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QUANTIZATION ERRORS IN SAMPLED-DATA SYSTEMS
WITH BACKSTEPPING CONTROLLERS

Valentin TANASA', Dorothée NORMAND-CYROT?, Dumitru POPESCU?

The present article deals with the problem of evaluating the effects of
quantization on a nonlinear sampled-data control system. The control strategy is
based on a suitable digital design of "backstepping™ type controllers and it was
proposed in a previous article. The advantage of this design is that it preserves,
under sampling, the stabilizing performances imposed in the continuous-time
design. The control solution comprises heavily nonlinear expressions and to study
the effects of quantization is strongly requested. This work captures the
contributions of the sampling period, of the degree of controllers’ approximations
and of the numerical precision in the performance of a sampled-data controller.

Keywords: digital backstepping control, quantization, nonlinear and sampled-
data systems.

1. Introduction

Nowadays, most of the modern solutions adopted in the process control
are based on digital control schemes. Many solutions exist for designing suitable
digital controllers for linear systems [1] which are not the case for nonlinear
systems. In a sampled-data nonlinear context® there are common three approaches
(see the references therein [2]). Because exact discretization is not always
available, a first approach is based on the approximated discrete-time models
under which digital controllers are derived. The results obtained in this case are
rather local and assure practical stabilization [3]. A second approach, which is the
most used tool nowadays, is represented by the emulation of continuous-time
controllers. In this case the control design is carried out in continuous-time
domain and the controller is implemented digitally by means of sampling and
holding devices. Emulation is not the best solution, since it does not take into
account the sampling period, and it recovers the continuous-time properties in the
case of fast sampling. A third approach, which is here used, proposes a digital
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controller exploiting the sampled-data dynamics of the plant. In this approach
better stabilizing performances can be achieved not only under the condition of
fast sampling.

The attention is restricted in this paper to a particular stabilizing procedure
backstepping for systems admitting strict-feedback forms. The backstepping
control strategy introduced in [4] is widely developed in various contexts and it is
an acknowledged powerful stabilizing procedure for nonlinear continuous-time
dynamics.

In a recent work [5], a digital version was proposed for improving — in
particular with respect to the admissible sampling period- the performance of its
usual implementation through emulation. The admissible sampling period denotes
the time over which the control can be kept constant without damaging the
stabilizing objective. Such an approach is inspired from [6],[7], where digital
redesign methods are developed for finding piecewise constant controllers which
match - at the sampling instants - a suitably chosen target behavior associated
with the continuous-time closed loop dynamics. In this way, the digital solutions
are described by their series expansions in powers of the sampling period. In
practice, approximate solutions referring to the degree of the polynomial
truncation, are implemented. This approach has been developed on various
academic examples and tested on experimental platforms as in [8].

When considering the implementation of these digital controllers others
issues arise due to the finite number representation of the controller. The
quantization error affects the performances of the control law and a close attention
should be given.

The object of this work is to study the effects of the quantization on a
sampled-data nonlinear system, with a digital controller issued from a
backstepping procedure. This study captions the contributions of the sampling
period, of the degree of the controller’s approximations and of the numerical
precision in the performance of the sampled-data controller.

The paper is organized as follows: section 2 recalls the underlying theory
of the continuous-time and sampled-data backstepping designs; an analysis of
quantization errors based on the literature survey for linear and nonlinear systems
is given in section 3. An analysis of the e ects of the quantization errors when
employing the digital solution proposed is given in 3.3.

2. Controller design

In this section the results on the backstepping controller design are
recalled from [5, 8].

2.1. Mathematical notations and main assumptions. Through the paper,
maps and vector fields are assumed smooth (i.e. infinitely differentiable of class
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C™). This condition can be relaxed when one considers practical situations, where
approximated solutions are given. L, denotes the Lie derivative operator as

- 0

L, = Z f; ()8_ , associated with a vector field f , and e"' or simply denoted e

i1 Xi
Li

is the Lie series exponential operator associated to f , i.e. e =1+ Z—;, “(X)
i1 I

or “|,” denotes the evaluation at a point X of a generic map. Given two vector

fields f,gonR", then the Lie bracket 1S defined as
ad, =[f,g]=[L;,L;]=L; oL, —L,oL;. By abuse of language, we will drop

fog
the composition sign as L L is the same withL oL, . For any smooth real valued

2

functionh, the following result holdse'h(x)=h(e’(x)). The evaluation of a
function at time t =ko indicated by “|_,; ”or is it omitted, when it is obvious
from the context.

A positive function o is called class K if it is continuous, strictly
increasing and zero at zero. If it is unbounded then it is of class K .

A positive function £ is called class KL if it is continuous and if for each
s fixed the map A(r,s) belongs to class K with respect to r and, for each r fixed,
the map A(r,s) is decreasing with respect to S and S(r,s) > Oasr —> 0.

A function Q(x, ), with & <1 is of P order ind, e.g.O(5"), if whenever
Q is defined then it can be written as Q(X,0) =0 P6(X,5) and there is a function
w € K such that for each A > Othere exists 5 >0 such that

|X| <Aand § <8 implies ‘Q(X,é')‘ < w(]x ), where || represents any norm in R".

2.2. Continuous-time backstepping design. Given a continuous-time
dynamics in strict-feedback form

7(t)= )+ 9(n(t)k 0
&(t)= £, (7(t).£@)+ 9. (n(t), (), (t) 2)

where the states nand Eare in R" and R™respectively and the control vector

u.eR"; f,g,f,,g, are vector fields of appropriate dimensions assumed to be

s la»
smooth and complete. Analogously, all the functions are assumed to be smooth.
The following result recalls the backstepping approach.
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Proposition 2.1. [9] Continuous-time backstepping - Consider the system (1)-(2),
and assume the existence of ¢(n) with ¢(0)=0 and W(n) a Lyapunov function
such that

S 1)+ olnln) < 0.vm <R" o) ®
Then, if g, (;7,&) is invertible for all (17,£), the state-feedback control law
0.0 0,08) [ #)- 2 alr)- ,01.6)+ “

with &(n)z%(f(nﬁ 9(n)¢), andvan external input, asymptotically stabilizes

the origin of (1)-(2), with Lyapunov function
1 5
V(7.) =W .)+ 5 (£~ o)) ®
In fact, setting the output errory =& — (/)(77), (1)-(2) can be rewritten as an

y -error dynamics:
7(t)= T ((t))+ g(r(®)Xy(t) + (7))
oW (6)
o)==, 9l)+v (7)

The damping is improved by setting v=-K y with K, >0and also u,
provides passivity of the link y/v.

Following [10, Th. 4.1], the asymptotic stabilization of the origin allow us
to characterize the Lyapunov evolution V for the continuous-time dynamics as
follows.

Proposition 2.2. Given the dynamics (6)-(7), with v =—K ywhich asymptotically

(globally) stabilizes the origin with a Lyapunov function V candidate (5) then,
there existK (K, ) functions a,, e, and a, such that the following conditions hold:

o, (X)) <V (x)< @, (x) )
V(x) < —a (x| )
for all t>0, vxeDand x™ =[;",y"]'. If D=R™"then the conditions hold

globally.
It is well known that the passivity and consequently the stabilizing
performances are lost under sampling when setting the controller u_constant over

time intervals of length & > 0 since the negativity of V is no longer assured. Let
us recall the steps of the digital design strategy proposed in [5].
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2.3. Digital backstepping redesign. Settingx' = [nT , yT]T
transformed system (6)-(7) can be rewritten in a general form called input-affine

representation:
x(t)= £, (x)+ g, (), (10)
with
_[fG)+at)ol)+y)] [0
fC(X)_[ faln.y+4)-9 } o )_[ga(myw)}

Given a finite time interval lengthT", let J (O,T *] be the sampling period and
assume U, (t)=u, constant over each interval of length J&. Arguing so, the
sampled-data dynamics equivalent to (6)-(7) is described by

Xy = F(g(xkauk)zeg(fﬁuk%)xk (b

L
where e‘s(f°+”kg°)=l+z%. Under u_as in (4), integrating the Lyapunov

i1
function V(77, §)over intervals of length &, one gets
(k+1)5

V(x, (t=(k +1)5))-V(x, ([t =k5)) IV (12)

which is referred to as the target difference; X, 1ndlcates the closed loop conti-
nuous-time X -dynamics under U, .

On the other hand, the first order discrete-time difference V(x,.,)-V (X, )
associated with the sampled dynamics (11) for a given ¢ and under u, constant,
can be computed as

V(%) =V (x )=V (00, )V (x,) (13)

The sampled-data redesign strategy consists in designing the constant
control law U, to match, at the sampled-instants, the target difference (12); i.e. to

satisfy the equality of series
(k+1)s

V(ea‘(fﬁgcuk)xk) J'V (14)

when setting X, = X, (t = ké‘). Approx1mated solutions correspond to satisfy the
equality up to any desired order in ¢ . This is resumed in the next Theorem.

Theorem 2.1. [5] Consider the system (1)-(2), and suppose the existence of a
continuous-time controller uc(t)designed as in (4), such that condition (3) is

satisfied. Then, there exists T* >0 and a piecewise constant controller u, =ug
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which matches the Lyapunov function evolution at the sampling instants and
guarantees asymptotic stability of the sampled-data equivalent system (11) for any
sampling period 5 <T".

The proof is given in the referred papers. The solution is described by a
series expansion in o :

15
U, =Uy _ud0+z Ugi (15)

il

with the first terms

Ugo :uc|t:k§

(16)

. ou, U,
Ug = Ug|ies Za—(f +g§)|t:k5+¥(fa+gauc)|t:k5 (17)
Ugo :Uc|t:ko' +u;] ( —Lg Ly )‘/ /L V (%) (18)

Remark. We note that L, V ()% 0 by construction. A complete solution exists in
the form (15); the higher order terms can be iteratively computed, details are
given in [5].

For practical applications approximated controllers are computed. Let us
consider that a P order controller means, in the subsequents sections, a truncation
of the in_nite series (15) in the power p of 5 :

Uy —Ud _ud0+z ' Ug

The stability performance of the sampled data dynamlcs with a P order controller
is captured by the next proposition by means of Lyapunov functions.

Proposition 2.3. [9] Given the dynamics (10), there exists T,” > 0 such that the P -
order approximated controller computed according to Theorem 2.1 satisfies the
following conditions for any & < T, and x, € D

al(IXkDSV(Xk)S az(lxk|) (20)
V(% )=V (%) < =5, (X)) + o(5™) 21)
under the assumption x, =x_(t =kdJ).

The complete proof of this proposition is given in [9]. The proof underlines on the
idea that there exists a discrete-time equivalent of the continuous-time dynamics
(6)-(7) which preserves the same evolutions at each sampling instant. The
discrete-time dynamics is described by infinite series in 6 and its convergence to

(19)

the continuous-time solution is assured only foro < Tl*. Under the assumption that

there exist no finite escape time of the solutions of the sampled-data dynamics
then the stability analysis can be carried out at discrete-time instants only.
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Then the conditions (8)-(9) are evaluated in a discrete-time context so
getting the new conditions for a p approximated controller (19)-(20) under the
assumption of the same initial conditions of the continuous and sampled-data
dynamics. Studding these conditions it is clear that the exact solution provided by
Theorem 2.1 provides the same Lyapunov evolution at the sampling instants as
the continuous-time solution, and hence the same asymptotic stabilization
property. If in the continuous-time case the stabilization is globally, the digital

solution holds globally for any x, e R™™and any 5§ <T,".

In the presence of controller approximations, the Lyapunov stability
depends on terms parameterized by higher powers of the sampling periodd . In
this case it cannot be guaranteed that the Lyapunov difference (20) remains

negative for all & <T, and allx, € R™". The stabilization properties of the

sampled-data scheme can be ensured only if the terms in O(é' P2 )do not influence
the negativity of the right hand term. To reduce the influence of the terms
0(5 P”) one can either reduce the sampling period or to increase the order P . It is

clear that the sampling period length and the initial condition will directly
influence the performances. The Lyapunov difference may also becomes equal to
zero under digital feedback. In such a case, one refers to practical stabilization [3],
as the trajectories remain bounded near origin.

3. Analysis of quantization errors in digital control systems

A significant number of papers deals with the evaluation of the
quantization error contributions in digital linear systems and fewer dedicate this
problem to the nonlinear case. In the next lines some conclusions about
quantizations of linear controllers are drawn, based on the literature survey.

3.1. Linear system case. Earlier studies on quantizations of linear sampled-data
systems are given in [11], [12] or [13]. Based on these works, in [14], there are
summarized 3 models that can be used to analyze the effects of the roundoff error.
The first one, which is due to Bertram [11] is known as the worst-case error
bound. In this analysis, the most pessimistic case is considered when the roundoff
errors occur in a way to cause maximum harm. The Bertram's worst-case bound
can be used to state that the output error will not grow beyond this bound. Another
conclusion given is that if the linear system is stable then the system with
quantization is also stable.

Another model used is the steady-state worst case. In this approach the analysis is
carried out when the system is in steady state. This approach evaluates how large
the errors of the steady-states are as a result of the roundoff. In this case, the
output error bound is depending on g/2 multiplied by the static gain of the linear
system (where  is the roundoff error of the quantizer).
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However, the previous models give simpler forms but are often
excessively pessimistic. A third solution is to employ a stochastic analysis. The
basic idea is that the quantization error is a signal that can be modeled as a white
random signal with a probability function uniformly distributed over the range of
quantization. Then by applying the stochastic procedure some estimates of the
errors on a linear system can be expressed. Another aspect studied, is the
contribution of the quantization of the controller parameters in the digital devices.
The usual approach that can be used for analyzing the effects of coefficient
quantization is referred to as the coefficient sensitivity analysis. The main idea is
to compare the response differences (called variations) of the ideal system with
the one with quantized coefficients. The evaluations of these responses become
difficult for higher order linear controllers and the only solution is the use of
simulation tools.

In the last decade the interest for sampled-data systems with quantizers has
been renewed due to the success of networked control systems (see [15]). But all
these works still consider the linear time characterization of the plants. In this
context, new solutions have been proposed by employing quantizers with variable
precision which are adapted accordingly to the quantized measurements. In this
way better stabilization properties can be achieved.

In the end of this paragraph let us summarize some conclusions about
quantization effects on linear digital controllers.

e The amount of the error introduced by quantization may depend on the
choice of the sampling rate (especially when discretizing continuous-time
controllers), [14], on the type of the system, and on the form of the controller [16];

e Due to finite word length in the controller there are met limit cycles
(sustained oscillations) even in the absence of any applied input; these limit cycles
exist in fixed-point digital controllers but can be ignored in floating-point
architectures. To alleviate this effect a solution is to add to the input a low
amplitude oscillation known as dither.

3.2. The nonlinear case. When considering a nonlinear input-affine
system with a nonlinear state-feedback controller it is clear that most of the
methods recalled for the linear case are not suitable to be used since the
superposition principle do not apply.

A qualitative and singular work concerning the stability of nonlinear
sampled-data systems with quantization is conducted in [17]. Instead of the fact
that the nonlinear system provided is a simpler version of the standard input-affine
case and also the fact that a linear controller is considered, this represents a first
attempt concerning the stabilization properties of such systems.

The results obtained there state that if the linear version of the sampled-
data system, without quantization, is asymptotically stable then the nonlinear
sampled-data system with quantization is uniformly ultimately bounded. The
bound of the solutions can be made as small as desired by making the quantization
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size sufficiently small. There have not yet been formulated the bounds of a
quantized systems with nonlinear controllers. An idea is to consider that the
quantizations act as a perturbation on the measurements used in the controller
computations. If one considers the case of a state-feedback controller, constant on
time-intervals of length &, then the perturbed controller can be also expressed as
a series expansion around the real state measurements as:

1 22
U (6 + )=l )+ 6,0, 06, )+ 5 2 Hy (0 Je! 22

where D, (x, )= { u a—u}

— is the gradient of U along the state directions,
oX, OX

N lt=ks

and H(x, )is the Hessian matrix of u. It is clear that when dealing with linear
state feedback controllers the D, (x, ) is a scalar which amplifies the quantization
error ¢, . In the case of nonlinear controllers the series expression order (21) is

equal to the highest power of the states and a discussion about the quantization
becomes intractable. It is clear that if one considers the quantization error as a
perturbation, the difficult part is to estimate its bound since it depends on the state
variables. In the case of perturbed nonlinear systems, many results do exist for
continuous or discrete-time systems which underlie on the level sets of suitable
Lyapunov functions or in the case of sampling and hold devices, the robustness of
the perturbed controller is often analyzed with the help of the notion of input-to-
state stability. When the perturbation acts in the inputs measurements a more
general result is more tedious to be stated. A complete work that handles this
problem is [18]. Anyway, these results have not been linked with the quantization
errors due to the fact that in this case the perturbations bounds also depends on the
state variable.

Other studies give some qualitative results on the robustness of nonlinear

controls with adaptive quantizers. In this case the quantizers are adapted
accordingly in order to assure the stabilizing properties [19]. Related to the
coefficient sensitivity a study has been performed for the backstepping type
controllers in [20]. In this article the digital controller is designed by using a
different methodology based on the adaptive approach. The important conclusion
that is drawn there is that the design parameter should be chosen according to the
level of precision desired.
3.3. The case of the proposed solution. In the context of this work, the heavily
nonlinear nature of the digital controller and the lack of specific results in the
literature make difficult any theoretical analysis of the effects of the quantization.
As the digital controllers are build to satisfy specific stability properties the aim is
to estimate the effects of the quantization on the stabilization.
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We are interested next to evaluate the Lyapunov difference mismatches, at
sampling instants, between the digital solution and the solution affected by the
quantization error. Let us define the next Lyapunov difference:

Avq(xk’uk):V(Xkﬂﬂulg)_v(XkH?uk) 23)
Some computations give:
\% (Xk+1 Uy )_V (Xk+1 ’uk) = V(Xk )+ 5(Lfcv (Xk )"‘ uy L,V (Xk ))"‘ 0, (52) (24)

V (%, )+ (L, V(x)+u, Ly V(x,))+0,(52)
- S(ud —u, L, V(%) +0,(52)
with O, (5 2)including all the mismatches terms provided by the presence of the

quantization error. After some simple calculus we can state the following
proposition.

Proposition 3.1. Given the dynamics (10), there exists T,” > Osuch that the P -
order approximated controller computed according to Theorem 2.1 satisfies the
following conditions for any &<T, and x eDin the presence of the

measurement quantization errors:
aquﬂ\)SV(XE)S az(le\) (25)
V() -V (x0) <~ (¢ }+ 0, L, V (%, )+ O, (62)+ O[572) (26)
under the assumption x; = x.(t=k&)and ¢, =u(x, +&,)-u(x,).

Proof. The proof is based on the results stated in Proposition 2.3. The Lyapunov
difference of the quantized scheme can be computed from the 'ideal' one as
follows:

V(kaUl?)_V(kaul?) = Avq(xk>uk)+v(xk+l)_v(xk) (27)
< AV, (x,,u, ) - 8azy (| |)+ 0(67?)
Then it follows the condition (25) from the last inequality and (23). |

In the case of the exact controller (P =1) it is clear that the stabilization property
of the sampled data dynamics cannot be guaranteed to hold asymptotically for any

5 <T, and x, € R™™. The presence of the quantized terms 0, (8)makes difficult

any general statement of the type of the stability. Depending on the nonlinearities
and for certain values of J the term a3(lxk|) is sufficiently large to dominate the

terms inO, (5). But when X, converge to the origin, the size of a3(lxk|) is

decreasing and the negativity of (25) can be affected. The previous observation
suggests that in the presence of quantizations, the expected stability property will
refer to practical stability [3]. This means that the states ultimately enter a ball
with a specific radius that could not be estimated. By increasing the precision this
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ball can be reduced to lower radius. The sign of the terms included in O, (8)can

vary for each X, and for eachd .
The same conclusions can be drawn for the approximated controller where
also the contributions of the terms included in O&P”) have to be taken into

account. What is interesting is that the quantization terms can either improve the
negativity of the Lyapunov difference (20) or either destroy; this fact is depending

on the sign of the terms in O (6)and on the size of the terms in 0(5 P2 )

Another interesting fact, is that in the Lyapunov difference (25) the
quantization error in ¢ is present if L,V (x,)# 0 for allx, # 0. This condition is

assumed from the beginning, when the strict-feedback form is considered. This
condition reveals that the relative degree index in respect to V is equal to 1. We
can think for other type of systems, when this index is greater than 1. In this case
the Lyapunov difference is less depending on the quantization error (in fact is
depending on higher powers of o ).

4. Conclusions

In this article the quantization effects have been discussed on a digital
backstepping design that was proposed in a previous article. A survey on the
actual realizations on this topic has been done. An analysis was conducted on the
evaluation of the Lyapunov difference that can reveal some of the stabilizing
properties of the control solutions. The conclusions that can be draw are:

e stabilization properties, in terms of Lyapunov evolutions, are affected by
the presence of quantization errors; It is impossible, for a general case, to establish
if these effects ameliorate or by contrary destroy the stabilizing properties
imposed by the ideal digital solution (without quantizations).

e There can be given cases when the performances of an approximated P
controller are improved by the presence of quantization errors. For an exact
controller, the asymptotic stabilization in the presence of quantization cannot be
guaranteed.

e By increasing the static gain of the controllers, it does not generally imply
that the quantizations errors increase also as it is the case for linear controllers;

¢ By increasing the order of the approximated controller, and with this the
complexity and the number of computations, this not imply that the quantization
error is increasing accordingly.

o [t is clear that the means of simulations tools are of great importance in
establishing the proper values of the sampling period and of the suitable
parameters of the control laws. In conclusion, the proposed digital design is robust
in the presence of quantization that occurs in the state variable measurements.
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