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The results on the existence and uniqueness for positive solutions to Sturm-
Liouville boundary value problems of singular fractional differential equations are
established. The analysis relies on the Schauder’s fixed point theorems. An exam-
ple is given to illustrate the efficiency of the main theorems.
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1. Introduction

There have been many papers concerned with the existence of positive solu-
tions of boundary value problems for fractional differential equations see [1-13].

In [11], E. R. Kaufmann and E. Mboumi studied the following boundary value
problem {

Dα
0+u(t) + a(t)f(u(t)) = 0, 0 < t < 1, 1 < α < 2,

u(0) = 0, u′(1) = 0 ,
(1)

where f : [0,+∞) → [0,∞) is continuous, a ∈ L∞[0, 1], there exists a constant
m > 0 such that a(t) ≥ m a.e. t ∈ [0, 1]. By using the Leggett-Williams fixed point
theorem and the Krasnoselskii fixed point theorem, the authors in [11] proved that
BVP(1) has at least one or three positive solutions under some growth conditions
imposed on f .

In paper [12], the authors studied the following boundary value problem{
Dα

0+u(t) + q(t)f(t, u(t), u′(t)) = 0, 0 < t < 1,
u(0) = 0, u(1) = 0 ,

(2)

where f : [0, 1] × [0,+∞) × R → [0,∞) is continuous, q satisfies 0 <
∫ 1
0 [t(1 −

t)]α−1q(t)dt < +∞. By using the fixed point theorem in cones in Banach spaces,
the authors in [12] proved that BVP(2) has at least three positive solutions under
some assumptions.
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As far as we know, there has been no paper concerned with the existence
and uniqueness of positive solutions of Sturm-Liouville boundary value problem for
singular fractional differential equations.

To fill this gap, we discuss the Sturm-Liouville boundary value problems of
the nonlinear singular fractional differential equation

Dα
0+u(t) + f(t, u(t), Dα−1

0+
u(t)) = 0, t ∈ (0, 1), 1 < α < 2,

a limt→0 t
2−αu(t)− b limt→0 D

α−1
0+

u(t) =
∫ 1
0 g(t, u(t), D

α−1
0+

u(t))dt,

c Dα−1
0+

u(1) + du(1) =
∫ 1
0 h(t, u(t), D

α−1
0+

u(t))dt,

(3)

where
• Dα

0+ (or Dα−1
0+

) is the Riemann-Liouville fractional derivative of order α (or
α− 1),

• a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 with δ =: ad+ bdΓ(α) + acΓ(α) > 0,
• f, g, h defined on (0, 1)× [0,∞)×R are nonnegative Caratheodory functions

that may be singular at t = 0 and t = 1, f(t, 0, 0) ̸≡ 0 on each subinterval of [0, 1].
We obtain the results on the existence and uniqueness of positive solutions of

BVP(3). An example is given to illustrate the efficiency of the main theorems. The
methods used are motivated by [13].

It is well known that boundary value problem of the following form u′′(t) + f(t, u(t), u′(t)) = 0, t ∈ (0, 1),
au(t)− bu′(0) = 0,
cu′(1) + du(1) = 0,

is called Sturm-Liouville BVP [1,2], where f(t, u, v) is continuous and nonnegative
on [0, 1] × [0,∞) × R, a, b, c, d ∈ R. It comes from the situation involving nonlin-
ear elliptic problems in annular regions. Hence BVP(3) is called Sturm-Liouville
boundary value problem for singular fractional differential equation.

The remainder of this paper is as follows: in Section 2, some definitions and
preliminary results are presented. In Section 3, the main theorems are given. In
Section 4, an example is given to illustrate the main results.

2. Preliminary results

For the convenience of the readers, the necessary definitions from the fractional
calculus theory are presented. These definitions and results can be found in the
literatures [5,6,8,9,11]. Then the preliminary results are given.

Definition 2.1[6]. The Riemann-Liouville fractional integral of order α > 0

of a function g : (0,∞) → R is given by Iα0+g(t) =
1

Γ(α)

∫ t
0 (t− s)α−1g(s)ds, provided

that the right-hand side exists.
Definition 2.2[6]. The Riemann-Liouville fractional derivative of order

α > 0 of a continuous function g : (0,∞) → R is given by

Dα
0+g(t) =

1

Γ(n− α)

dn+1

dtn+1

∫ t

0

g(s)

(t− s)α−n+1
ds,

where n− 1 < α ≤ n, provided the right-hand side is point-wise defined on (0,∞).
Definition 2.3. F : (0, 1)×R2 → R is called a Caratheodory function if
1) t→ F (t, tα−2(1− t)α−2x, y) is measurable on (0, 1) for each (x, y) ∈ R2,
2) (x, y) → F (t, tα−2(1−t)α−2x, y) is continuous on R2 for almost all t ∈ (0, 1),
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3) for each r > 0 there exists ϕr ∈ L1(0, 1) such that |x|, |y| ≤ r implies that
|F (t, tα−2(1− t)α−2x, y)| ≤ ϕr(t) holds for almost all t ∈ (0, 1).

Lemma 2.1[6]. Let n − 1 < α ≤ n, u ∈ C0(0,∞)
∩
L1(0,∞). Then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · ·+ Cnt

α−n, where Ci ∈ R, i = 1, 2, . . . n.

It is easy to prove for σ ≥ 0, µ > −1 that Iσ0+t
µ = Γ(µ+1)

Γ(µ+σ+1) t
µ+σ, Dσ

0+t
µ =

Γ(µ+1)
Γ(µ−σ+1) t

µ−σ.

For our construction, we let

X =


x : (0, 1) → R

x ∈ C(0, 1),
Dα−1

0+
x ∈ C(0, 1),

there exist the limits
limt→0 t

2−α(1− t)2−αx(t),
limt→1 t

2−α(1− t)2−αx(t),
limt→0D

α−1
0+

x(t)

limt→1D
α−1
0+

x(t)


.

For x ∈ X, ∥x∥ = max
{
supt∈(0,1) t

2−α(1− t)2−α|u(t)|, supt∈(0,1) |Dα−1
0+

u(t)|
}
. Then

X is a Banach space (similar proof can be find in [16]). Choose P = {u ∈ X ,
u(t) ≥ 0, 0 < t < 1}. Then P is a nontrivial closed cone of X. We seek solutions of
BVP(3) that lie in the cone P .

Let x ∈ X, x(t) ≥ 0, ∀t ∈ (0, 1). Consider the boundary value problem


Dα

0+u(t) + f(t, x(t), Dα−1
0+

x(t)) = 0, t ∈ (0, 1), 1 < α < 2,

a limt→0 t
2−αu(t)− b limt→0 D

α−1
0+

u(t) =
∫ 1
0 g(t, x(t), D

α−1
0+

x(t))dt,

c Dα−1
0+

u(1) + du(1) =
∫ 1
0 h(t, x(t), D

α−1
0+

x(t))dt,

From Lemma 2.1, there exist c1, c2 ∈ R such that

u(t) = − 1

Γ(α)

∫ t

0
(t− s)α−1f(s, x(s), Dα−1

0+
x(s))ds+ c1t

α−1 + c2t
α−2,

Dα−1
0+

u(t) = −
∫ t

0
f(s, x(s), Dα−1

0+
x(s))ds+ c1Γ(α).

Then the boundary conditions imply ac2 − bc1Γ(α) =
∫ 1
0 g(t, x(t), D

α−1
0+

x(t))dt,

c

(
−
∫ 1

0
f(s, x(s), Dα−1

0+
x(s))ds+ c1Γ(α)

)
+d

(
− 1

Γ(α)

∫ 1

0
(1− s)α−1f(s, x(s), Dα−1

0+
x(s))ds+ c1 + c2

)
=

∫ 1

0
h(t, x(t), Dα−1

0+
x(t))dt.
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It follows that

c1 =
1

δ

(
a

∫ 1

0
h(t, x(t), Dα−1

0+
x(t))dt+ ac

∫ 1

0
f(t, x(t), Dα−1

0+
x(t))dt

+
ad

Γ(α)

∫ 1

0
(1− s)α−1f(t, x(t), Dα−1

0+
x(t))dt− d

∫ 1

0
g(t, x(t), Dα−1

0+
x(t))dt

)
,

c2 =
1

δ

(
(cΓ(α) + d)

∫ 1

0
g(t, x(t), Dα−1

0+
x(t))dt+ bΓ(α)

∫ 1

0
h(t, x(t), Dα−1

0+
x(t))dt

+bcΓ(α)

∫ 1

0
f(t, x(t), Dα−1

0+
x(t))dt+ bd

∫ 1

0
(1− s)α−1f(t, x(t), Dα−1

0+
x(t))dt

)
.

Hence

u(t) = − 1
Γ(α)

∫ t
0 (t− s)α−1f(s, x(s), Dα−1

0+
x(s))ds

+1
δ

(
a
∫ 1
0 h(t, x(t), D

α−1
0+

x(t))dt+ ac
∫ 1
0 f(t, x(t), D

α−1
0+

x(t))dt

+ ad
Γ(α)

∫ 1
0 (1− s)α−1f(t, x(t), Dα−1

0+
x(t))dt− d

∫ 1
0 g(t, x(t), D

α−1
0+

x(t))dt
)
tα−1

+1
δ

(
(cΓ(α) + d)

∫ 1
0 g(t, x(t), D

α−1
0+

x(t))dt+ bΓ(α)
∫ 1
0 h(t, x(t), D

α−1
0+

x(t))dt

+bcΓ(α)
∫ 1
0 f(t, x(t), D

α−1
0+

x(t))dt+ bd
∫ 1
0 (1− s)α−1f(t, x(t), Dα−1

0+
x(t))dt

)
tα−2

= cΓ(α)tα−2+dtα−2−dtα−1

δ

∫ 1
0 g(t, x(t), D

α−1
0+

x(t))dt

+ bΓ(α)tα−2+atα−1

δ

∫ 1
0 h(t, x(t), D

α−1
0+

x(t))dt

+
∫ t
0

(
actα−1+bdtα−2(1−s)α−1+bcΓ(α)tα−2

δ + adtα−1(1−s)α−1

δΓ(α) − (t−s)α−1

Γ(α)

)
×

f(s, x(s), Dα−1
0+

x(s))ds

+
∫ 1
t

(
actα−1+bdtα−2(1−s)α−1+bcΓ(α)tα−2

δ + adtα−1(1−s)α−1

δΓ(α)

)
×

f(s, x(s), Dα−1
0+

x(s))ds

=
∫ 1
0 G(t, s)f(s, x(s), D

α−1
0+

x(s))ds
cΓ(α)tα−2+dtα−2−dtα−1

δ

∫ 1
0 g(t, x(t), D

α−1
0+

x(t))dt

+ bΓ(α)tα−2+atα−1

δ

∫ 1
0 h(t, x(t), D

α−1
0+

x(t))dt,

where

G(t, s) =

{
actα−1+bdtα−2(1−s)α−1+bcΓ(α)tα−2

δ + adtα−1(1−s)α−1

δΓ(α) − (t−s)α−1

Γ(α) , 0 < s ≤ t < 1,
actα−1+bdtα−2(1−s)α−1+bcΓ(α)tα−2

δ + adtα−1(1−s)α−1

δΓ(α) , 0 < t ≤ s < 1.

(4)
Define the operator T on P , by

(Tu)(t) =

∫ 1

0
G(t, s)f(s, u(s), Dα−1

0+
u(t))ds

+
cΓ(α)tα−2 + d(tα−2 − tα−1)

δ

∫ 1

0
g(t, u(t), Dα−1

0+
u(t))dt

+
atα−1 + bΓ(α)tα−2

δ

∫ 1

0
h(t, u(t), Dα−1

0+
u(t))dt

for u ∈ P ⊂ X.
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Lemma 2.2. (i) G satisfies the following inequalities:

t2−α(1− t)2−αG(t, s) ≤ ad+ acΓ(α)

δΓ(α)
+
bd+ bcΓ(α)

δ
, for all s, t ∈ (0, 1),

and G(t, s) ≥ 0 for all t ∈ (0, 1), s ∈ (0, 1);
(ii) x is a positive solution of BVP(3) if and only if x is a fixed point of T

in P ;
(iii) T : P → P is well defined;
(iv) T is completely continuous.

Proof. (i) One sees from (4) that

t2−α(1− t)2−αG(t, s) ≤ act+ bd(1− s)α−1 + bcΓ(α)

δ
+
adt(1− s)α−1

δΓ(α)

≤ ad+ acΓ(α)

δΓ(α)
+
bd+ bcΓ(α)

δ
.

Similarly, we have from (4) that

G(t, s) = bcΓ(α)tα−2

δ + acΓ(α)tα−1+bdΓ(α)tα−2(1−s)α−1+adtα−1(1−s)α−1

δΓ(α)

− [acΓ(α)+bdΓ(α)+ad](t−s)α−1

δΓ(α)

= bcΓ(α)tα−2

δ + acΓ(α)[tα−1−(t−s)α−1]+bdΓ(α)[tα−2(1−s)α−1−(t−s)α−1]
δΓ(α)

+ad[tα−1(1−s)α−1−(t−s)α−1]
δΓ(α) ≥ 0.

The proof of (i) is completed.
(ii) For x ∈ P ⊂ X, we find that

max

{
sup

t∈(0,1)
t2−α(1− t)2−α|x(t)|, sup

t∈(0,1)
|Dα−1

0+
x(t)|

}
= r < +∞.

Since f, g, h are Caratheodory functions, then there exists ϕr ∈ L1(0, 1) such that

|f(t, x(t), Dα−1
0+

x(t))| = |f(t, tα−2(1− t)α−2[t2−α(1− t)2−αx(t)], Dα−1
0+

x(t))| ≤ ϕr(t),

|g(t, x(t), Dα−1
0+

x(t))| = |g(t, tα−2(1− t)α−2[t2−α(1− t)2−αx(t)], Dα−1
0+

x(t))| ≤ ϕr(t),

|h(t, x(t), Dα−1
0+

x(t))| = |h(t, tα−2(1− t)α−2[t2−α(1− t)2−αx(t)], Dα−1
0+

x(t))| ≤ ϕr(t).
(5)

It follows from (i) that G is bounded. Hence t→ (Tx)(t) is well defined and

t2−α(1− t)2−α(Tx)(t)

= t2−α(1− t)2−α
[∫ 1

0 G(t, s)f(s, x(s), D
α−1
0+

x(s))ds

+ cΓ(α)tα−2+d(tα−2−tα−1)
δ

∫ 1
0 g(t, x(t), D

α−1
0+

x(t))dt

+atα−1+bΓ(α)tα−2

δ

∫ 1
0 h(t, x(t), D

α−1
0+

x(t))dt
]

= (1− t)2−α cΓ(α)+d(1−t)
δ

∫ 1
0 g(t, x(t), D

α−1
0+

x(t))dt

+(1− t)2−α at+bΓ(α)
δ

∫ 1
0 h(t, x(t), D

α−1
0+

x(t))dt

+(1− t)2−α
∫ t
0

[
act+bd(1−s)α−1+bcΓ(α)

δ + adt(1−s)α−1

δΓ(α) − t2−α(t−s)α−1

Γ(α)

]
×

f(s, x(s), Dα−1
0+

x(s))ds

+(1− t)2−α
∫ 1
t

[
act+bd(1−s)α−1+bcΓ(α)

δ + adt(1−s)α−1

δΓ(α)

]
f(s, x(s), Dα−1

0+
x(s))ds.
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Furthermore, we have

Dα−1
0+

(Tx)(t) = −
∫ t
0 f(s, x(s), D

α−1
0+

x(s))ds+ acΓ(α)
δ

∫ 1
0 f(s, x(s), D

α−1
0+

x(s))ds

+ad
δ

∫ 1
0 (1− s)α−1f(s, x(s), Dα−1

0+
x(s))ds− dΓ(α)

δ

∫ 1
0 g(t, x(t), D

α−1
0+

x(t))dt

+aΓ(α)
δ

∫ 1
0 h(t, x(t), D

α−1
0+

x(t))dt.

Then
Dα

0+(Tx)(t) = −f(t, x(t), Dα−1
0+

x(t)),

a limt→0 t
2−α(Tx)(t)− b limt→0 D

α−1(Tx)(t) =
∫ 1
0 g(t, x(t), D

α−1
0+

x(t))dt,

c Dα−1
0 (Tx)(1) + d(Tx)(1) =

∫ 1
0 h(t, x(t), D

α−1
0+

x(t))dt.

(6)

From (6), we see that x is a positive solution of BVP(3) if and only if x is a fixed
point of T in P . The proof of (ii) is complete.

(iii) For x ∈ P , from (ii), we have Tx ∈ X. From (i) and (ii), we get
(Tx)(t) ≥ 0 for all t ∈ (0, 1). Then Tx ∈ P .

(iv) We prove that T is completely continuous.
Step 1. We prove that T is continuous. This needs three steps. Let {yn}∞n=0

be a sequence such that yn → y0 in X. Then

r = sup
n∈N

||yn|| = sup
n∈N

{
max

{
sup

t∈(0,1)
t2−α(1− t)2−α|x(t)|, sup

t∈(0,1)
|Dα−1

0+
x(t)|

}}
<∞.

So there exists ϕr ∈ L1(0, 1) such that

|f(t, yn(t), Dα−1
0+

yn(t))| = |f(t, tα−2(1− t)α−2[t2−α(1− t)2−αyn(t)], D
α−1
0+

yn(t))| ≤ ϕr(t),

|g(t, yn(t), Dα−1
0+

yn(t))| = |g(t, tα−2(1− t)α−2[t2−α(1− t)2−αyn(t)], D
α−1
0+

yn(t))| ≤ ϕr(t),

|h(t, yn(t), Dα−1
0+

yn(t))| = |h(t, tα−2(1− t)α−2[t2−α(1− t)2−αyn(t)], D
α−1
0+

yn(t))| ≤ ϕr(t)

hold for all t ∈ (0, 1), n = 0, 1, 2, · · · . Then for t ∈ (0, 1), from (i) and (ii) we have

t2−α(1− t)2−α|(Tyn)(t)− (Ty0)(t)|

≤
∫ 1

0
t2−αG(t, s)|f(s, yn(s), Dα−1

0+
yn(s))− f(s, y0(s), D

α−1
0+

y0(s))|ds

+
cΓ(α) + d(1− t)

δ

∫ 1

0
|g(s, yn(s), Dα−1

0+
yn(s))− g(s, y0(s), D

α−1
0+

y0(s))|ds

+
at+ bΓ(α)

δ

∫ 1

0
|h(s, yn(s), Dα−1

0+
yn(s))− h(s, y0(s), D

α−1
0+

y0(s))|ds

≤
(
ad+ acΓ(α)

δΓ(α)
+
bd+ bcΓ(α)

δ

)∫ 1

0
|f(s, yn(s), Dα−1

0+
yn(s))− f(s, y0(s), D

α−1
0+

y0(s))|ds

+
cΓ(α) + d

δ

∫ 1

0
|g(s, yn(s), Dα−1

0+
yn(s))− g(s, y0(s), D

α−1
0+

y0(s))|ds

+
a+ bΓ(α)

δ

∫ 1

0
|h(s, yn(s), Dα−1

0+
yn(s))− h(s, y0(s), D

α−1
0+

y0(s))|ds
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≤ 2

(
ad+ acΓ(α)

δΓ(α)
+
bd+ bcΓ(α)

δ

)∫ 1

0
ϕr(s)ds

+2

(
cΓ(α) + d

δ
+
a+ bΓ(α)

δ

)∫ 1

0
ϕr(s)ds.

By the dominated convergence theorem, since f, g, h are Caratheodory functions,
then we get

lim
n→+∞

sup
t∈(0,1)

t2−α(1− t)2−α|(Tyn)(t)− (Ty0)(t)| = 0.

Similarly, we have

|Dα−1
0+

(Tyn)(t)−Dα−1
0+

(Ty0)(t)|
≤

∫ t
0 |f(s, yn(s), D

α−1
0+

yn(s))− f(s, y0(s), D
α−1
0+

y0(s))|ds
+acΓ(α)

δ

∫ 1
0 |f(s, yn(s), Dα−1

0+
yn(s))− f(s, y0(s), D

α−1
0+

y0(s))|ds
+ad

δ

∫ 1
0 (1− s)α−1|f(s, yn(s), Dα−1

0+
yn(s))− f(s, y0(s), D

α−1
0+

y0(s))|ds
+dΓ(α)

δ

∫ 1
0 |g(s, yn(s), Dα−1

0+
yn(s))− g(s, y0(s), D

α−1
0+

y0(s))|ds
+aΓ(α)

δ

∫ 1
0 |h(s, yn(s), Dα−1

0+
yn(s))− h(s, y0(s), D

α−1
0+

y0(s))|ds
≤ 2

(
1 + acΓ(α)

δ + ad
δ + dΓ(α)

δ + aΓ(α)
δ

) ∫ 1
0 ϕr(s)ds

By the dominated convergence theorem, since f, g, h are Caratheodory functions,
then we get limn→+∞ supt∈(0,1) |Dα−1

0+
(Tyn)(t)−Dα−1

0+
(Ty0)(t)| = 0. Hence we have

||Tyn − Ty0|| → 0 as n→ ∞. Then T is continuous.
Step 2. T maps bounded sets into bounded sets in X.
Let M ⊂ X be a bounded set. Then there exists r > 0 such that ||x|| ≤ r for

all x ∈M . Hence there exists ϕr ∈ L1(0, 1) such that (5) holds. Then Lemma 2.2(i)
implies that

t2−α(1− t)2−α|(Tx)(t)| ≤
∫ 1

0
t2−αG(t, s)|f(s, x(s), Dα−1

0+
x(s))|ds

+
cΓ(α) + d(1− t)

δ

∫ 1

0
|g(s, x(s), Dα−1

0+
x(s))|ds

+
at+ bΓ(α)

δ

∫ 1

0
|h(s, x(s), Dα−1

0+
x(s))|ds

≤
(
ad+ acΓ(α)

δΓ(α)
+
bd+ bcΓ(α)

δ

)∫ 1

0
|f(s, x(s), Dα−1

0+
x(s))|ds

+
cΓ(α) + d

δ

∫ 1

0
|g(s, x(s), Dα−1

0+
x(t))|ds+ a+ bΓ(α)

δ

∫ 1

0
|h(s, x(s), Dα−1

0+
x(s))|ds

≤
(
ad+ acΓ(α)

δΓ(α)
+
bd+ bcΓ(α)

δ

)∫ 1

0
ϕr(s)ds

+

(
cΓ(α) + d

δ
+
a+ bΓ(α)

δ

)∫ 1

0
ϕr(s)ds
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and

|Dα−1
0+

(Tx)(t)| ≤
∫ t

0
|f(s, x(s), Dα−1

0+
x(s))|ds+ acΓ(α)

δ

∫ 1

0
|f(s, x(s), Dα−1

0+
x(s))|ds

+
ad

δ

∫ 1

0
(1− s)α−1|f(s, x(s), Dα−1

0+
x(s))|ds

+
dΓ(α)

δ

∫ 1

0
|g(s, x(s), Dα−1

0+
x(s))|ds

+
aΓ(α)

δ

∫ 1

0
|h(s, x(s), Dα−1

0+
x(s))|ds

≤ (1 +
acΓ(α)

δ
+
ad

δ
+
dΓ(α)

δ
+
aΓ(α)

δ

)∫ 1

0
ϕr(s)ds

So

||Tx|| ≤ max

{
ad+ acΓ(α)

δΓ(α)
+
bd+ bcΓ(α)

δ
+
cΓ(α) + d

δ
+
a+ bΓ(α)

δ
,

1 +
acΓ(α)

δ
+
ad

δ
+
dΓ(α)

δ
+
aΓ(α)

δ

}∫ 1

0
ϕr(s)ds.

It follows that T maps bounded sets into bounded sets.
Step 3. Let M ⊂ {y ∈ X : ||y|| ≤ r} be a bounded set on X. We prove that

both {t2−α(1 − t)2−αTx : x ∈ M} and {Dα−1
0+

Tx : x ∈ M} are equi-continuous on
(0, 1).

Similarly to Step 2, we can get ϕr ∈ L1(0, 1) such that (5) holds. Let t1, t2 ∈
(0, 1) with t1 < t2 and y ∈M .

One can see from (4) that, for s ∈ [0, t1]

|t2−α
1 (1− t1)

2−αG(t1, s)− t2−α
2 (1− t2)

2−αG(t2, s)|

=

∣∣∣∣ t2−α
2 (1− t2)

2−α(t2 − s)α−1 − t2−α
1 (1− t1)

2−α(t1 − s)α−1

Γ(α)

+
ac[t1(1− t1)

2−α − t2(1− t2)
2−α]

δ
+
ad[t1(1− t1)

2−α − t2(1− t2)
2−α](1− s)α−1

δΓ(α)

+
bcΓ(α)[(1− t1)

2−α − (1− t2)
2−α] + bd[(1− t1)

2−α − (1− t2)
2−α](1− s)α−1

δ

∣∣∣∣
≤ |t2−α

2 (1− t2)
2−α − t2−α

1 (1− t1)
2−α|+ t2−α

1 (1− t1)
2−α|(t2 − s)α−1 − (t1 − s)α−1|

Γ(α)

+
ac|t1(1− t1)

2−α − t2(1− t2)
2−α|

δ
+
ad|t1(1− t1)

2−α − t2(1− t2)
2−α|(1− s)α−1

δΓ(α)

+
bcΓ(α)|(1− t1)

2−α − (1− t2)
2−α|+ bd|(1− t1)

2−α − (1− t2)
2−α|(1− s)α−1

δ
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≤ |t2−α
2 (1− t2)

2−α − t2−α
1 (1− t1)

2−α|+ |(t2 − s)α−1 − (t1 − s)α−1|
Γ(α)

+
ac|t1(1− t1)

2−α − t2(1− t2)
2−α|

δ
+
ad|t1(1− t1)

2−α − t2(1− t2)
2−α|

δΓ(α)

+
bcΓ(α)|(1− t1)

2−α − (1− t2)
2−α|+ bd|(1− t1)

2−α − (1− t2)
2−α|

δ
.

Since (1−t)2−α, t(1−t)2−α, tα and t2−α(1−t)2−α are uniformly continuous functions
on [0, 1], then for ϵ > 0 there exists δ1 > 0 such that |u1 − u2| < δ1, u1, u2 ∈ [0, 1]
imply that

|t2−α
1 (1− t1)

2−αG(t1, s)− t2−α
2 (1− t2)

2−αG(t2, s)| < ϵ. (7)

For s ∈ [t1, t2], we have

|t2−α
1 (1− t1)

2−αG(t1, s)− t2−α
2 (1− t2)

2−αG(t2, s)|

=

∣∣∣∣ac[t1(1− t1)
2−α − t2(1− t2)

2−α]

δ
+
ad[t1(1− t1)

2−α − t2(1− t2)
2−α](1− s)α−1

δΓ(α)

+
bcΓ(α)[(1− t1)

2−α − (1− t2)
2−α] + bd[(1− t1)

2−α − (1− t2)
2−α](1− s)α−1

δ

+
t2−α
2 (1− t2)

2−α(t2 − s)α−1

Γ(α)

∣∣∣∣
≤ 2ac

δ
+

2ad

δΓ(α)
+

2bcΓ(α) + 2bd

δ
+

2

Γ(α)
.

For s ∈ [t2, 1], we have

|t2−α
1 (1− t1)

2−αG(t1, s)− t2−α
2 (1− t2)

2−αG(t2, s)|

=

∣∣∣∣ac[t1(1− t1)
2−α − t2(1− t2)

2−α]

δ
+
ad[t1(1− t1)

2−α − t2(1− t2)
2−α](1− s)α−1

δΓ(α)

+
bcΓ(α)[(1− t1)

2−α − (1− t2)
2−α] + bd[(1− t1)

2−α − (1− t2)
2−α](1− s)α−1

δ

∣∣∣∣
≤ ac|t1(1− t1)

2−α − t2(1− t2)
2−α|

δ
+
ad|t1(1− t1)

2−α − t2(1− t2)
2−α|

δΓ(α)

+
bcΓ(α)|(1− t1)

2−α − (1− t2)
2−α|+ bd|(1− t1)

2−α − (1− t2)
2−α|

δ
.

Since both (1 − t)2−α and t(1 − t)2−α are uniformly continuous functions on [0, 1],
then for ϵ > 0 there exists δ2 > 0 such that |u1 − u2| < δ2, u1, u2 ∈ [0, 1] imply that
(9) holds.
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For ϵ > 0 it is easy to see similarly that there exists δ3 > 0 such that |u1−u2| <
δ3, u1, u2 ∈ [0, 1] imply that

cΓ(α)|(1− t1)
2−α − (1− t2)

2−α|+ d|(1− t1)
3−α − (1− t2)

3−α|
δ

< ϵ,

a|t1(1− t1)
2−α − t2(1− t2)

2−α|+ bΓ(α)|(1− t1)
2−α − (1− t2)

2−α|
δ

< ϵ,∫ t2

t1

ϕr(s)ds < ϵ.

For ϵ > 0, for y ∈M , |u1 − u2| < min{δ1, δ2, δ3}, u1, u2 ∈ [0, 1], it follows that

|t2−α
1 (1− t2)

2−α(Ty)(t1)− t2−α
1 (1− t1)

2−α(Ty)(t2)|

=

∣∣∣∣∫ 1

0
t2−α
1 (1− t1)

2−αG(t1, s)f(s, y(s), D
α−1
0+

y(s))ds

−
∫ 1

0
t2−α
2 (1− t2)

2−αG(t2, s)f(s, y(s), D
α−1
0+

y(s))ds

+
cΓ(α)[(1− t1)

2−α − (1− t2)
2−α] + d[(1− t1)

α − (1− t2)
α]

δ

×
∫ 1

0
g(s, y(s), Dα−1

0+
y(s))ds

+
a[t1(1− t1)

2−α − t2(1− t2)
2−α] + bΓ(α)[(1− t1)

2−α − (1− t2)
2−α]

δ
×∫ 1

0
h(s, y(s), Dα−1

0+
y(s))ds

∣∣∣∣
≤

∫ t1

0

∣∣t2−α
1 (1− t1)

2−αG(t1, s)− t2−α
2 (1− t2)

2−αG(t2, s)
∣∣ f(s, y(s), Dα−1

0+
y(s))ds

+

∫ t2

t1

∣∣t2−α
1 (1− t1)

2−αG(t1, s)− t2−α
2 (1− t2)

2−αG(t2, s)
∣∣ f(s, y(s), Dα−1

0+
y(s))ds

+

∫ 1

t2

∣∣t2−α
1 (1− t1)

2−αG(t1, s)− t2−α
2 (1− t2)

2−αG(t2, s)
∣∣ f(s, y(s), Dα−1

0+
y(s))ds

+
cΓ(α)|(1− t1)

2−α − (1− t2)
2−α|+ d|(1− t1)

3−α − (1− t2)
3−α|

δ
×∫ 1

0
g(s, y(s), Dα−1

0+
y(s))ds

+
a|t1(1− t1)

2−α − t2(1− t2)
2−α|+ bΓ(α)|(1− t1)

2−α − (1− t2)
2−α|

δ
×∫ 1

0
h(s, y(s), Dα−1

0+
y(s))ds

≤
∫ t1

0

∣∣t2−α
1 (1− t1)

2−αG(t1, s)− t2−α
2 (1− t2)

2−αG(t2, s)
∣∣ϕr(s)ds

+

∫ t2

t1

∣∣t2−α
1 (1− t1)

2−αG(t1, s)− t2−α
2 (1− t2)

2−αG(t2, s)
∣∣ϕr(s)ds
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+

∫ 1

t2

∣∣t2−α
1 (1− t1)

2−αG(t1, s)− t2−α
2 (1− t2)

2−αG(t2, s)
∣∣ϕr(s)ds

+
cΓ(α)|(1− t1)

2−α − (1− t2)
2−α|+ d|(1− t1)

3−α − (1− t2)
3−α|

δ

∫ 1

0
ϕr(s)ds

+
a|t1(1− t1)

2−α − t2(1− t2)
2−α|+ bΓ(α)|(1− t1)

2−α − (1− t2)
2−α|

δ

∫ 1

0
ϕr(s)ds

< ϵ

∫ 1

0
ϕr(s)ds+ ϵ

(
2ac

δ
+

2ad

δΓ(α)
+

2bcΓ(α) + 2bd

δ
+

2

Γ(α)

)
+ϵ

∫ 1

0
ϕr(s)ds+ ϵ

∫ 1

0
ϕr(s)ds+ ϵ

∫ 1

0
ϕr(s)ds.

Then

|t2−α
1 (1− t2)

2−α(Ty)(t1)− t2−α
1 (1− t1)

2−α(Ty)(t2)| → 0

uniformly as t1 → t2. Therefore, {t2−α(1 − t)2−αTx : x ∈ M} is equicontinuous on
(0, 1).

On the other hand, we have

|Dα−1
0+

(Ty)(t1)−Dα−1
0+

(Ty)(t1)| ≤
∫ t2

t1

f(s, y(s), Dα−1
0+

y(s))ds

≤
∫ t2

t1

ϕr(s)ds.

As t1 → t2, the right-hand side of the above inequality tends to zero uniformly.
Therefore, {Dα−1

0+
Tx : x ∈M} is equicontinuous on (0, 1).

The Arzela-Ascoli theorem implies that T (M) is relatively compact. Thus,
the operator T : P → P is completely continuous.

3. Main theorems

Now, we prove the main results. Let

∆1 =
ad+ acΓ(α)

δΓ(α)
+
bd+ bcΓ(α)

δ
+
a+ bΓ(α)

δ
+
a+ bΓ(α)

δ
,

∆2 = 1 +
acΓ(α)

δ
+
ad

δ
+
dΓ(α)

δ
+
aΓ(α)

δ
.

Theorem 3.1. Suppose that there exist ϕ, ψ ∈ L1(0, 1) such that

|f(t, tα−2(1− t)α−2u, v)− f(t, tα−2(1− t)α−2u1, v1)| ≤ ϕ(t)|u− u1|+ ψ(t)|v − v1|,
|g(t, tα−2(1− t)α−2u, v)− f(t, tα−2(1− t)α−2u1, v1)| ≤ ϕ(t)|u− u1|+ ψ(t)|v − v1|,
|h(t, tα−2(1− t)α−2u, v)− f(t, tα−2(1− t)α−2u1, v1)| ≤ ϕ(t)|u− u1|+ ψ(t)|v − v1|

(8)
hold for all t ∈ (0, 1), u, u1 ∈ [0,∞), v, v1 ∈ R. Then BVP(3) has a unique positive
solution if

max {∆1, ∆2}
∫ 1

0
[ϕ(s) + ψ(s)]ds < 1. (9)

Proof. We shall prove that under the assumptions (8) and (9), T is a con-
traction operator. Indeed, by the definition of G(t, s) for x, y ∈ P , from Lemma 2.2
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and (8), we have the estimate

t2−α(1− t)2−α|(Tx)(t)− (Ty)(t)|

≤
∫ 1

0
t2−α(1− t)2−αG(t, s)|f(s, x(s), Dα−1

0+
x(s))− f(s, y(s), Dα−1

0+
y(s))|ds

+
cΓ(α)(1− t)2−α + d[(1− t)2−α − t(1− t)2−α]

δ

×
∫ 1

0
|g(t, x(t), Dα−1

0+
x(t))− g(t, y(t), Dα−1

0+
x(t))|dt

+
at(1− t)2−α + bΓ(α)(1− t)2−α

δ

∫ 1

0
|h(t, x(t), Dα−1

0+
x(t))− h(t, y(t), Dα−1

0+
y(t))|dt

≤
(
ad+ acΓ(α)

δΓ(α)
+
bd+ bcΓ(α)

δ

)
×∫ 1

0
[ϕ(s)s2−α(1− s)2−α|x(s)− y(s)|+ ψ(s)|Dα−1

0+
x(s)−Dα−1

0+
y(s)|ds

+
cΓ(α) + d

δ

∫ 1

0
[ϕ(s)s2−α(1− s)2−α|x(s)− y(s)|+ ψ(s)|Dα−1

0+
u(s)−Dα−1

0+
v(s)|ds

+
a+ bΓ(α)

δ

∫ 1

0
[ϕ(s)s2−α(1− s)2−α|x(s)− y(s)|+ ψ(s)|Dα−1

0+
x(s)−Dα−1

0+
y(s)|ds

≤
(
ad+ acΓ(α)

δΓ(α)
+
bd+ bcΓ(α)

δ
+
a+ bΓ(α)

δ
+
a+ bΓ(α)

δ

)∫ 1

0
[ϕ(s) + ψ(s)]ds||x− y||,

and

|Dα−1
0+

Tx(t)−Dα−1
0+

Ty(t)|

≤
(
1 +

acΓ(α)

δ
+
ad

δ

)∫ 1

0
|f(s, x(s), Dα−1

0+
x(s))− f(s, y(s), Dα−1

0+
y(s))|ds

+
dΓ(α)

δ

∫ 1

0
|g(t, x(t), Dα−1

0+
x(t))− g(s, y(s), Dα−1

0+
y(s))|dt

+
aΓ(α)

δ

∫ 1

0
|h(t, x(t), Dα−1

0+
x(t))− h(s, y(s), Dα−1

0+
y(s))|dt

≤
(
1 +

acΓ(α)

δ
+
ad

δ
+
dΓ(α)

δ
+
aΓ(α)

δ

)
×∫ 1

0
[ϕ(s)s2−α|x(s)− y(s)|+ ψ(s)|Dα−1

0+
x(s)−Dα−1

0+
y(s)|ds

≤
(
1 +

acΓ(α)

δ
+
ad

δ
+
dΓ(α)

δ
+
aΓ(α)

δ

)∫ 1

0
[ϕ(s) + ψ(s)]ds||x− y||.
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It follows that

||Tx− Ty|| ≤ max

{
ad+ acΓ(α)

δΓ(α)
+
bd+ bcΓ(α)

δ
+
a+ bΓ(α)

δ
+
a+ bΓ(α)

δ
,

1 +
acΓ(α)

δ
+
ad

δ
+
dΓ(α)

δ
+
aΓ(α)

δ

}∫ 1

0
[ϕ(s) + ψ(s)]ds||x− y||

= max{∆1, ∆2}
∫ 1

0
[ϕ(s) + ψ(s)]ds||x− y||.

Hence the contraction mapping principle implies that BVP(3) has a unique positive
solution x0. Since f(t, 0, 0) ̸≡ 0 on each subinterval of (0, 1), then x0 is positive on
(0, 1). So x0 is a positive solution of BVP(3). The proof is completed.

Theorem 3.2. Suppose that there exists ϕ ∈ L1(0, 1) such that

limx→∞ supt∈(0,1)
f(t,tα−2(1−t)α−2x,y)

ϕ(t)(|x|+|y|) < 1

2max{∆1, ∆2}
∫ 1
0 ϕ(s)ds

limx→∞ supt∈(0,1)
g(t,tα−2(1−t)α−2x,y)

ϕ(t)(|x|+|y|) < 1

2max{∆1, ∆2}
∫ 1
0 ϕ(s)ds

,

limx→∞ supt∈(0,1)
h(t,tα−2(1−t)α−2x,y)

ϕ(t)(|x|+|y|) < 1

2max{∆1, ∆2}
∫ 1
0 ϕ(s)ds

.

(10)

Then, BVP(3) has at least one positive solution.
Proof. It follows from (10) that there exist M and H

0 < M <
1

2max{∆1, ∆2}
∫ 1
0 ϕ(s)ds

, H > 0

such that

0 ≤ f(t, tα−2(1− t)α−2x, y)

ϕ(t)(|x|+ |y|)
≤M <

1

2max{∆1, ∆2}
, t ∈ (0, 1), |x|+ |y| > H,

0 ≤ g(t, tα−2(1− t)α−2x, y)

ϕ(t)(|x|+ |y|)
≤M <

1

2max{∆1, ∆2}
, t ∈ (0, 1), |x|+ |y| > H,

0 ≤ h(t, tα−2(1− t)α−2x, y)

ϕ(t)(|x|+ |y|)
≤M <

1

2max{∆1, ∆2}
, t ∈ (0, 1), |x|+ |y| > H.

On the other hand, there exists ϕM ∈ L1(0, 1) such that

0 ≤ f(t, tα−2(1− t)α−2x, y) ≤ ϕM (t), t ∈ (0, 1), |x|+ |y| ≤ H,

0 ≤ g(t, tα−2(1− t)α−2x, y) ≤ ϕM (t), t ∈ (0, 1), |x|+ |y| ≤ H,

0 ≤ h(t, tα−2(1− t)α−2x, y) ≤ ϕM (t), t ∈ (0, 1), |x|+ |y| ≤ H.

It follows that

0 ≤ f(t, tα−2x, y) ≤M(|x|+ |y|)ϕ(t) + ϕM (t), t ∈ (0, 1), x ∈ [0,∞), y ∈ R,

0 ≤ g(t, tα−2x, y) ≤M(|x|+ |y|)ϕ(t) + ϕM (t), t ∈ (0, 1), x ∈ [0,∞), y ∈ R,

0 ≤ h(t, tα−2x, y) ≤M(|x|+ |y|)ϕ(t) + ϕM (t), t ∈ (0, 1), x ∈ [0,∞), y ∈ R.



106 Yuji Liu, Tieshan He, Haiping Shi

From ϕM ∈ L1(0, 1) and denote

ϕ0(t) =

∫ 1

0
G(t, s)ϕM (s)ds+

cΓ(α)tα−2 + d(tα−2 − tα−1)

δ

∫ 1

0
ϕM (t)dt

+
atα−1 + bΓ(α)tα−2

δ

∫ 1

0
ϕM (t)dt,

we can see ϕ0 ∈ X. Choose R > 0 sufficiently large such that

R ≥
2max{∆1, ∆2}

∫ 1
0 ϕM (s)ds+ 2max{∆1, ∆2}2M

∫ 1
0 ϕ(s)ds

∫ 1
0 ϕM (s)ds

1− 2max{∆1, ∆2}M
∫ 1
0 ϕ(s)ds

. (11)

Let

BR = {x ∈ P : ||x− ϕ0|| ≤ R} .
It is easy to see that BR is a convex, bounded, and closed subset of the Banach
space X. For x ∈ BR, by the methods used in the proof of Lemma 2.2(iv)(Step 2),
we have

||x|| ≤ ||x− ϕ0||+ ||ϕ0||

≤ R+max {∆1, ∆2}
∫ 1

0
ϕM (s)ds.

When the methods in the proof of Lemma 2.2(iv)(Step 2) are used, we get

||Tx− ϕ0|| ≤ ||Tx||+ ||ϕ0|||

≤ max {∆1, ∆2}
∫ 1

0

[
Mϕ(t)

(
t2−α(1− t)2−α|x(t) + |Dα−1

0+
x(t)|

)
+ ϕM (t)

]
dt

+max{∆1, ∆2}
∫ 1

0
ϕM (s)ds

≤ 2max {∆1, ;∆2}M
∫ 1

0
ϕ(t)dt||x||+ 2max {∆1, ∆2}

∫ 1

0
ϕM (t)dt

≤ 2max {∆1, ;∆2}M
∫ 1

0
ϕ(t)dt

(
R+max{∆1, ∆2}

∫ 1

0
ϕM (t)dt

)
+2max {∆1, ∆2}

∫ 1

0
ϕM (t)dt ≤ R.

So, we have TBR ⊂ BR. Since T is completely continuous, the Schauder fixed point
theorem essures that operator T has at least one fixed point in BR and then BVP(3)
has at least one positive solution. The proof is complete.

Theorem 3.3. Suppose that

|f(t, tα−2(1− t)α−2x, y)| ≤ ϕ(t)w(|x|+ |y|), t ∈ (0, 1], x, y ∈ R,
|g(t, tα−2(1− t)α−2x, y)| ≤ ϕ(t)w(|x|+ |y|), t ∈ (0, 1], x, y ∈ R,
|h(t, tα−2(1− t)α−2x, y)| ≤ ϕ(t)w(|x|+ |y|), t ∈ (0, 1], x, y ∈ R

(12)

with ϕ ∈ L1(0, 1) and w ∈ C(R, [0,∞)) nondecreasing. If there exists a constant
µ > 0 such that

µ

max {∆1, ∆2}w(2µ)
∫ 1
0 ϕ(s)ds

≥ 1, (13)
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then, BVP(3) has at least one positive solution.
Proof. We consider the BVP of the form
Dα

0+u(t) + λf(t, u(t), Dα−1
0+

u(t)) = 0, t ∈ (0, 1),

a limt→0 t
2−αu(t)− b limt→0 D

α−1u(t) = λ
∫ 1
0 g(t, u(t), D

α−1
0+

u(t))dt,

c Dα−1
0 u(1) + du(1) = λ

∫ 1
0 h(t, u(t), D

α−1
0+

u(t))dt,

(14)

for 0 < λ < 1. Solving BVP(14) is equivalent to solving the fixed point problem
x = λTx.

Let

U = {x ∈ X : ||x|| ≤ µ}.
We claim that x ̸= λTx for all x ∈ ∂U and λ ∈ (0, 1). In fact, if x = λTx for some
x ∈ ∂U and λ ∈ (0, 1), when the methods in the proof of Lemma 2.2(iv)(Step 2) are
used, we have

||x|| = max

{
sup

t∈(0,1)
λt2−α(1− t)2−α(Tx)(t), sup

t∈(0,1)
|Dα−1

0+
λ(Tx)(t)|

}

< max {∆1, ∆2}
∫ 1

0
ϕ(s)w

(
s2−s(1− s)2−α|x(s)|+ |Dα−1

0+
x(s)|

)
ds

≤ max {∆1, ∆2}w (2µ)

∫ 1

0
ϕ(s)ds

= max {∆1, ∆2}w (2µ)

∫ 1

0
ϕ(s)ds.

So

µ < max {∆1, ∆2}w (2µ)

∫ 1

0
ϕ(s)ds.

It follows that
µ

max {∆1, ∆2}w (2µ)
∫ 1
0 ϕ(s)ds

< 1,

which contradicts with (13). Since T is completely continuous, by Schauder’s fixed
point theorem [5], we see that BVP(3) has at least one positive solution x. The
proof is complete.

4. An example

In this section, we give an example to illustrate the main theorem.
Example 4.1. Letλ > 0. Consider the following BVP

D
3
2

0+
u(t) + 2t−

1
2 + 2(1− t)−2 + λ

(
t− 1

2

)4
t
1
2 (1− t)

1
2u(t) + µD

1
2

0+
u(t) = 0, t ∈ (0, 1],

limt→0 t
1
2u(t)− limt→0 D

1
2

0+
u(t) = 0,

D
1
2

0+
u(1) + u(1) = 0,

(15)
where λ, µ > 0.

Corresponding to BVP(2), we find that α = 3
2 , a = b = c = d = 1 and

f(t, x, y) = 2t−
1
2 + λ

(
t− 1

2

)4

t
1
2 (1− t)

1
2x+ µy.
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Choose ϕ(t) = λ
(
t− 1

2

)4
and ψ(t) = µ. One sees that δ = 2Γ(3/2) + 1 > 0,

f(t, 0, 0) ̸≡ 0 on each subinterval of (0, 1). On can see that f satisfies

|f(t, t
3
2
−2(1− t)

3
2
−2u, v)− f(t, t

3
2
−2(1− t)

3
2
−2u1, v1)| ≤ ϕ(t)|u− u1|+ ψ(t)|v − v1|

for all t ∈ (0, 1), u, u1 ∈ [0,∞), v, v1 ∈ R. Hence Theorem 3.1 implies that BVP(15)
has a unique positive solution if

max

{
(1 + Γ(3/2))

(
1

δΓ(3/2)
+

3

δ

)
, 1 +

1

δ
+

3Γ(3/2)

δ

}∫ 1

0

[
λ

(
s− 1

2

)4

+ µ

]
ds < 1.
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