

FIXED POINT RESULTS FOR NONLINEAR CONTRACTIONS WITH GENERALIZED Ω -DISTANCE MAPPINGS

by Issam Abu-Irwaq¹, Wasfi Shatanawi², Anwar Bataihah³ and Inam Nuseir⁴

Khojasteh et.al. [F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat 29:6 (2015)] defined a new class of mappings namely simulation functions in which they used it to unify several fixed point results in the literature. In this paper we introduce the notion of $(\Omega, \phi, \mathcal{Z})_s$ -contraction with respect to ζ through generalized Ω -distance mappings which introduced by Abodayeh et.al. [K. Abodayeh, A. Bataihah and W. Shatanawi, Generalized Ω -distance mappings and some fixed point theorems, U.P.B. Sci. Bull. Series A, Vol. 79, Iss.2, 2017] and we prove some fixed point results. Also, we give an example to support our main result.

Keywords: fixed point, simulation mappings, G-metric spaces, generalized Omega-distance

1. Introduction

The fixed point theory considered as a main tool in pure and applied mathematics since it gives a solution for the equation $f(x) = x$ for a self mapping f under some considerations. In fact the fixed point theory has been studied in various directions for instance see [12]–[34].

The concept of b -metric spaces was introduced by Bakhtin [3] which has became well known by Czerwinski [4]. In 2014 Aghanjani et.al. [2] introduced the concept of G_b -metric spaces (or generalized b -metric spaces) using the concepts of G -metric spaces and b -metric spaces and studied some fixed point results, for more fixed point results on G_b -metric spaces we refer the reader to see [5, 6].

2. Preliminaries

The concept of G_b -metric spaces is defined as follows:

Definition 2.1. [2] Let X be a nonempty set and $s \geq 1$ be a given real number. Suppose that a mapping $G : X \times X \times X \rightarrow \mathbb{R}^+$ be a function satisfies:

- (G_b 1) $G(x, y, z) = 0$ if $x = y = z$;
- (G_b 2) $G(x, x, y) > 0$ for all $x, y \in X$, with $x \neq y$;
- (G_b 3) $G(x, y, y) \leq G(x, y, z)$ for all $x, y, z \in X$, with $y \neq z$;
- (G_b 4) $G(x, y, z) = G(p\{x, y, z\})$, where p is a permutation of x, y, z (symmetry);
- (G_b 5) $G(x, y, z) \leq s[G(x, a, a) + G(a, y, z)] \forall x, y, z, a \in X$ (rectangle inequality).

Then the function G is called generalized b metric and the pair (X, G) is called a generalized b metric space or G_b -metric space.

¹Department of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan, e-mail: imabuirwaq@just.edu.jo

²Department of General Sciences, Prince Sultan University, Riyadh, Saudi Arabia and Department of Mathematics, Faculty of Science, Hashimite University, P.O. Box 150459, Zarqa, Jordan e-mail:wshatanawi@psu.edu.sa and swasfi@hu.edu.jo

³Department of Mathematics, Faculty of Science, The University of Jordan, Amman, Jordan anwerbataihah@gmail.com

⁴Department of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan, e-mail: imnuseir@just.edu.jo

Aghanjani *et.al.* [2] remarked that the class of G_b -metric spaces is larger than that of G-metric spaces.

The following example shows that G_b -metric on X need not be G -metric on X .

Example 2.1. [2] Let (X, G) be a G -metric space and $p > 1$. Define $G_* : X \times X \times X \rightarrow \mathbf{R}^+$ by $G_*(x, y, z) = G(x, y, z)^p$. Then G_* is G_b -metric on X with $s = 2^{p-1}$.

Now, we present some definitions and propositions in G_b -metric space.

Definition 2.2. [2] Let X be a G_b -metric space. A sequence (x_n) in X is said to be

- (1) G_b -convergent to $x \in X$ if for any $\varepsilon > 0$, there exists $k \in \mathbf{N}$ such that $G(x, x_n, x_m) < \varepsilon \ \forall n, m \geq k$.
- (2) G_b -Cauchy if for any $\varepsilon > 0$, there exists $k \in \mathbf{N}$ such that $G(x_n, x_m, x_l) < \varepsilon \ \forall n, m, l \geq k$.

Proposition 2.1. [2] Let X be a G_b -metric space. Then the following are equivalent:

- (1) The sequence (x_n) is G_b -convergent to x .
- (2) $G(x_n, x_n, x) \rightarrow 0$ as $n \rightarrow \infty$.
- (3) $G(x_n, x, x) \rightarrow 0$ as $n \rightarrow \infty$.

Proposition 2.2. [2] Let X be a G_b -metric space. The sequence (x_n) is G_b -Cauchy iff for any $\varepsilon > 0$, there exists $k \in \mathbf{N}$ such that $G(x_n, x_m, x_m) < \varepsilon \ \forall n, m \geq k$.

Definition 2.3. [2] A G_b -metric space X is called G_b -complete if every G_b -Cauchy sequence is G_b -convergent in X .

Very recently, Abodayeh *et.al.* [1] defined the concept of generalized Ω -distance mappings (or Ω_b -distance) related to G_b -metric spaces and proved some fixed point theorems (see also [19]).

The notion of a generalized Ω -distance mapping is given by:

Definition 2.4. [1] Let X be a G_b -metric space. Then a mapping $\Omega : X \times X \times X \rightarrow [0, \infty)$ is called a generalized Ω -distance mapping or an Ω_b -distance mapping on X if the following conditions are satisfied:

- (1) $\Omega(x, y, z) \leq s [\Omega(x, a, a) + \Omega(a, y, z)] \ \forall x, y, z, a \in X$ and $s \geq 1$,
- (2) for any $x, y \in X$, $\Omega(x, y, \cdot), \Omega(x, \cdot, y) : X \rightarrow X$ are lower semi continuous,
- (3) for every $\varepsilon > 0$, there is a $\delta > 0$ such that $\Omega(x, a, a) \leq \delta$ and $\Omega(a, y, z) \leq \delta$ imply $G_b(x, y, z) \leq \varepsilon$.

Example 2.2. [1] Let $X = \mathbf{R}$. Consider the G_b -metric $G : X \times X \times X \rightarrow [0, \infty)$ defined by $G(x, y, z) = (|x - y| + |y - z| + |x - z|)^2 \ \forall x, y, z \in \mathbf{R}$. Define $\Omega : X \times X \times X \rightarrow [0, \infty)$ by $\Omega(x, y, z) = (|x - y| + |x - z|)^2 \ \forall x, y, z \in \mathbf{R}$. Then Ω is a generalized Ω -distance mapping with $s = 2$.

Definition 2.5. [1] Let (X, G) be a G_b -metric space and Ω be an Ω_b -distance mapping on X . Then we say that X is Ω -bounded if there exists $M > 0$ such that $\Omega(x, y, z) \leq M$ for all $x, y, z \in X$.

Lemma 2.1. [1] Let X be a G_b -metric space and Ω_b be a generalized Ω -distance mapping on X . Let $(x_n), (y_n)$ be sequences in X and let $(\alpha_n), (\beta_n)$ be sequences in $[0, \infty)$ converging to zero and let $x, y, z, a \in X$. Then we have the following:

- (1) If $\Omega_b(y_n, x_n, x_n) \leq \alpha_n$ and $\Omega_b(x_n, y_m, z) \leq \beta_n$ for any $m > n \in \mathbf{N}$, then $G(y_n, y_m, z) \rightarrow 0$ and hence $y_n \rightarrow z$.
- (2) If $\Omega_b(y, x_n, x_n) \leq \alpha_n$ and $\Omega_b(x_n, y, z) \leq \beta_n$ for $n \in \mathbf{N}$, then $G(y, y, z) < \varepsilon$ and hence $y = z$.
- (3) If $\Omega_b(x_n, x_m, x_l) \leq \alpha_n$ for any $m, n, l \in \mathbf{N}$ with $n \leq m \leq l$, then (x_n) is a G_b -Cauchy sequence.
- (4) If $\Omega_b(x_n, a, a) \leq \alpha_n$ for any $n \in \mathbf{N}$, then (x_n) is a G_b -Cauchy sequence.

Khojasteh *et.al.* [8] in 2015 introduced the concept of simulation mappings in which they used it to unify several fixed point results in the literature.

Definition 2.6. [8] Let $\zeta : [0, \infty) \times [0, \infty) \rightarrow \mathbf{R}$ be a function. Then ζ is called a simulation function if it satisfies the following conditions:

- ($\zeta 1$) $\zeta(0, 0) = 0$.

($\zeta 2$) $\zeta(t, s) < s - t$ for all $s, t > 0$.

($\zeta 3$) If (t_n) and (s_n) are sequences in $[0, \infty)$ such that $\lim_{n \rightarrow \infty} t_n = \lim_{n \rightarrow \infty} s_n > 0$, then $\limsup_{n \rightarrow \infty} \zeta(t_n, s_n) < 0$.

The set of all simulation functions are denoted by \mathcal{Z}

Now, we give some examples of simulation functions. In the following ζ is defined from $[0, \infty) \times [0, \infty) \rightarrow \mathbb{R}$.

Example 2.3. [8] Let $h_1, h_2 : [0, \infty) \rightarrow [0, \infty)$ be two continuous functions such that $h_1(t) = h_2(t) = 0$ if and only if $t = 0$ and $h_2(t) < t \leq h_1(t)$ for all $t \in [0, \infty)$ and define $\zeta : [0, \infty) \times [0, \infty) \rightarrow \mathbb{R}$ by $\zeta(t, s) = h_2(s) - h_1(t)$ for all $t, s \in [0, \infty)$. Then ζ is a simulation function.

Example 2.4. [8] Let $g : [0, \infty) \rightarrow [0, \infty)$ be a continuous function such that $g(t) = 0$ if and only if $t=0$ and define $\zeta : [0, \infty) \times [0, \infty) \rightarrow \mathbb{R}$ by $\zeta(t, s) = s - g(s) - t$ for all $t, s \in [0, \infty)$. Then ζ is a simulation function.

Example 2.5. [11] Let $\eta : [0, \infty) \rightarrow [0, \infty)$ be an upper semi continuous function such that $\eta(t) < t \forall t > 0$ and $\eta(0) = 0$ and define $\zeta : [0, \infty) \times [0, \infty) \rightarrow \mathbb{R}$ by $\zeta(t, s) = \eta(s) - t$ for all $t, s \in [0, \infty)$. Then ζ is a simulation function.

Example 2.6. [11] Let $\gamma : [0, \infty) \rightarrow [0, \infty)$ be a function such that $\int_0^\varepsilon \gamma(u)du$ exists $\forall \varepsilon > 0$ and define $\zeta : [0, \infty) \times [0, \infty) \rightarrow \mathbb{R}$ by $\zeta(t, s) = s - \int_0^t \gamma(u)du$ for all $t, s \in [0, \infty)$. Then ζ is a simulation function.

For more work on simulation functions in fixed point theory, we refer the reader to [9]-[11] and references therein.

3. Main Result

In our main result, we use a contraction condition equipped with c-comparison functions with base s which introduced by Shatanawi [7].

Definition 3.1. [7] Let s be a constant with $s \geq 1$. A function $\phi : [0, +\infty) \rightarrow [0, +\infty)$ is called a c-comparison function with base s if ϕ satisfies the following:

- (i) ϕ is monotone nondecreasing.
- (ii) $\sum_{n=0}^{\infty} s^n \phi^n(st)$ converges for all $t \geq 0$.

Remark 3.1. [7] If ϕ is a c-comparison function with base s , then $\phi(t) < t$ for all $t > 0$.

The following example inspired from [7].

Example 3.1. Let $s \geq 1$. Define $\phi_1, \phi_2 : [0, \infty) \rightarrow [0, \infty)$ by $\phi_1(t) = kt$ where $0 \leq k < \frac{1}{s}$ and $\phi_2(t) = \frac{1}{a+s}$ where $a > 0$. Then ϕ_1 and ϕ_2 are c-comparison functions with base s .

Now, we introduce the following definition

Definition 3.2. Let (X, G) be a G_b -metric space equipped with a generalized Ω -distance mapping Ω with base $s \geq 1$ and $\zeta \in \mathcal{Z}$. A self mapping $T : X \rightarrow X$ is said to be $(\Omega, \phi, \mathcal{Z})_s$ -contraction with respect to ζ if there is a c-comparison function ϕ with base s such that T satisfies the following condition:

$$\zeta(s\Omega(Tx, T^2x, Ty), \phi s\Omega(x, Tx, y)) \geq 0 \quad \forall x, y \in X. \quad (1)$$

Lemma 3.1. Let (X, G) be a G_b -metric space equipped with a generalized Ω -distance mapping Ω with base $s \geq 1$. Let $\zeta \in \mathcal{Z}$ and ϕ be a c-comparison function with base s . Suppose that $T : X \rightarrow X$ is $(\Omega, \phi, \mathcal{Z})_s$ -contraction with respect to ζ . If T has a fixed point (say) $u \in X$, then it is unique.

Proof. First we show that for all $w \in X$ if $fw = w$, then $\Omega(w, w, w) = 0$. Assume that $\Omega(w, w, w) > 0$. From (1) and ($\zeta 2$), we have

$$\begin{aligned}
0 &\leq \zeta(s\Omega(Tw, T^2w, Tw), \phi s\Omega(w, Tw, w)) \\
&= \zeta(s\Omega(w, w, w), \phi s\Omega(w, w, w)) \\
&< \phi s\Omega(w, w, w) - s\Omega(w, w, w), \\
&< s\Omega(w, w, w) - s\Omega(w, w, w), \\
&= 0,
\end{aligned}$$

a contradiction. Hence $\Omega(w, w, w) = 0$.

Now, assume that there is $v \in X$ such that $Tv = v$ and $\Omega(u, v, v) > 0$. Since T is $(\Omega, \phi, \mathcal{L})$ -contraction with respect to ζ , then by substituting $x = u$ and $y = v$ in (1) and taking into account $(\zeta 2)$, we have

$$\begin{aligned}
0 &\leq \zeta(s\Omega(Tu, T^2u, Tv), \phi s\Omega(u, Tu, v)) \\
&= \zeta(s\Omega(u, u, v), \phi s\Omega(u, u, v)) \\
&< \phi s\Omega(u, u, v) - s\Omega(u, u, v) \\
&< s\Omega(u, u, v) - s\Omega(u, u, v) = 0,
\end{aligned}$$

a contradiction. Hence $\Omega(u, v, v) = 0$. Thus by the definition of Ω we have $G(u, v, v) = 0$ and so $u = v$. \square

Theorem 3.1. *(X, G) be a G_b -metric space equipped with a generalized Ω -distance mapping Ω with base $s \geq 1$ such that X is Ω -bounded and $\zeta \in \mathcal{L}$. Suppose that there is a c -comparison function ϕ with base s such that the mapping $T : X \rightarrow X$ is $(\Omega, \phi, \mathcal{L})_s$ -contraction with respect to ζ that satisfies the following condition*

$$\forall u \in X \text{ if } Tu \neq u, \text{ then } \inf\{\Omega(x, Tx, u) : x \in X\} > 0. \quad (2)$$

Then T has a unique fixed point in X .

Proof. Let $x_0 \in X$ be arbitrary and define the sequence (x_n) in X inductively by $x_n = Tx_{n-1}$ $n \in \mathbb{N}$. Let $p \geq 0$ be a nonnegative integer. Then by (1), we have for all $n \in \mathbb{N}$

$$\begin{aligned}
0 &\leq \zeta(s\Omega(Tx_{n-1}, T^2x_{n-1}, Tx_{n+p-1}), \phi s\Omega(x_{n-1}, Tx_{n-1}, x_{n+p-1})) \\
&= \zeta(s\Omega(x_n, x_{n+1}, x_{n+p}), \phi s\Omega(x_{n-1}, x_n, x_{n+p-1})) \\
&< \phi s\Omega(x_{n-1}, x_n, x_{n+p-1}) - s\Omega(x_n, x_{n+1}, x_{n+p}).
\end{aligned}$$

Thus,

$$s\Omega(x_n, x_{n+1}, x_{n+p}) < \phi s\Omega(x_{n-1}, x_n, x_{n+p-1}). \quad (3)$$

Also, by (1) we have

$$\begin{aligned}
0 &\leq \zeta(s\Omega(Tx_{n-2}, T^2x_{n-2}, Tx_{n+p-2}), \phi s\Omega(x_{n-2}, Tx_{n-2}, x_{n+p-2})) \\
&= \zeta(s\Omega(x_{n-1}, x_n, x_{n+p-1}), \phi s\Omega(x_{n-2}, x_{n-1}, x_{n+p-2})) \\
&< \phi s\Omega(x_{n-2}, x_{n-1}, x_{n+p-2}) - s\Omega(x_{n-1}, x_n, x_{n+p-1}).
\end{aligned}$$

Therefore,

$$s\Omega(x_{n-1}, x_n, x_{n+p-1}) < \phi s\Omega(x_{n-2}, x_{n-1}, x_{n+p-2}). \quad (4)$$

Since ϕ is nondecreasing, then $\phi s\Omega(x_{n-1}, x_n, x_{n+p-1}) < \phi^2 s\Omega(x_{n-2}, x_{n-1}, x_{n+p-2})$. Hence, (3) becomes

$$s\Omega(x_n, x_{n+1}, x_{n+p}) < \phi^2 s\Omega(x_{n-2}, x_{n-1}, x_{n+p-2}). \quad (5)$$

If we apply the previous steps repeatedly, we get $s\Omega(x_n, x_{n+1}, x_{n+p}) \leq \phi^n s\Omega(x_0, x_1, x_p)$. Since X is Ω -bounded, there is $M \geq 0$, such that $\Omega(x, y, z) \leq M$, $\forall x, y, z \in X$. Thus

$$s\Omega(x_n, x_{n+1}, x_{n+p}) \leq \phi^n (sM). \quad (6)$$

Now, by using the definition of Ω and (6), we have for all $l \geq m \geq n$

$$\begin{aligned}
\Omega(x_n, x_m, x_l) &\leq s\Omega(x_n, x_{n+1}, x_{n+1}) + s^2\Omega(x_{n+1}, x_{n+2}, x_{n+2}) + \dots \\
&\quad + s^{m-n-1}\Omega(x_{m-2}, x_{m-1}, x_{m-1}) + s^{m-n-1}\Omega(x_{m-1}, x_m, x_l) \\
&\leq \phi^n(sM) + s\phi^{n+1}(sM) + \dots + s^{m-n-2}\phi^{m-1}(sM) + s^{m-n-2}\phi^{m-1}(sM) \\
&\leq \phi^n(sM) + s\phi^{n+1}(sM) + \dots \\
&= s^{-n}[s^n\phi^n(sM) + s^{n+1}\phi^{n+1}(sM) + \dots] \\
&= s^{-n}\sum_{k=n}^{\infty} s^k\phi^k(sM).
\end{aligned}$$

Since ϕ is a c -comparison function with base s , then $\left(\sum_{k=n}^{\infty} s^k\phi^k(sM) : n \in \mathbb{N}\right)$ converges to 0. Thus for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $\sum_{k=n}^{\infty} s^k\phi^k(sM) \leq s^n\varepsilon \forall n \geq N$. Hence for $l \geq m \geq n \geq N$, we have

$$\Omega(x_n, x_m, x_l) \leq s^{-n}\sum_{k=n}^{\infty} s^k\phi^k(sM) \leq \varepsilon \quad \forall n \geq N.$$

By Lemma 2.1, (x_n) is a G_b -Cauchy sequence. Therefore there is $u \in X$ such that $\lim_{n \rightarrow \infty} x_n = u$.

Consider $\delta > 0$. Then there exists $r_0 \in \mathbb{N}$ such that $\Omega(x_n, x_m, x_l) \leq \delta \forall n, m, l \geq r_0$.

Therefore, $\lim_{l \rightarrow \infty} \Omega(x_n, x_m, x_l) \leq \lim_{l \rightarrow \infty} \delta = \delta \forall n, m \geq r_0$.

By the lower semi continuity of Ω , we have $\Omega(x_n, x_m, u) \leq \liminf_{p \rightarrow \infty} \Omega(x_n, x_m, x_p) \leq \delta \forall m, n \geq r_0$.

Consider $m = n + 1$. Then $\Omega(x_n, x_{n+1}, u) \leq \liminf_{p \rightarrow \infty} \Omega(x_n, x_{n+1}, x_p) \leq \delta \forall n \geq r_0$.

If $Tu \neq u$, then (2) implies that

$$\begin{aligned}
0 &< \inf\{\Omega(x, Tx, u) : x \in X\} \\
&\leq \inf\{\Omega(x_n, x_{n+1}, u) : n \geq r_0\} \\
&\leq \delta,
\end{aligned}$$

for each $\delta > 0$ which is a contradiction. Therefore $Tu = u$. The uniqueness follows from Lemma 3.1. \square

Example 3.2. Let $X = [0, 1]$ and let $G : X \times X \times X \rightarrow [0, \infty)$, $\Omega : X \times X \times X \rightarrow [0, \infty)$, $T : X \rightarrow X$ and $\zeta : [0, \infty) \times [0, \infty) \rightarrow \mathbb{R}$ be defined as follow:

$G(x, y, z) = (|x - y| + |y - z| + |x - z|)^2$, $\Omega(x, y, z) = (|x - y| + |x - z|)^2$, $Tx = ax$, $\zeta(u, v) = bv - u$ and $\phi(t) = ct$ where $a, b \in [0, 1)$, $c \in [0, \frac{1}{2})$ and $a^2 \leq bc$. Then

(1) (X, G) is a complete G_b -metric space and Ω is a generalized Ω -distance on X with base $s = 2$,

(2) $\zeta \in \mathcal{L}$, ϕ is a c -comparison function with base $s = 2$,

(3) T is $(\Omega, \phi, \mathcal{L})_s$ -contraction with respect to ζ ,

(4) for every $u \in X$ if $Tu \neq u$, then $\inf\{\Omega(x, Tx, u) : x \in X\} > 0$.

Proof. We shall prove (3) and (4).

To prove that T is $(\Omega, \phi, \mathcal{L})_s$ -contraction with respect to ζ , let $x, y \in X$. Then

$$\begin{aligned}
&\zeta(s\Omega(Tx, T^2x, Ty), \phi s\Omega(x, Tx, y)) \\
&= \zeta(2\Omega(Tx, T^2x, Ty), 2c\Omega(x, Tx, y)) \\
&= 2bc(|x - ax| + |x - y|)^2 - 2(|ax - a^2x| + |ax - ay|)^2 \\
&= 2bc((1 - a)|x| + |x - y|)^2 - 2a^2((1 - a)|x| + |x - y|)^2 \\
&= 2(bc - a^2)(|x| + |x - y|) \\
&\geq 0.
\end{aligned}$$

To prove (4), given $u \in X$ such that $Tu \neq u$. Then $u \neq 0$. Therefore

$$\begin{aligned}
\inf\{\Omega(x, Tx, u) : x \in X\} &= \inf\{\Omega(x, ax, u) : x \in X\} \\
&= \inf\{|x - ax| + |x - u| : x \in X\} \\
&= \inf\{(1 - a)|x| + |x - u| : x \in X\} \\
&= (1 - a)u > 0.
\end{aligned}$$

Thus all hypotheses of Theorem 3.1 hold true. Hence T has a unique fixed point in X . Here the unique fixed point of T is 0. \square

Now, we utilized our main result to derive the following results. To facilitate our work, we let $\mathcal{H} = \{h : [0, \infty) \rightarrow [0, \infty) : h \text{ is a continuous function}$
with $h^{-1}(\{0\}) = \{0\}\}.$

Corollary 3.1. *Let (X, G) be a complete G_b -metric space and Ω be a generalized Ω -distance mapping on X with base $s \geq 1$. Let $T : X \rightarrow X$ be a self mapping and ϕ be a c -comparison function with base s . Assume that there are $h_1, h_2 \in \mathcal{H}$ where $h_2(t) < t \leq h_1(t) \forall t > 0$ such that T satisfies the following condition:*

$$h_1 s \Omega(Tx, T^2x, Ty) \leq h_2 \phi s \Omega(x, Tx, y) \quad \forall x, y, z \in X. \quad (7)$$

Also, suppose that for all $u \in X$ if $Tu \neq u$, then $\inf\{\Omega(x, Tx, u) : x \in X\} > 0$.
Then T has a unique fixed point in X .

Proof. Define $\zeta : [0, \infty) \times [0, \infty) \rightarrow \mathbb{R}$ by $\zeta(u, v) = h_2(v) - h_1(u)$. Clearly $\zeta \in \mathcal{L}$ and T is $(\Omega, \phi, \mathcal{L})_s$ -contraction with respect to ζ . Hence the result follows from Theorem 3.1. \square

By choosing $h_1(t) = t$ and $h_2(t) = \lambda t$ where $0 \leq \lambda < 1$ in Corollary 3.1 we have the following:

Corollary 3.2. *Let (X, G) be a complete G_b -metric space and Ω be a generalized Ω -distance mapping on X with base $s \geq 1$. Let $T : X \rightarrow X$ be a self mapping and ϕ be a c -comparison function with base s . Assume that there is $\lambda \in [0, 1)$ such that T satisfies the following condition:*

$$\Omega(Tx, T^2x, Ty) \leq \frac{\lambda}{s} \phi s \Omega(x, Tx, y) \quad \forall x, y \in X. \quad (8)$$

Also, suppose that for all $u \in X$ if $Tu \neq u$, then $\inf\{\Omega(x, Tx, u) : x \in X\} > 0$.
Then T has a unique fixed point in X .

Corollary 3.3. *Let (X, G) be a complete G_b -metric space and Ω be a generalized Ω -distance mapping on X with base $s \geq 1$. Let $T : X \rightarrow X$ be a self mapping and ϕ be a c -comparison function with base s . Assume that there is $g \in \mathcal{H}$ such that T satisfies the following condition:*

$$s \Omega(Tx, T^2x, Ty) \leq \phi s \Omega(x, Tx, y) - g \phi s \Omega(x, Tx, y) \quad \forall x, y \in X. \quad (9)$$

Also, suppose that for all $u \in X$ if $Tu \neq u$, then $\inf\{\Omega(x, Tx, u) : x \in X\} > 0$.
Then T has a unique fixed point in X .

Proof. Define $\zeta : [0, \infty) \times [0, \infty) \rightarrow \mathbb{R}$ by $\zeta(u, v) = v - g(v) - u$. Clearly $\zeta \in \mathcal{L}$ and T is $(\Omega, \phi, \mathcal{L})_s$ -contraction with respect to ζ . Hence the result follows from Theorem 3.1. \square

Corollary 3.4. *Let (X, G) be a complete G_b -metric space and Ω be a generalized Ω -distance mapping on X with base $s \geq 1$. Let $T : X \rightarrow X$ be a self mapping and ϕ be a c -comparison function with base s . Assume that there is an upper semi continuous function η such that T satisfies the following condition:*

$$s \Omega(Tx, T^2x, Ty) \leq \eta \phi s \Omega(x, Tx, y) \quad \forall x, y \in X. \quad (10)$$

Also, suppose that for all $u \in X$ if $Tu \neq u$, then $\inf\{\Omega(x, Tx, u) : x \in X\} > 0$.
Then T has a unique fixed point in X .

Proof. Define $\zeta : [0, \infty) \times [0, \infty) \rightarrow \mathbb{R}$ by $\zeta(u, v) = \eta(v) - u$. Clearly $\zeta \in \mathcal{Z}$ and T is $(\Omega, \phi, \mathcal{Z})_s$ -contraction with respect to ζ . Hence the result follows from Theorem 3.1. \square

Corollary 3.5. *Let (X, G) be a complete G_b -metric space and Ω be a generalized Ω -distance mapping on X with base $s \geq 1$. Let $T : X \rightarrow X$ be a self mapping and ϕ be a c -comparison function with base s . Assume that there is a function $\gamma : [0, \infty) \rightarrow [0, \infty)$ where $\int_0^s \gamma(t)dt$ exists and $\int_0^s \gamma(t)dt > \varepsilon$ $\forall \varepsilon > 0$ such that T satisfies the following condition:*

$$\int_0^{s\Omega(Tx, T^2x, Ty)} \gamma(u)du \leq \phi s\Omega(x, Tx, y) \quad \forall x, y \in X. \quad (11)$$

Also, suppose that for all $u \in X$ if $Tu \neq u$, then $\inf\{\Omega(x, Tx, u) : x \in X\} > 0$.

Then T has a unique fixed point in X .

Proof. Define $\zeta : [0, \infty) \times [0, \infty) \rightarrow \mathbb{R}$ by $\zeta(u, v) = v - \int_0^u \gamma(t)dt$. Clearly $\zeta \in \mathcal{Z}$ (see Example 2.6) and T is $(\Omega, \phi, \mathcal{Z})_s$ -contraction with respect to ζ . Hence the result follows from Theorem 3.1. \square

4. Conclusion

In this paper, we introduced and studied some fixed point theorems in the setting of generalized Ω -distance mappings [1] using contraction conditions depend on simulation functions [8] in which our work gives a more general cases in the study of fixed point theory. Also, an example is introduced to support our main result.

REFERENCES

- [1] K. Abodayeh, A. Bataihah and W. Shatanawi, Generalized Ω -distance mappings and some fixed point theorems, U.P.B. Sci. Bull. Series A, Vol. 79, no. 2, (2017), 1223-7027
- [2] A. Aghajani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered G_b -metric spaces, Filomat 28:6 (2014), 1087-1101.
- [3] I. A. Bakhtin, The contraction principle in quasimetric spaces, Functional Analysis, vol. 30 (1989), 26-37.
- [4] S. Czerwinski, Nonlinear set-valued contraction mappings in b-metric spaces. Att Semin. Mat. Fis. Univ. Modena 46, (1998), 263-276.
- [5] Z. Mustafa, J.R. Roshan and V. Parvaneh, Coupled coincidence point results for (ψ, ϕ) -weakly contractive mappings in partially ordered G_b -metric spaces, Fixed Point Theory Appl, (2013), 2013:206.
- [6] Z. Mustafa, J.R. Roshan and V. Parvaneh, Existence of a triple coincidence point results in ordered G_b -metric spaces and applications to a system of integral equations, Journal of Inequality and Applications, (2013), 2013:453.
- [7] W. Shatanawi, Fixed and common fixed point for mappings satisfying some nonlinear contractions in b-metric spaces, Journal of Mathematical Analysis, Vol. 7, no. 4 (2016), 1-12.
- [8] F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat, (2015), 29:6.
- [9] E. Karapinar, Fixed point results via simulation functions, Filomat 30:8 2343-2350.
- [10] A.F. Roldan-Lopez-de-Hierro, E. Karapinar, C. Roldan-Lopez-de-Hierro and J. Martinez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J.Comput.Appl.Math, 275 (2015), 345-355.
- [11] H. Alsulami, E. Karapinar, F. Khojasteh and A.F. Roldan-Lopez-de-Hierro, A proposal to the study of contractions in quasi-metric spaces, Discrete Dynamics in Nature and Society (2014), Article ID 269286, 10 pages.
- [12] H. Aydi, W. Shatanawi, and G. Vetro, On generalized weakly G-contraction mapping in G-metric spaces, Comput. Math. Appl., 62(2011),4222-4229.
- [13] H. Aydi, M. Postolache and W. Shatanawi, Coupled fixed point results for (ψ, ϕ) -weakly contractive mappings in ordered G-metric spaces. Comput. Math. Appl. 63, (2012), 298-309
- [14] W. Shatanawi and A. Pitea, Ω -distance and coupled fixed point theorems in G-metric spaces, Fixed Point Theory and Applications, (2013), 2013:1/8.
- [15] S. Chandok and M. Postolache, Fixed point theorem for weakly Chatterjea-type cyclic contractions, Fixed Point Theory Appl. 2013, no. 28, (2013).
- [16] B.S. Choudhury, N. Metiya and M. Postolache, A generalized weak contraction principle with applications to coupled coincidence point problems, Fixed Point Theory Appl. 2013, no. 152 (2013).
- [17] M.U. Ali, T. Kamran and M. Postolache, Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem, Nonlinear Anal. Modelling Control 22(2017), No. 1, 17-30.
- [18] R. Saadati, S. M. Vaezpour, P. Vetro and B. E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces. mathematical and computer modeling" 52 (2010),797-801.

[19] *I. Abu-Irwaq, I. Nuseir and A. Bataihah*, Common Fixed Point Theorems in G-metric Spaces with Ω -distance, *Journal of Mathematical Analysis*, Vol. 8 no. 1 (2017), 120-129.

[20] *E. Karapinar and R. P. Agarwal*, further fixed point results on G-metric spaces, *Fixed Point Theory and Applications*, (2013) 2013/1/154.

[21] *T. Kamran, M. Postolache, M.U. Ali and Q. Kiran*, Feng and Liu type F-contraction in b-metric spaces with application to integral equations, *J. Math. Anal.* 7(2016), No. 5, 18-27.

[22] *W. Shatanawi and M. Postolache*, Some Fixed-Point Results for a G-Weak Contraction in G-Metric Spaces, *Abstract and Applied Analysis* Vol. (2012), Article ID 815870, 19 pages.

[23] *W. Shatanawi, G. Maniu, A. Bataihah and F. Bani Ahmad*, Common Fixed Points for Mappings of Cyclic Form Satisfying Linear Contractive Conditions with Omega-Distance, *U.P.B. Sci. Bull., Series A*, Vol. 79, (2017) no. 2,

[24] *Z. Mustafa and B. Sims*, Fixed Point Theorems for contractive Mappings in Complete G-Metric Spaces, *Fixed Point Theory Appl.*, Hindawi Publishing Corporation, (2009), ID 917175, 10 pages.

[25] *W. Shatanawi and M. Postolache*, Common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces, *Fixed Point Theory and Applications*, (2013), 2013 :60.

[26] *W. Shatanawi*, Some fixed point theorems in ordered G-metric spaces and applications, *Fixed Point Theory and Applications*, vol. 2011, Article ID 126205, (2011), 11 pages.

[27] *W. Shatanawi*, fixed point theory for contractive mappings satisfying Φ -maps in G-metric spaces, *Fixed Point Theory and Applications*, vol. 2010, (2010), Article ID 181650, 9 pages.

[28] *N. Bilgili and E. Karapinar*, Cyclic contractions via auxiliary functions on G-metric spaces, *Fixed Point Theory and Applications*, vol. 2013, (2013), 49.

[29] *W. Shatanawi and A. Pitea*, fixed and coupled fixed point theorems of omega distance for nonlinear contraction, *Fixed Point Theory and Applications*, (2013), 2013/1/275.

[30] *W. Shatanawi, K. Abodayeh and A. Bataihah*, Fixed point theorem through Ω -distance of Suzuki type contraction condition, *GU J Sci*, (2016), 29(1):129-133 .

[31] *L. Gholizadeh* , A fixed point theorem in generalized ordered metric spaces with application, *J. Nonlinear Sci. Appl.* 6 ,(2013), 244-251

[32] *W. Shatanawi, A. Bataihah and A. Pitea*, Fixed and common fixed point results for cyclic mappings of Ω -distance, *J. Nonlinear Sci. Appl.* 9 (2016), 727-735.

[33] *K. Abodayeh, W. Shatanawi, A. Bataihah and A.H. Ansari*, Some Fixed Point and Common Fixed Point Results Through Ω -Distance Under Nonlinear Contractions, *GU J Sci* , 30(1),(2017), 293-302.

[34] *N. Bilgili, and E. Karapinar*, Cyclic contractions via auxiliary functions on G-metric spaces, *Fixed Point Theory Appl.*, (2013), 2013:49.