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QUANTIZATION ERRORS IN SAMPLED-DATA SYSTEMS 
WITH BACKSTEPPING CONTROLLERS 

Valentin TANASA1, Dorothée NORMAND-CYROT2, Dumitru  POPESCU3 

The present article deals with the problem of evaluating the effects of 
quantization on a nonlinear sampled-data control system. The control strategy is 
based on a suitable digital design of "backstepping" type controllers and it was 
proposed in a previous article. The advantage of this design is that it preserves, 
under sampling, the stabilizing performances imposed in the continuous-time 
design. The control solution comprises heavily nonlinear expressions and to study 
the effects of quantization is strongly requested. This work captures the 
contributions of the sampling period, of the degree of controllers’ approximations 
and of the numerical precision in the performance of a sampled-data controller.  

Keywords: digital backstepping control, quantization, nonlinear and sampled-
data systems. 

1. Introduction 

Nowadays, most of the modern solutions adopted in the process control 
are based on digital control schemes. Many solutions exist for designing suitable 
digital controllers for linear systems [1] which are not the case for nonlinear 
systems. In a sampled-data nonlinear context4 there are common three approaches 
(see the references therein [2]). Because exact discretization is not always 
available, a first approach is based on the approximated discrete-time models 
under which digital controllers are derived. The results obtained in this case are 
rather local and assure practical stabilization [3]. A second approach, which is the 
most used tool nowadays, is represented by the emulation of continuous-time 
controllers. In this case the control design is carried out in continuous-time 
domain and the controller is implemented digitally by means of sampling and 
holding devices. Emulation is not the best solution, since it does not take into 
account the sampling period, and it recovers the continuous-time properties in the 
case of fast sampling. A third approach, which is here used, proposes a digital 
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controller exploiting the sampled-data dynamics of the plant. In this approach 
better stabilizing performances can be achieved not only under the condition of 
fast sampling. 

The attention is restricted in this paper to a particular stabilizing procedure 
backstepping for systems admitting strict-feedback forms. The backstepping 
control strategy introduced in [4] is widely developed in various contexts and it is 
an acknowledged powerful stabilizing procedure for nonlinear continuous-time 
dynamics. 

In a recent work [5], a digital version was proposed for improving – in 
particular with respect to the admissible sampling period- the performance of its 
usual implementation through emulation. The admissible sampling period denotes 
the time over which the control can be kept constant without damaging the 
stabilizing objective. Such an approach is inspired from [6],[7], where digital 
redesign methods are developed for  finding piecewise constant controllers which 
match - at the sampling instants - a suitably chosen target behavior associated 
with the continuous-time closed loop dynamics. In this way, the digital solutions 
are described by their series expansions in powers of the sampling period. In 
practice, approximate solutions referring to the degree of the polynomial 
truncation, are implemented. This approach has been developed on various 
academic examples and tested on experimental platforms as in [8]. 

When considering the implementation of these digital controllers others 
issues arise due to the finite number representation of the controller. The 
quantization error affects the performances of the control law and a close attention 
should be given. 

The object of this work is to study the effects of the quantization on a 
sampled-data nonlinear system, with a digital controller issued from a 
backstepping procedure. This study captions the contributions of the sampling 
period, of the degree of the controller’s approximations and of the numerical 
precision in the performance of the sampled-data controller. 

 
The paper is organized as follows: section 2 recalls the underlying theory 

of the continuous-time and sampled-data backstepping designs; an analysis of 
quantization errors based on the literature survey for linear and nonlinear systems 
is given in section 3. An analysis of the e_ects of the quantization errors when 
employing the digital solution proposed is given in 3.3. 

2. Controller design 

In this section the results on the backstepping controller design are 
recalled from [5, 8]. 

2.1. Mathematical notations and main assumptions. Through the paper, 
maps and vector fields are assumed smooth (i.e. infinitely differentiable of class
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∞C ). This condition can be relaxed when one considers practical situations, where 
approximated solutions are given. fL denotes the Lie derivative operator as 
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or “ x| ” denotes the evaluation at a point x  of a generic map. Given two vector 
fields gf , on nR , then the Lie bracket is defined as

fggfgffg LLLLLLgfad −=== ],[],[ . By abuse of language, we will drop 
the composition sign as gf LL is the same with gf LL . For any smooth real valued 

function h , the following result holds ))(()( xehxhe ff = . The evaluation of a 
function at time δkt =  indicated by “ δkt=| ”or is it omitted, when it is obvious 
from the context.  

A positive function α  is called class K  if it is continuous, strictly 
increasing and zero at zero. If it is unbounded then it is of class ∞K . 

A positive function β  is called class KL if it is continuous and if for each 
s fixed the map ),( srβ belongs to class K with respect to r and, for each r fixed, 
the map ),( srβ is decreasing with respect to s  and 0),( →srβ as 0→r . 

A function ),( δxQ , with 1<δ  is of P order inδ , e.g. )( PO δ , if whenever 
Q  is defined then it can be written as ),(~),( δδδ xQxQ P=  and there is a function 

∞∈Kψ  such that for each 0>Δ there exists 0* >δ  such that  

Δ≤x and *δδ <  implies ( )xxQ ψδ ≤),(~ , where ⋅ represents any norm in nR . 

 
2.2. Continuous-time backstepping design. Given a continuous-time 

dynamics in strict-feedback form 
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where the states η and ξ are in nR  and mR respectively and the control vector 
n

c Ru ∈ ; aa gfgf ,,,  are vector fields of appropriate dimensions assumed to be 
smooth and complete. Analogously, all the functions are assumed to be smooth. 
The following result recalls the backstepping approach. 
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Proposition 2.1. [9] Continuous-time backstepping - Consider the system (1)-(2), 
and assume the existence of )(ηφ  with 0)0( =φ  and ( )ηW  a Lyapunov function 
such that 
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the origin of (1)-(2), with Lyapunov function 
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In fact, setting the output error ( )ηϕξ −=y , (1)-(2) can be rewritten as an 

y -error dynamics: 
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The damping is improved by setting yKv y−=  with 0>yK and also cu  
provides passivity of the link vy / .  

Following [10, Th. 4.1], the asymptotic stabilization of the origin allow us 
to characterize the Lyapunov evolution V  for the continuous-time dynamics as 
follows. 
Proposition 2.2. Given the dynamics (6)-(7), with yKv y−= which asymptotically 
(globally) stabilizes the origin with a Lyapunov function V candidate (5) then, 
there exist K ( )∞K  functions 21,αα and 3α such that the following conditions hold: 

for all 0>t , Dx∈∀ and [ ]TTTT yx ,η= . If mnRD += then the conditions hold 
globally.  

It is well known that the passivity and consequently the stabilizing 
performances are lost under sampling when setting the controller cu constant over 
time intervals of length 0>δ since the negativity of V  is no longer assured. Let 
us recall the steps of the digital design strategy proposed in [5]. 
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2.3. Digital backstepping redesign. Setting [ ]TTTT yx ,η=  , the 
transformed system (6)-(7) can be rewritten in a general form called input-affine 
representation: 

( ) ( ) ( ) ccc uxgxftx +=  (10)
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Given a finite time interval length *T , let ( ]*,0 T∈δ  be the sampling period and 
assume kc utu =)( constant over each interval of length δ . Arguing so, the 
sampled-data dynamics equivalent to (6)-(7) is described by 
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which is referred to as the target difference; cx indicates the closed loop conti-
nuous-time x -dynamics under cu .  

On the other hand, the first order discrete-time difference ( ) ( )kk xVxV −+1

associated with the sampled dynamics (11) for a given δ  and under ku  constant, 
can be computed as 
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The sampled-data redesign strategy consists in designing the constant 

control law ku to match, at the sampled-instants, the target difference (12); i.e. to 
satisfy the equality of series 
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when setting ( )δktxx ck == . Approximated solutions correspond to satisfy the 
equality up to any desired order in δ . This is resumed in the next Theorem. 
 
Theorem 2.1. [5] Consider the system (1)-(2), and suppose the existence of a 
continuous-time controller ( )tuc designed as in (4), such that condition (3) is 
satisfied. Then, there exists 0* >T  and a piecewise constant controller δ

dk uu =
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which matches the Lyapunov function evolution at the sampling instants and 
guarantees asymptotic stability of the sampled-data equivalent system (11) for any 
sampling period *T<δ . 

The proof is given in the referred papers. The solution is described by a 
series expansion in δ : 
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Remark. We note that ( ) 0≠kg xVL
c

by construction. A complete solution exists in 
the form (15); the higher order terms can be iteratively computed, details are 
given in [5]. 

For practical applications approximated controllers are computed. Let us 
consider that a P  order controller means, in the subsequents sections, a truncation 
of the in_nite series (15) in the power p of δ : 
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The stability performance of the sampled-data dynamics with a P  order controller 
is captured by the next proposition by means of Lyapunov functions. 
Proposition 2.3. [9] Given the dynamics (10), there exists 0*

1 >T such that the P -
order approximated controller computed according to Theorem 2.1 satisfies the 
following conditions for any *

1T<δ and Dxk ∈  

under the assumption ( )δktxx ck == . 
The complete proof of this proposition is given in [9]. The proof underlines on the 
idea that there exists a discrete-time equivalent of the continuous-time dynamics 
(6)-(7) which preserves the same evolutions at each sampling instant. The 
discrete-time dynamics is described by infinite series in δ  and its convergence to 
the continuous-time solution is assured only for *

1T<δ . Under the assumption that 
there exist no finite escape time of the solutions of the sampled-data dynamics 
then the stability analysis can be carried out at discrete-time instants only. 
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 Then the conditions (8)-(9) are evaluated in a discrete-time context so 
getting the new conditions for a p approximated controller (19)-(20) under the 
assumption of the same initial conditions of the continuous and sampled-data 
dynamics. Studding these conditions it is clear that the exact solution provided by 
Theorem 2.1 provides the same Lyapunov evolution at the sampling instants as 
the continuous-time solution, and hence the same asymptotic stabilization 
property. If in the continuous-time case the stabilization is globally, the digital 
solution holds globally for any mn

k Rx +∈ and any *
1T<δ . 

In the presence of controller approximations, the Lyapunov stability 
depends on terms parameterized by higher powers of the sampling periodδ . In 
this case it cannot be guaranteed that the Lyapunov difference (20) remains 
negative for all *

1T<δ and all mn
k Rx +∈ . The stabilization properties of the 

sampled-data scheme can be ensured only if the terms in ( )2+PO δ do not influence 
the negativity of the right hand term. To reduce the influence of the terms 
( )2+PO δ  one can either reduce the sampling period or to increase the order P . It is 

clear that the sampling period length and the initial condition will directly 
influence the performances. The Lyapunov difference may also becomes equal to 
zero under digital feedback. In such a case, one refers to practical stabilization [3], 
as the trajectories remain bounded near origin. 

3. Analysis of quantization errors in digital control systems 

A significant number of papers deals with the evaluation of the 
quantization error contributions in digital linear systems and fewer dedicate this 
problem to the nonlinear case. In the next lines some conclusions about 
quantizations of linear controllers are drawn, based on the literature survey. 

3.1. Linear system case. Earlier studies on quantizations of linear sampled-data 
systems are given in [11], [12] or [13]. Based on these works, in [14], there are 
summarized 3 models that can be used to analyze the effects of the roundoff error. 
The first one, which is due to Bertram [11] is known as the worst-case error 
bound. In this analysis, the most pessimistic case is considered when the roundoff 
errors occur in a way to cause maximum harm. The Bertram's worst-case bound 
can be used to state that the output error will not grow beyond this bound. Another 
conclusion given is that if the linear system is stable then the system with 
quantization is also stable.  
Another model used is the steady-state worst case. In this approach the analysis is 
carried out when the system is in steady state. This approach evaluates how large 
the errors of the steady-states are as a result of the roundoff. In this case, the 
output error bound is depending on q/2 multiplied by the static gain of the linear 
system (where q is the roundoff error of the quantizer). 
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However, the previous models give simpler forms but are often 
excessively pessimistic. A third solution is to employ a stochastic analysis. The 
basic idea is that the quantization error is a signal that can be modeled as a white 
random signal with a probability function uniformly distributed over the range of 
quantization. Then by applying the stochastic procedure some estimates of the 
errors on a linear system can be expressed. Another aspect studied, is the 
contribution of the quantization of the controller parameters in the digital devices. 
The usual approach that can be used for analyzing the effects of coefficient 
quantization is referred to as the coefficient sensitivity analysis. The main idea is 
to compare the response differences (called variations) of the ideal system with 
the one with quantized coefficients. The evaluations of these responses become 
difficult for higher order linear controllers and the only solution is the use of 
simulation tools. 

In the last decade the interest for sampled-data systems with quantizers has 
been renewed due to the success of networked control systems (see [15]). But all 
these works still consider the linear time characterization of the plants. In this 
context, new solutions have been proposed by employing quantizers with variable 
precision which are adapted accordingly to the quantized measurements. In this 
way better stabilization properties can be achieved. 

In the end of this paragraph let us summarize some conclusions about 
quantization effects on linear digital controllers. 

•  The amount of the error introduced by quantization may depend on the 
choice of the sampling rate (especially when discretizing continuous-time 
controllers), [14], on the type of the system, and on the form of the controller [16]; 

•  Due to finite word length in the controller there are met limit cycles 
(sustained oscillations) even in the absence of any applied input; these limit cycles 
exist in fixed-point digital controllers but can be ignored in floating-point 
architectures. To alleviate this effect a solution is to add to the input a low 
amplitude oscillation known as dither. 

 
3.2. The nonlinear case. When considering a nonlinear input-affine 

system with a nonlinear state-feedback controller it is clear that most of the 
methods recalled for the linear case are not suitable to be used since the 
superposition principle do not apply. 

A qualitative and singular work concerning the stability of nonlinear 
sampled-data systems with quantization is conducted in [17]. Instead of the fact 
that the nonlinear system provided is a simpler version of the standard input-affine 
case and also the fact that a linear controller is considered, this represents a first 
attempt concerning the stabilization properties of such systems. 

The results obtained there state that if the linear version of the sampled-
data system, without quantization, is asymptotically stable then the nonlinear 
sampled-data system with quantization is uniformly ultimately bounded. The 
bound of the solutions can be made as small as desired by making the quantization 
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size sufficiently small. There have not yet been formulated the bounds of a 
quantized systems with nonlinear controllers. An idea is to consider that the 
quantizations act as a perturbation on the measurements used in the controller 
computations. If one considers the case of a state-feedback controller, constant on 
time-intervals of length δ , then the perturbed controller can be also expressed as 
a series expansion around the real state measurements as: 

( ) ( ) ( ) ( ) T
kkukkukkkkk xHxDxuxu εεεε
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is the gradient of u  along the state directions, 

and ( )ku xH is the Hessian matrix of u . It is clear that when dealing with linear 
state feedback controllers the ( )ku xD  is a scalar which amplifies the quantization 
error kε . In the case of nonlinear controllers the series expression order (21) is 
equal to the highest power of the states and a discussion about the quantization 
becomes intractable. It is clear that if one considers the quantization error as a 
perturbation, the difficult part is to estimate its bound since it depends on the state 
variables. In the case of perturbed nonlinear systems, many results do exist for 
continuous or discrete-time systems which underlie on the level sets of suitable 
Lyapunov functions or in the case of sampling and hold devices, the robustness of 
the perturbed controller is often analyzed with the help of the notion of input-to-
state stability. When the perturbation acts in the inputs measurements a more 
general result is more tedious to be stated. A complete work that handles this 
problem is [18]. Anyway, these results have not been linked with the quantization 
errors due to the fact that in this case the perturbations bounds also depends on the 
state variable. 

Other studies give some qualitative results on the robustness of nonlinear 
controls with adaptive quantizers. In this case the quantizers are adapted 
accordingly in order to assure the stabilizing properties [19].  Related to the 
coefficient sensitivity a study has been performed for the backstepping type 
controllers in [20]. In this article the digital controller is designed by using a 
different methodology based on the adaptive approach. The important conclusion 
that is drawn there is that the design parameter should be chosen according to the 
level of precision desired.  
3.3. The case of the proposed solution. In the context of this work, the heavily 
nonlinear nature of the digital controller and the lack of specific results in the 
literature make difficult any theoretical analysis of the effects of the quantization. 
As the digital controllers are build to satisfy specific stability properties the aim is 
to estimate the effects of the quantization on the stabilization. 
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We are interested next to evaluate the Lyapunov difference mismatches, at 
sampling instants, between the digital solution and the solution affected by the 
quantization error. Let us define the next Lyapunov difference: 
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with ( )2δqO including all the mismatches terms provided by the presence of the 
quantization error. After some simple calculus we can state the following 
proposition. 
Proposition 3.1. Given the dynamics (10), there exists 0*

1 >T such that the P -
order approximated controller computed according to Theorem 2.1 satisfies the 
following conditions for any *

1T<δ and Dxk ∈ in the presence of the 
measurement quantization errors: 

under the assumption ( )δktxx c
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Proof.  The proof is based on the results stated in Proposition 2.3. The Lyapunov 
difference of the quantized scheme can be computed from the 'ideal' one as 
follows: 
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Then it follows the condition (25) from the last inequality and (23).           □ 
In the case of the exact controller ( 1=P ) it is clear that the stabilization property 
of the sampled data dynamics cannot be guaranteed to hold asymptotically for any 

*
1T<δ and mn

k Rx +∈ . The presence of the quantized terms ( )δqO makes difficult 
any general statement of the type of the stability. Depending on the nonlinearities 
and for certain values of δ  the term ( )kx3α  is sufficiently large to dominate the 

terms in ( )δqO . But when kx  converge to the origin, the size of ( )kx3α  is 
decreasing and the negativity of (25) can be affected. The previous observation 
suggests that in the presence of quantizations, the expected stability property will 
refer to practical stability [3]. This means that the states ultimately enter a ball 
with a specific radius that could not be estimated. By increasing the precision this 
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ball can be reduced to lower radius.  The sign of the terms included in ( )δqO can 
vary for each kx and for eachδ . 

The same conclusions can be drawn for the approximated controller where 
also the contributions of the terms included in ( )2+PO δ  have to be taken into 
account. What is interesting is that the quantization terms can either improve the 
negativity of the Lyapunov difference (20) or either destroy; this fact is depending 
on the sign of the terms in ( )δqO and on the size of the terms in ( )2+PO δ .  

Another interesting fact, is that in the Lyapunov difference (25) the 
quantization error in δ  is present if ( ) 0≠kg xVL

c
 for all 0≠kx . This condition is 

assumed from the beginning, when the strict-feedback form is considered. This 
condition reveals that the relative degree index in respect to V  is equal to 1. We 
can think for other type of systems, when this index is greater than 1. In this case 
the Lyapunov difference is less depending on the quantization error (in fact is 
depending on higher powers ofδ ). 

4. Conclusions 

In this article the quantization effects have been discussed on a digital 
backstepping design that was proposed in a previous article. A survey on the 
actual realizations on this topic has been done.  An analysis was conducted on the 
evaluation of the Lyapunov difference that can reveal some of the stabilizing 
properties of the control solutions. The conclusions that can be draw are: 

•  stabilization properties, in terms of Lyapunov evolutions, are affected by 
the presence of quantization errors; It is impossible, for a general case, to establish 
if these effects ameliorate or by contrary destroy the stabilizing properties 
imposed by the ideal digital solution (without quantizations). 

•  There can be given cases when the performances of an approximated P 
controller are improved by the presence of quantization errors. For an exact 
controller, the asymptotic stabilization in the presence of quantization cannot be 
guaranteed.  

•  By increasing the static gain of the controllers, it does not generally imply 
that the quantizations errors increase also as it is the case for linear controllers;  

•  By increasing the order of the approximated controller, and with this the 
complexity and the number of computations, this not imply that the quantization 
error is increasing accordingly. 

• It is clear that the means of simulations tools are of great importance in 
establishing the proper values of the sampling period and of the suitable 
parameters of the control laws. In conclusion, the proposed digital design is robust 
in the presence of quantization that occurs in the state variable measurements. 
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