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ENERGY MANAGMENT STRATEGY FOR PLUG-IN HYBRID
ELECTRIC VEHICLES BASED ON SOC PLANING

Xinguang LI'*, Wenchao WANG, Jiayu YUAN, Yupei CHE

In order to further improve the fuel economy of plug-in hybrid electric
vehicles (PHEYV), a SOC trajectory tracking strategy based on LSTM global speed
prediction is proposed. First, based on the Pytorch deep learning framework, an
LSTM model for global vehicle speed prediction in the spatial domain is established.
Second, based on the relationship between the battery power consumption and the
speed and acceleration per unit time, a global SOC trajectory planning method is
designed. Third, a regular SOC trajectory tracking strategy is established to allow
the vehicle to distribute the torque between the engine and motor based on real-time
SOC feedback from the battery. Finally, the fuel economy comparisons are made
between the Charge Depleting-Charge Sustaining (CD-CS) energy management
strategy, the SOC linear decrement-based energy management strategy and the SOC
planning based-energy management strategy under 3x, 4x and 5x field driving cycles.
The simulation results show that compared with the other two strategies, the SOC

planning based-energy management strategy can improve the fuel economy by about
7.67% to 8.99%.

Keywords: Plug-in hybrid electric vehicles (PHEV); energy management
strategies; SOC planning; LSTM vehicle speed prediction

1. Introduction

Energy management strategy is a key technology to improve the fuel
economy of hybrid vehicles. Correct energy management strategies should reduce
the fuel consumption as much as possible while maintaining vehicle dynamics [1].
The CD-CS strategy is the most basic energy management strategy. When the
electric energy is not enough to support the vehicle to drive to the destination, the
motor drive is first used, and then engine drive is applied [2]. This strategy is
simple and easy to calculate, but the determination of its rules often relies on a
large number of calibration data and expert experience. The same set of rules is
difficult to adapt to complex and changeable driving cycles, and the migration
adaptability is poor. Therefore, finding a more adaptable real-time energy
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management strategy is an important topic in new energy vehicles [3]. With the
development and popularization of 5G and intelligent transportation systems
(ITS), integrating energy management strategies with traffic information has
become a hop spot [4-8]. Among them, using the traffic information to plan the
SOC trajectory of plug-in hybrid vehicles, and combining the real-time feedback
of the actual SOC of the battery to allocate the torque of the engine-motor is an
important idea to realize such strategies [9-10]. Sun obtained the traffic
information such as section length, average speed, average acceleration, and
acceleration standard deviation for each road section from ITS. Then combined
with Markov speed prediction, the time-domain SOC trajectory in the MPC
energy management strategy is planned. Finally, compared with DP, MPC and
other strategies, the effectiveness of this strategy was verified [11]. Wang used the
congestion level of each road segment obtained in the ITS for vehicle speed
prediction, and then allocated the available battery power in units of road
segments. Current road segment speed prediction is provided with more traffic
information, such as the distance and speed of the vehicle ahead. The combined
road segment power can be used for SOC trajectory planning, which improved the
fuel economy by 15% compared to the CD-CS strategy [12]. Zhao obtained the
global vehicle speed information through ITS, and used the DP algorithm for SOC
trajectory planning. Compared with the strategy without traffic information, this
strategy reduced the travel cost by 0.3904 yuan on the route between Chongqing
University and Changan Ford [13].

Based on the above analysis, this paper proposes a SOC planning
based-energy management strategy for parallel plug-in hybrid electric vehicles
with P2 configuration. First, based on Matlab/Simulink, a single-axis parallel
hybrid vehicle model is established to provide a basis for proposing and verifying
energy management strategies. Second, the field traffic information from Qingdao
University of Technology to Qingdao Huanghai College was collected. The
on-site traffic model was established using the micro-traffic simulation software
VISSIM, and the obtained traffic information was used as the dataset for the
long-short-term memory network (LSTM) vehicle speed prediction model. Then,
based on the Pytorch deep learning framework, a spatial domain global speed
prediction model based on roadside infrastructure is established. A global SOC
planning method based on the relationship between battery power consumption
per unit time and the vehicle speed and acceleration is proposed. Finally, a regular
SOC trajectory tracking strategy is constructed, and its effect on vehicle fuel
economy is verified under different on-site driving cycles.

2. Modeling of plug-in hybrid electric vehicle

The structure of a plug-in single-axle parallel hybrid vehicle is shown in
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Fig.1 Structure diagram of the plug-in hybrid electric vehicle

The engine and motor are located on the same shaft, with the power
decoupled in the middle through the clutch. The motor is mechanically and
electrically connected to the engine and the power battery through the inverter.
The motor couples the power from the engine and battery and transmits it to the
drive through the final drive gear.

The vehicle parameters of the single axle parallel hybrid electric vehicles
are shown in Tablel.

Table 1
Parameters of the single-axle parallel hybrid electric vehicle
Parameters Values
Vehicle quality /kg 1550
Wheel radius /m 0.275
Moment of inertia 1.200
Peak engine power/kw 49.920
Maximum motor current /A 400
Minimum voltage of motor /V 60
Transmission ratio of power train 11.1066, 5.6175, 3.5310, 2.7606, 2.2791
Single battery capacity /Ah 17.900
Air density/(kg.m) 1.200
Air drag coefficient 0.250
Pavement friction coefficient 0.018

3. Global SOC planning based on LSTM

SOC trajectory planning allows the vehicle to precisely reach a lower SOC
limit for a set of remaining battery charges at the end of the drive, so as to take
full use of the battery capacity of plug-in hybrids. For the most common planning
method to reduce the battery SOC linearly over time, it is only necessary to
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predict the driving distance in advance. However, this method does not consider
the influence of driving cycle on the SOC planning trajectory, which is not in line
with the actual situation. A reasonable global SOC trajectory planning should
predict the driving cycle of the whole travel. With the maturity of electronic maps
and ITS, relying on the roadside infrastructure of intelligent transportation, it is
possible to perform full speed prediction in the spatial domain. However, ITS are
still in the research and development stage, and this paper uses VISSIM instead of
ITS to obtain the traffic information.

3.1 Access to field traffic information

This paper investigates and collects traffic information between Qingdao
University of Technology and Qingdao Huanghai College. The target route has 10
intersections and 4 T-intersections, with a total length of about 12km. According
to the site survey, the input rate in the model is 0.918 for small vehicles, and 0.072
for large vehicles (including buses and vans). Taking 32400s as the simulation
time and 324 as the random seed, the model is simulated. The simulation results
are shown in Fig.2.
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Fig.2 vehicle speed Map

The dark in Fig.2 is low-speed areas. Each dark line corresponds to a
congestion point, and the length of the dark line is proportional to the length of the
vehicle queue. It can be seen from Fig. 2 that the spatial and temporal distribution
of the traffic flow has an obvious signal control law. The VISSIM model
established in this section is consistent with the actual road conditions and can be
used for subsequent studies.

3.2 Speed prediction based on LSTM
Recurrent neural networks (RNNs) are good at dealing with time series
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models, which have a structure for storing information and can be computed once
to provide information in the next time or future [14]. Furthermore, LSTMs have
multiple gating units within their neurons, which can well control the gradient
flow and solve the gradient scattering and gradient explosion problems inherent in
RNNs [15]. The formula for the LSTM prediction model is as follows:

C*” =tanh(W,[a™",x""]+b,)
I, =00, " x*1+b,)

L, =cW[a"",x"1+b,)

L, =cW[a"",x"]+b,)
€ =T, *C" 4T, *C*™"
a”” =T, *tanh C™”

where, C<* is the candidate memory unit; C<" is the memory unit at time
t-1; C< 1is the updated value of t time memory unit; x*~ 1is the input vector at
time t; ¢~ " is the hidden layer vector at time T-1; ¢~ is the hidden layer at time

(1)

t; I, is the input gate at time t; I, is the forget gate at time t; T', is the output
gate attimet; W,, W, W, and W, are the corresponding gating weights used for
update, respectively; b., b,,b, and b,are the deviation items, respectively.

In the spatial dimension, the total length of the line is 12km.Data
collectors are set every 200m, and total 60 sets of data are available. In the
temporal dimension, the simulation duration is 32,400s, and the data is collected
at 200s intervals. Therefore, total 162 sets of data are available. To improve the
training accuracy, the training and validation sets were interpolated separately.
Since the input vector is a one-dimensional sequence, randomization at the
beginning is initialized to prevent over fitting of the prediction model. The model
is iterated and tested, and hyperparameters are adjusted in the dataset using mean
squared error (MSE Loss) as the loss function. The adjusted hyperparameters are
shown in Table2.

Table 2
Hyperparameters of LSTM speed prediction model
Hyperparameters Value
GRU network layers 3
Number of hidden layer neurons 5
Optimization function Adam
Input vector length 200
Learning rate 0.1

Taking the data collection point as the unit, combining the vehicle speed
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and distance of each data collection point predicted by LSTM at the next moment,
the global predicted vehicle speed in the spatial domain can be obtained. The
comparison between the global predicted vehicle speed and the actual vehicle
speed is shown in Fig.3.
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Fig.3 Comparison of predicted speed and actual speed

RMSE value of the predicted vehicle speed is 2.172; MAE value is 1.670,
and R? value is 0.989. The prediction error of LSTM is about 2m/s, which can
meet the requirements of later SOC planning for speed prediction accuracy.

3.3 SOC planning

The field driving cycle in Fig.2 was chosen for SOC planning, with a
length of 12 km and a time of 1346s. Velocities and accelerations under field
conditions are shown in Fig.4.
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Fig.4 Vehicle speed and acceleration in field driving cycle
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Since the influence weights of velocity and acceleration on the final SOC
planning trajectory are unknown, a power distribution factor § is introduced to
coordinate the influence of velocity and acceleration on SOC. Then the
calculation formula of the electrical energy consumption per unit time ASOC
based on the velocity and acceleration is:

ASOC(k) = s-ASOC _v(k)+(1—s)-ASOC _a(k) 2)

The largers, the greater the proportion of velocity in the overall SOC
trajectory planning. The smaller s, the greater the proportion of acceleration in
the SOC trajectory planning. Fig.5 shows a comparison of linearly decreasing
SOC planning trajectory, velocity-based SOC planning trajectory,

acceleration-based SOC planning trajectory and theoretically optimal SOC
planning trajectory (which can be derived from the DP algorithm).
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Fig.5 Comparison of different SOC planning trajectories

It can be seen from Fig.5 that the vehicle velocity based-SOC planning
trajectory fluctuates less frequently, while the acceleration based-SOC planning
trajectory fluctuates more frequently, and the theoretical optimal SOC planning
trajectory is between the two. Since the power allocation factor s is in the range
of [0, 1] and has only one degree of freedom, the optimal power distribution factor
can be obtained by exhaustive enumeration or fitting method, so as to obtain the
optimal battery SOC planning trajectory close to the theory [16].

4. SOC trajectory following strategy

The flow of the SOC planning based-energy management strategy is
shown in Fig.6. The driver inputs the destination to the vehicle at the beginning of
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the travel, and the vehicle obtains traffic information such as historical speed from
the ITS and the cloud. If the travel is short and can be reached by pure electric
power, the energy management strategy will not be activated. If the power battery
power is not enough to support the vehicle to reach the destination, the LSTM
globalization in the spatial domain is performed. The vehicle speed is predicted,
and the full SOC trajectory is planned. When the vehicle starts to move, the
trajectory tracking strategy distributes the torque between the engine and the
motor in real-time based on the required power and actual SOC feedback from the
inverse vehicle model.
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Fig.6 Energy management strategy flow

When the vehicle reaches the destination, the SOC trajectory tracking
strategy constructed to drain the power battery to close to the pre-set value that
contains 10 control rules, shown as Table 3.

Table 3
Logic threshold control rule based on traffic information fusion



Energy management strategy for plug-in hybrid electric vehicles based on SOC planning 51
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In Table3, the subscript “e” refers to the engine, and the subscript “m”
refers to the motor. The parameters involved in the SOC trajectory tracking
strategy are shown in Table 4.

Table 4
SOC trajectory following strategy parameter settings
Parameters Definitions
Treq Demand torque
SOC State of charge
Te Engine torque
Tm Motor torque
SOC ref n Upper limit of planned SOC applicable interval
SOC et Planned SOC trajectory
SOC rer 1 Lower limit of planned SOC applicable interval
Te max Maximum torque of engine in high-efficiency zone
Te opt Maximum engine efficiency torque
Te min Minimum torque of engine in high-efficiency area

5. Comparative analysis of simulation results

The effectiveness of the SOC planning method was verified under 3x, 4x
and 5x field driving cycles respectively. The battery SOC trajectories of the
CD-CS energy management strategy, the SOC linearly decreasing based-energy
management strategy and the SOC planning based-energy management strategy
under the above three driving cycles are shown in Fig.7. The SOC trajectory of
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the CD-CS energy management strategy decreases rapidly in the CD phase, and
the SOC briefly rises at some time points as the vehicle enters regenerative
braking mode. At about 2400s, the battery SOC drops to near the set lower limit
of 0.3, and the vehicle enters the CS phase. During the CS phase, the battery SOC
remains near the lower limit until the end of the travel. For the SOC linearly
decreasing based-energy management strategy and the SOC planning
based-energy management strategy, through adjusting the operating states of the
engine and motor in real-time, the SOC drops along the planning curve is
maintained, and the battery charge is just close to the lower SOC limit at the end
of the travel.
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Fig.7 SOC Comparison of different strategies under different field driving cycles

The fuel consumption of the CD-CS energy management strategy, the
SOC linearly decreasing based -energy management strategy and the SOC
planning based-energy management strategy under 3x, 4x and 5x field driving
cycles are shown in Table5. The SOC planning based-energy management
strategy consumes the least fuel in the three strategies, regardless of the test drive
cycle. Compared with the CD-CS energy management strategy, the fuel economy
improvement range is 7.67% to 8.05%.Comparing with the SOC linear decreasing
based-energy management strategy, the fuel economy improvement range is 7.93%
to 8.99%.
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Table 5
Fuel Consumption of different strategies under different field driving cycles

Fuel Consumption/L

Test Driving cycle . Planning SOC
CD-CS Strategy Linear SOC Strategy Strategy

3xFiled Driving 1313 1.213 1.195
cycle ' ' .

4xFiled Driving 1.867 1.720 1.719
cycle ' ' .

5xFiled Driving 2.422 2.227 2.217
cycle ' . :

6. Conclusion

In this paper, taking the single-axle parallel hybrid vehicle as the research
object and the roadside infrastructure as the carrier, the historical traffic
information is obtained from the real-time traffic simulation model of LSTM
global speed prediction. A SOC planning method based on the relationship
between electrical energy consumption and the speed and acceleration per unit
time is designed. The CD-CS energy management strategy, the SOC linearly
decreasing based-energy management strategy and the SOC planning
based-energy management strategy are simulated and compared under 3x, 4x and
5x field driving cycles, respectively. The results show that compared with the
other two strategies, the SOC planning based-energy management strategy can
improve the fuel economy by about 7.67% to 8.99%. In this paper, the SOC
trajectory planning is carried out based on the global predicted vehicle speed with
the trip as the unit. After the trip starts, the battery SOC planning trajectory is no
longer dynamically adjusted. Subsequent research can integrate intelligent
algorithms into SOC trajectory planning to realize the dynamic adjustment of the
SOC planning trajectory during vehicle travel.
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