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ENERGY MANAGMENT STRATEGY FOR PLUG-IN HYBRID 
ELECTRIC VEHICLES BASED ON SOC PLANING 

Xinguang LI1*, Wenchao WANG, Jiayu YUAN, Yupei CHE 

In order to further improve the fuel economy of plug-in hybrid electric 
vehicles (PHEV), a SOC trajectory tracking strategy based on LSTM global speed 
prediction is proposed. First, based on the Pytorch deep learning framework, an 
LSTM model for global vehicle speed prediction in the spatial domain is established. 
Second, based on the relationship between the battery power consumption and the 
speed and acceleration per unit time, a global SOC trajectory planning method is 
designed. Third, a regular SOC trajectory tracking strategy is established to allow 
the vehicle to distribute the torque between the engine and motor based on real-time 
SOC feedback from the battery. Finally, the fuel economy comparisons are made 
between the Charge Depleting-Charge Sustaining (CD-CS) energy management 
strategy, the SOC linear decrement-based energy management strategy and the SOC 
planning based-energy management strategy under 3x, 4x and 5x field driving cycles. 
The simulation results show that compared with the other two strategies, the SOC 
planning based-energy management strategy can improve the fuel economy by about 
7.67% to 8.99%. 

Keywords: Plug-in hybrid electric vehicles (PHEV); energy management 
strategies; SOC planning; LSTM vehicle speed prediction 

1. Introduction

Energy management strategy is a key technology to improve the fuel 
economy of hybrid vehicles. Correct energy management strategies should reduce 
the fuel consumption as much as possible while maintaining vehicle dynamics [1]. 
The CD-CS strategy is the most basic energy management strategy. When the 
electric energy is not enough to support the vehicle to drive to the destination, the 
motor drive is first used, and then engine drive is applied [2]. This strategy is 
simple and easy to calculate, but the determination of its rules often relies on a 
large number of calibration data and expert experience. The same set of rules is 
difficult to adapt to complex and changeable driving cycles, and the migration 
adaptability is poor. Therefore, finding a more adaptable real-time energy 
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management strategy is an important topic in new energy vehicles [3]. With the 
development and popularization of 5G and intelligent transportation systems 
(ITS), integrating energy management strategies with traffic information has 
become a hop spot [4-8]. Among them, using the traffic information to plan the 
SOC trajectory of plug-in hybrid vehicles, and combining the real-time feedback 
of the actual SOC of the battery to allocate the torque of the engine-motor is an 
important idea to realize such strategies [9-10]. Sun obtained the traffic 
information such as section length, average speed, average acceleration, and 
acceleration standard deviation for each road section from ITS. Then combined 
with Markov speed prediction, the time-domain SOC trajectory in the MPC 
energy management strategy is planned. Finally, compared with DP, MPC and 
other strategies, the effectiveness of this strategy was verified [11]. Wang used the 
congestion level of each road segment obtained in the ITS for vehicle speed 
prediction, and then allocated the available battery power in units of road 
segments. Current road segment speed prediction is provided with more traffic 
information, such as the distance and speed of the vehicle ahead. The combined 
road segment power can be used for SOC trajectory planning, which improved the 
fuel economy by 15% compared to the CD-CS strategy [12]. Zhao obtained the 
global vehicle speed information through ITS, and used the DP algorithm for SOC 
trajectory planning. Compared with the strategy without traffic information, this 
strategy reduced the travel cost by 0.3904 yuan on the route between Chongqing 
University and Changan Ford [13]. 

Based on the above analysis, this paper proposes a SOC planning 
based-energy management strategy for parallel plug-in hybrid electric vehicles 
with P2 configuration. First, based on Matlab/Simulink, a single-axis parallel 
hybrid vehicle model is established to provide a basis for proposing and verifying 
energy management strategies. Second, the field traffic information from Qingdao 
University of Technology to Qingdao Huanghai College was collected. The 
on-site traffic model was established using the micro-traffic simulation software 
VISSIM, and the obtained traffic information was used as the dataset for the 
long-short-term memory network (LSTM) vehicle speed prediction model. Then, 
based on the Pytorch deep learning framework, a spatial domain global speed 
prediction model based on roadside infrastructure is established. A global SOC 
planning method based on the relationship between battery power consumption 
per unit time and the vehicle speed and acceleration is proposed. Finally, a regular 
SOC trajectory tracking strategy is constructed, and its effect on vehicle fuel 
economy is verified under different on-site driving cycles. 

2. Modeling of plug-in hybrid electric vehicle 

The structure of a plug-in single-axle parallel hybrid vehicle is shown in 
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Fig.1. 
 

 
Fig.1 Structure diagram of the plug-in hybrid electric vehicle 

 
The engine and motor are located on the same shaft, with the power 

decoupled in the middle through the clutch. The motor is mechanically and 
electrically connected to the engine and the power battery through the inverter. 
The motor couples the power from the engine and battery and transmits it to the 
drive through the final drive gear. 

The vehicle parameters of the single axle parallel hybrid electric vehicles 
are shown in Table1. 
 

Table 1 
Parameters of the single-axle parallel hybrid electric vehicle 

Parameters Values 
Vehicle quality /kg 1550 
Wheel radius /m 0.275 

Moment of inertia 1.200 
Peak engine power/kw 49.920 

Maximum motor current /A 400 
Minimum voltage of motor /V 60 

Transmission ratio of power train 11.1066, 5.6175, 3.5310, 2.7606, 2.2791 
Single battery capacity /Ah 17.900 

Air density/(kg.m-3) 1.200 
Air drag coefficient 0.250 

Pavement friction coefficient 0.018 

3. Global SOC planning based on LSTM 

SOC trajectory planning allows the vehicle to precisely reach a lower SOC 
limit for a set of remaining battery charges at the end of the drive, so as to take 
full use of the battery capacity of plug-in hybrids. For the most common planning 
method to reduce the battery SOC linearly over time, it is only necessary to 
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predict the driving distance in advance. However, this method does not consider 
the influence of driving cycle on the SOC planning trajectory, which is not in line 
with the actual situation. A reasonable global SOC trajectory planning should 
predict the driving cycle of the whole travel. With the maturity of electronic maps 
and ITS, relying on the roadside infrastructure of intelligent transportation, it is 
possible to perform full speed prediction in the spatial domain. However, ITS are 
still in the research and development stage, and this paper uses VISSIM instead of 
ITS to obtain the traffic information. 

3.1 Access to field traffic information 
This paper investigates and collects traffic information between Qingdao 

University of Technology and Qingdao Huanghai College. The target route has 10 
intersections and 4 T-intersections, with a total length of about 12km. According 
to the site survey, the input rate in the model is 0.918 for small vehicles, and 0.072 
for large vehicles (including buses and vans). Taking 32400s as the simulation 
time and 324 as the random seed, the model is simulated. The simulation results 
are shown in Fig.2. 
 

 

Fig.2 vehicle speed Map 
 

The dark in Fig.2 is low-speed areas. Each dark line corresponds to a 
congestion point, and the length of the dark line is proportional to the length of the 
vehicle queue. It can be seen from Fig. 2 that the spatial and temporal distribution 
of the traffic flow has an obvious signal control law. The VISSIM model 
established in this section is consistent with the actual road conditions and can be 
used for subsequent studies. 

3.2 Speed prediction based on LSTM 
Recurrent neural networks (RNNs) are good at dealing with time series 
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models, which have a structure for storing information and can be computed once 
to provide information in the next time or future [14]. Furthermore, LSTMs have 
multiple gating units within their neurons, which can well control the gradient 
flow and solve the gradient scattering and gradient explosion problems inherent in 
RNNs [15]. The formula for the LSTM prediction model is as follows: 
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where, tC< >  is the candidate memory unit; 1tC< − >  is the memory unit at time 
t-1; tC< >  is the updated value of t time memory unit; tx< >  is the input vector at 
time t; 1ta< − > is the hidden layer vector at time T-1; ta< > is the hidden layer at time 
t; uΓ is the input gate at time t; fΓ  is the forget gate at time t; oΓ  is the output 
gate at time t; cW , uW , uW and oW are the corresponding gating weights used for 
update, respectively; cb , ub , fb  and ob are the deviation items, respectively. 

In the spatial dimension, the total length of the line is 12km.Data 
collectors are set every 200m, and total 60 sets of data are available. In the 
temporal dimension, the simulation duration is 32,400s, and the data is collected 
at 200s intervals. Therefore, total 162 sets of data are available. To improve the 
training accuracy, the training and validation sets were interpolated separately. 
Since the input vector is a one-dimensional sequence, randomization at the 
beginning is initialized to prevent over fitting of the prediction model. The model 
is iterated and tested, and hyperparameters are adjusted in the dataset using mean 
squared error (MSE Loss) as the loss function. The adjusted hyperparameters are 
shown in Table2. 
 

Table 2 
Hyperparameters of LSTM speed prediction model 

Hyperparameters Value 
GRU network layers 3 

Number of hidden layer neurons 5 
Optimization function Adam 

Input vector length 200 
Learning rate 0.1 

 
Taking the data collection point as the unit, combining the vehicle speed 
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and distance of each data collection point predicted by LSTM at the next moment, 
the global predicted vehicle speed in the spatial domain can be obtained. The 
comparison between the global predicted vehicle speed and the actual vehicle 
speed is shown in Fig.3. 
 

 
Fig.3 Comparison of predicted speed and actual speed 

 
RMSE value of the predicted vehicle speed is 2.172; MAE value is 1.670, 

and R2 value is 0.989. The prediction error of LSTM is about 2m/s, which can 
meet the requirements of later SOC planning for speed prediction accuracy. 

3.3 SOC planning 
The field driving cycle in Fig.2 was chosen for SOC planning, with a 

length of 12 km and a time of 1346s. Velocities and accelerations under field 
conditions are shown in Fig.4. 
 

 
Fig.4 Vehicle speed and acceleration in field driving cycle 
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Since the influence weights of velocity and acceleration on the final SOC 
planning trajectory are unknown, a power distribution factor s  is introduced to 
coordinate the influence of velocity and acceleration on SOC. Then the 
calculation formula of the electrical energy consumption per unit time SOC∆
based on the velocity and acceleration is: 

)(_)()(_)( kaSOCskvSOCskSOC ∆⋅−1+∆⋅=∆            (2) 

The larger s , the greater the proportion of velocity in the overall SOC 
trajectory planning. The smaller s , the greater the proportion of acceleration in 
the SOC trajectory planning. Fig.5 shows a comparison of linearly decreasing 
SOC planning trajectory, velocity-based SOC planning trajectory, 
acceleration-based SOC planning trajectory and theoretically optimal SOC 
planning trajectory (which can be derived from the DP algorithm). 
 

 
Fig.5 Comparison of different SOC planning trajectories 

 
It can be seen from Fig.5 that the vehicle velocity based-SOC planning 

trajectory fluctuates less frequently, while the acceleration based-SOC planning 
trajectory fluctuates more frequently, and the theoretical optimal SOC planning 
trajectory is between the two. Since the power allocation factor s is in the range 
of [0, 1] and has only one degree of freedom, the optimal power distribution factor 
can be obtained by exhaustive enumeration or fitting method, so as to obtain the 
optimal battery SOC planning trajectory close to the theory [16]. 

4. SOC trajectory following strategy 

The flow of the SOC planning based-energy management strategy is 
shown in Fig.6. The driver inputs the destination to the vehicle at the beginning of 
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the travel, and the vehicle obtains traffic information such as historical speed from 
the ITS and the cloud. If the travel is short and can be reached by pure electric 
power, the energy management strategy will not be activated. If the power battery 
power is not enough to support the vehicle to reach the destination, the LSTM 
globalization in the spatial domain is performed. The vehicle speed is predicted, 
and the full SOC trajectory is planned. When the vehicle starts to move, the 
trajectory tracking strategy distributes the torque between the engine and the 
motor in real-time based on the required power and actual SOC feedback from the 
inverse vehicle model. 
 

 
Fig.6 Energy management strategy flow 

 
When the vehicle reaches the destination, the SOC trajectory tracking 

strategy constructed to drain the power battery to close to the pre-set value that 
contains 10 control rules, shown as Table 3. 
 

Table 3 
Logic threshold control rule based on traffic information fusion 

Driver

Electric map&
Intelligent traffic system

Input the 
destination

LSTM vehicle speed 
prediction model

SOC planning module

SOC trajectory following strategy

Reverse vehicle model

Actual road conditions

Whether the pure electric drive
 can reach the destination

Historical 
traffic information

Prediction speed

Planned SOC 

Actual speed

Power 
demand

Actual
SOC

Motor
torque

Engine
torque

End
Yes

No
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Demand torque 
Treq 

 Battery state of charge 
SOC 

Operating 
mode 

Engine torque 
Te 

Motor torque 
Tm 

Treq<0 
 

SOC<SOC_ref_h 
Regenerativ

e  
brake 

Te=0 Tm=Treq 

Treq<0  SOC>=SOC_ref_h 
Mechanical  

brake Te=0 Tm=0 

 Treq>Te_max 
Parallel 
drive Te=Te_max 

Tm=Treq-Te_ma

x 
 Treq>Tm_max 

Parallel 
drive 

Te=Treq-Tm_ma

x 
Tm=Tm_max 

Te_max>Treq>Te_mi

n 

 SOC>SOC_ref_h 
Pure motor  

drive Te=0 Tm=Treq 

 SOC_ref_l>SOC Engine drive Te=Treq Tm=0 

Te_max>Treq>Te_opt 

 SOC_ref>=SOC>=SOC_

ref_l 
Driving 
charging Te=Te_max 

Tm=Treq-Te_ma

x 
 SOC_ref_h>=SOC>=SO

C_ref 
Parallel 
drive Te=Te_opt Tm=Treq-Te_opt 

Te_opt>Treq>Te_min 

 SOC_ref>=SOC>=SOC_

ref_l 
Driving 
charging Te=Te_opt Tm=Treq-Te_opt 

 SOC_ref_h>=SOC>=SO
C_ref 

Parallel 
drive Te=Te_min Tm=Treq-Te_min 

 
In Table3, the subscript “e” refers to the engine, and the subscript “m” 

refers to the motor. The parameters involved in the SOC trajectory tracking 
strategy are shown in Table 4. 

Table 4 
SOC trajectory following strategy parameter settings 

Parameters Definitions 
Treq Demand torque 

SOC State of charge 
Te Engine torque 
Tm Motor torque 

SOC_ref_h Upper limit of planned SOC applicable interval 
SOC_ref Planned SOC trajectory 

SOC_ref_l Lower limit of planned SOC applicable interval 
Te_max Maximum torque of engine in high-efficiency zone 
Te_opt Maximum engine efficiency torque 
Te_min Minimum torque of engine in high-efficiency area 

5. Comparative analysis of simulation results 

The effectiveness of the SOC planning method was verified under 3x, 4x 
and 5x field driving cycles respectively. The battery SOC trajectories of the 
CD-CS energy management strategy, the SOC linearly decreasing based-energy 
management strategy and the SOC planning based-energy management strategy 
under the above three driving cycles are shown in Fig.7. The SOC trajectory of 
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the CD-CS energy management strategy decreases rapidly in the CD phase, and 
the SOC briefly rises at some time points as the vehicle enters regenerative 
braking mode. At about 2400s, the battery SOC drops to near the set lower limit 
of 0.3, and the vehicle enters the CS phase. During the CS phase, the battery SOC 
remains near the lower limit until the end of the travel. For the SOC linearly 
decreasing based-energy management strategy and the SOC planning 
based-energy management strategy, through adjusting the operating states of the 
engine and motor in real-time, the SOC drops along the planning curve is 
maintained, and the battery charge is just close to the lower SOC limit at the end 
of the travel. 

 
Fig.7 SOC Comparison of different strategies under different field driving cycles 

 
The fuel consumption of the CD-CS energy management strategy, the 

SOC linearly decreasing based -energy management strategy and the SOC 
planning based-energy management strategy under 3x, 4x and 5x field driving 
cycles are shown in Table5. The SOC planning based-energy management 
strategy consumes the least fuel in the three strategies, regardless of the test drive 
cycle. Compared with the CD-CS energy management strategy, the fuel economy 
improvement range is 7.67% to 8.05%.Comparing with the SOC linear decreasing 
based-energy management strategy, the fuel economy improvement range is 7.93% 
to 8.99%. 
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Table 5 
Fuel Consumption of different strategies under different field driving cycles 

Test Driving cycle 
Fuel Consumption/L 

CD-CS Strategy Linear SOC Strategy Planning SOC 
Strategy 

3×Filed Driving 
cycle 1.313 1.213 1.195 

4×Filed Driving 
cycle 1.867 1.720 1.719 

5×Filed Driving 
cycle 2.422 2.227 2.217 

6. Conclusion 

In this paper, taking the single-axle parallel hybrid vehicle as the research 
object and the roadside infrastructure as the carrier, the historical traffic 
information is obtained from the real-time traffic simulation model of LSTM 
global speed prediction. A SOC planning method based on the relationship 
between electrical energy consumption and the speed and acceleration per unit 
time is designed. The CD-CS energy management strategy, the SOC linearly 
decreasing based-energy management strategy and the SOC planning 
based-energy management strategy are simulated and compared under 3x, 4x and 
5x field driving cycles, respectively. The results show that compared with the 
other two strategies, the SOC planning based-energy management strategy can 
improve the fuel economy by about 7.67% to 8.99%. In this paper, the SOC 
trajectory planning is carried out based on the global predicted vehicle speed with 
the trip as the unit. After the trip starts, the battery SOC planning trajectory is no 
longer dynamically adjusted. Subsequent research can integrate intelligent 
algorithms into SOC trajectory planning to realize the dynamic adjustment of the 
SOC planning trajectory during vehicle travel.  
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