3. Numerical results of Example 3

t Exact Solution Approximate Solution Absolute Error
0 2. 1.996800526 3. 199 5× 10−3

0.1 1.509000000 1.510232801 1. 232 8× 10−3

0.2 1.032000000 1.031768407 2. 315 9× 10−4

0.3 0.5630000000 0.5631496030 1. 496× 10−4

0.4 0.09600000000 0.09662690505 6. 269 1× 10−4

0.5 −0.3750000000 −0.3731667483 1. 833 3× 10−3

0.6 −0.8560000000 −0.8560124373 1. 243 7× 10−5

0.7 −1.353000000 −1.353869376 8. 693 8× 10−4

0.8 −1.872000000 −1.871984718 1. 528 2× 10−5

0.9 −2.419000000 −2.419488059 4. 880 6× 10−4

6. Conclusions

The aim of the present work is to propose an efficient method for solving the
integro-differential equation which describes the charged particle motion for certain
configurations of oscillating magnetic fields. The linear Legendre multi-wavelets
and collocation points have been applied for solving the problem by reducing the
given integro-differential equation into a system of algebraic equations. The method
is computationally attractive and applications are demonstrated through several
illustrative examples.
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