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ON THE USE OF THE EM ALGORITHM
FOR TRAINING A MAP CLASSIFIER

S. OPRISESCU, V. BUZULOIU

Segmentarea imaginilor satelitare constd in doud etape: segmentarea
propriu-zisd, §i imbundtdtirea segmentarii, numitd regularizare. Ambele etape sunt
realizate utilizdnd ,, clasificatori” Bayesieni, care trebuie antrenati (parametrii care
caracterizeazd respectivele modele statistice trebuie intdi estimati). Algoritmul EM
este o tehnicd de estimare statisticd performantda in prelucrarea imaginilor
satelitare, atdt pentru zonele urbane cdt §i pentru cele rurale, daca se utilizeaza ca
modele statistice mixturile Gaussiene multidimensionale. Aceasta concluzie este
sustinutd de o analiza experimentald extinsd, folosind imagini satelitare reale.

Satellite image segmentation consists of two steps: the actual segmentation,
and the improvement of the segmented image, called regularization. Both steps are
performed by Bayesian "classifiers”, which must be trained (that is, the parameters
which characterize the corresponding statistical models must be estimated in
advance). The EM algorithm is a powerful statistical estimation technique in
satellite image analysis both for urban and rural areas, if the multivariate Gaussian
mixtures are used as statistical models. This conclusion is supported by an extended
experimental analysis using actual satellite images.

Keywords: EM algorithm, Gaussian mixtures, Bayesian segmentation.
Introduction

In image processing, the starting point is an actual image whose accuracy
can be affected by several random or deterministic factors. The goal of processing
is reaching a better fitting image with respect to its real origin. The satellite Earth
observation supplies hyper-spectral images, which can be used for map drawings,
landscape analysis, or crop supervision and, in most of the cases, the images arise
from mixed zones, including rural and urban areas. For such urban & rural zones,
the correct "reading" of the original landscape has the highest importance. Image
processing consists of two stages, the segmentation of the actual image and the
regularization of the segmented image. Both steps are performed by "classifiers",
which provide the solutions of some optimization problems. Of course, these
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classifiers use statistical models, and they must be trained (that is, the parameters
which characterize the models must be estimated in advance).

Traditionally, rural zones are modelled through 4-dimensional Gaussian
distributions, when working with hyper-spectral images (4 band records) in the
state space. Modelling the urban areas is much more difficult, as they consist of
several materials representing a large source of variability of the reflectance ([1],
[5], [11]). In a previous study ([9]) we have established the fact that, when an
urban zone will be treated as a single object, modelling it through a 4-dimensional
Gaussian mixture is well justified by the texture analysis. That is, the global
texture parameters (homogeneity, contrast, uniformity, entropy, correlation, the
Gauss-Markov entropy) are similar for the "urban spots" and the corresponding
Gaussian mixtures.

Let us denote by E = R™ the space of states corresponding to N frequency
bands. A hyper-spectral image S consisting of M pixels s can be represented as a
point in the space EY. Let us denote by Y = (Ysi,...,Ysy) the random field
associated with an image S and by y = (ys1,...,ysm) €E™ a realization of Y. Let A
be the set of the K classes which are used as labels for the pixels in S. We denote
by X = (Xsy,...,Xsm) the random field which expresses the classification process
and by x = (Xsi,...,Xsm) eAM a configuration (realization of the classification
process) of the image S. The probability distribution of Y conditioned by a
specified configuration, denoted P(Y|X=x), is given through the conditional
density f(y|X=x).

The Bayesian segmentation uses the a posteriori probability for the
configurations X, given a realization of Y in the state space,

P(X =x) f(y| X =x)

P(X=X|Y=y)=ZP(X:x).f(y|X:x)

(M

The MAP segmented image is the solution of the following optimization
problem

x" =argmax P(X =x|Y = y)=arg max{P(X=x)-f(y|X=x)} 2)

The basic hypothesis of the MAP method is the conditional independence of the
observed states:
Fr1X=2)=T1/0,1%,=x,)
seS§
In a first approximation (the segmentation process), the configurations x have
equal probabilities,
1

P(X=x)=KM
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According to these hypotheses, the MAP configuration X = (X si,...,X su) is the
solution of a local optimization problem. For each pixel s, one has to solve the
optimization problem

xg = arg max{f (vs | Xy = xp ) f (05 | X = x )} 3)

The MAP-Markov regularization is performed under the hypothesis that X
is a Markov field on S with the neighbourhood system N(S). That is, we assume
that the following conditions are satisfied:

vxeaM P(X =x)>0
vie (..M} P(X, =x, [x.)=PXs, =x; 15, te Ny (9)

where X is the (M-1)- dimensional configuration obtained after removing s;.
According to the Hamersley — Clifford theorem, the random field X is a Markov
field on S with the neighbourhood system N(S) if and only if it is a Gibbs field on
S with respect to N(S). This means that, under the Markov assumption, the
distribution P(X=x) must be a Gibbs distribution.

Let us denote by C the family of cliques corresponding to a neighbourhood
system N(S), by Uc(x) the energy of the clique c € C, and by U(x) the total energy
of a configuration x,

U(x)= 2 Uc(x)
ceC
The Gibbs field associated with a neighbourhood system N(S) is the random field
X characterized by the Gibbs distribution

P(X = x)= z! -exp(—U(x))
where Z is the normalization constant.

The MAP-Markov regularized image is the solution of the following

optimization problem
k3k

x" = arg max { exp(~U(x)):f(y] X = x)} )
Like in the segmentation stage, the solution x**=(x**s,..., x**s)\) is obtained by

solving the corresponding local optimization problems,
sk

xg =arg maxiexp(-Ulx ))f (vs | Xg = x1)..exp(~Uleg ))f (s | X = xx )} (5)

A rural zone consists of a rather small number of rural categories, such as
grain, forest, grassland, water etc. Each spot corresponding to a rural category is a
homogenous one, and it can be represented by one class (color). Therefore, a rural
area will be looked upon as a composed zone, consisting of several rural
categories. Traditionally, rural categories are modelled through 4-dimensional
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Gaussian distributions, when working with hyper-spectral images in the state
space.

The urban zones consist of several materials representing a large source of
variability of the reflectance. These materials could be typical for certain natural
landscape, which means that some urban pixels could have the same reflectance
value as the natural ones. Because of that, urban areas cannot be characterized
through only grey level information, but they should be treated as textures and
accordingly analyzed in order to discriminate between urban areas and non urban
ones. In spite of its heterogeneity, an urban zone will be treated as a single object
belonging to one and the same category, the urban category. There exist several
texture parameters, either global or local, either empirical or based on statistical
models, which allow differentiating between urban and rural. Any statistical
model for urban area (when treated as a single object) should agree with the
texture description offered by these parameters.

In [9] we have examined the possibility of modelling an urban category
through a mixture of 4-dimensional Gaussian distributions. The positive answer to
this issue has been obtained by studying the concordances of the texture
parameters for an urban category and the associated Gaussian mixture.

A texture can be defined as "an attribute representing the spatial
arrangement of gray levels of the pixels in a region" ([2]). A texture feature (or
parameter) is a value, computed from the image of an object, that quantifies some
characteristic of the gray-level variation within the object.

One of the most known texture analysis methods, gray level co-occurrence
matrix (GLCM), estimates image properties related to second-order statistics.
Based on GLCM, one calculates the following texture parameters: homogeneity,
contrast, uniformity, entropy, correlation.

The Gauss-Markov model represents another well known approach for the
characterization of textures. When considering V4 neighborhoods, the probability
distribution of the 5-dimensional vector (one pixel and its neighbors) in the state
space is a Gaussian one. The conditional distribution of the grey level of a pixel,
given the values for its neighbors is Gaussian, one dimensional. The
corresponding conditional variance is used as a texture parameter and it is called
"temperature" ([5]). Another texture parameter, based on the Gauss-Markov
model is the G-M entropy, which is the continuous entropy of the 5-dimensional
Gaussian model.

In [9] we have established that the global texture parameters
(homogeneity, contrast, uniformity, entropy, correlation, G-M entropy) are similar
for the urban categories and the identified mixtures. This fact strongly supports
our approach of modeling an urban area through a Gaussian mixture, when it is
treated as a single object. While the variance for each pixel is the same for the real
texture and the corresponding mixture, the parameter "temperature" is smaller for
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urban textures than for Gaussian mixtures. Since the "temperature" is a local
parameter, this mismatch doesn't encroach upon our model.

For a rural & urban satellite image, we assume that (K-1) classes
correspond to some rural categories (grain, forest, grassland, water etc.), while the
last class corresponds to an urban category. Then, for any pixel s, fy|X=xi) are
some Gaussian probability densities N(4; 0;, ®;) for i=1,...,(K-1), while f{y|X=xx)
is the probability density of a Gaussian mixture with m components,

m
fOIX =xg)=> ;N4 p;.%;)

1;11 (6)

0<a; <1Vi, Y a;=1
i=l1

In order to process the actual image (through segmentation and regularization),
one has to estimate the parameters {0;, ®;, i=1,...,(K-1)} and {o, W, i, i=1,...,m}
in advance. That is, one has to train the classifier. Best training is reached when a
ground truth is available but, most often, this is not the case. Therefore, one has to
choose some "training windows" and implement some appropriate estimation
techniques. The method we discuss is the EM algorithm, which proved itself a
very reliable method, leading to accurate MAP-Markov regularized images.

1. The EM Algorithm

The formulation of the EM Algorithm in its present generality is due to
Dempster A.P., Laird N.M., Rubin D.B. ([3], [7]). The EM Algorithm is a broadly
applicable method that provides an iterative procedure for computing the
Maximum Likelihood Estimation (MLE). The observed value of the random
vector Y, denoted y, is viewed as being a vector of incomplete-data. Also, it is
regarded as an observable function of the so called complete data. The notion of
incomplete data includes the conventional sense of missing data, but it also
applies to situations where the complete data represent what would be available
from some hypothetical experiment. In the latter case, the complete data may
contain some variables that are never observable in a data sense.

On each iteration, there are two steps: The E-step consists in
manufacturing data for the complete-data problem, using the observed data set of
the incomplete-data problem and the current value of the parameter. The M-step
consists in the maximization of the log-likelihood of the complete-data problem.
In fact, the log-likelihood is replaced by its conditional expectation given the
observed data. Starting from suitable initial parameter values, the E and M steps
are repeated until convergence.
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Notation:
For the presentation of the algorithm we use the following notations:
e The unknown parameter y = (1, ..., Yq)' € Q < RY;
e The incomplete-data random vector Y, with the probability density

function g(y;y);
e For the observed y, the likelihood function L(y)=g(y;w);
e The score statistic for the incomplete-data S(y, ¥ ) = % ;

e The complete-data random vector (Y',Z")', with the probability
density function g(y, z; y);

e For specified (y,z), the likelihood function L.(y)=g.(y, z; ¥);

. L.(¥V

e The score statistic for the complete-data S.(y,z;¥ )= % ;

e The current value of the parameter \V(k), k=0,1, ....

e The conditional expectation of the complete-data log-likelihood
ol ¥ )= Eyyi (inLo¥) 1) )

The EM Algorithm

Let w'® be some initial value for y
- The (k+1)-th iteration ( k=1,2,.... ) consists of the following steps:
o TheE step
Estimate the non-observed data by taking

M= Eyw (z|y)

Calculate
Olw ™ )= £y (nL(#) | y)
o The M step
Choose \V(kﬂ) so that

olw®D w® > olw wh ) vw c

Dempster, Laird and Rubin ([3]) have proved that the incomplete-data likelihood
function L(y) is not decreased after an EM iteration, as well as the convergence
towards a stationary point.

Proposition The incomplete-data likelihood function L(y) is not decreased after
an EM iteration,

L™ )> 1p®) k=01,2,...
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Hence, the convergence must be obtained with a sequence of likelihood
values that are bounded above.

The E and M steps are alternated repeatedly until the difference L(y
L(y™) changes by an arbitrarily small amount.

The nature of the limit is described in the following propositions.

(k+1)) }

Proposition Suppose that Q(w,¢) is continuous in both y and ¢. Then all the limit
points of any sequence of EM iterates (w™); 0’0r any initial value ") are
stationary points of L(w), and the sequence (L(y" ))k converges monotonically to
some value L'=L(y"), for some stationary point y".

Proposition Suppose that the likelihood function for the incomplete data, L(y), is
unimodal, with t//* being the only stationary point and that 0Q(w,p)/ 0w is
continuous in both w and ¢. Then, any sequence of EM iterates (t//(k) i (for any
initial value W) converges to the unique maximizer w' of L(w); that is, it
converges to the unique MLE of w.

The proofs of these propositions can be found in Mc Lachlan and Krishnan ([7]).
The case of multivariate Gaussian mixtures

Let Y be a random vector with the probability density given by a mixture of m
Gaussian, N-dimensional distributions N(N; i, X;). For each component i of the
mixture, the mean vector is p; € RY, and X; is a symmetrical, positive defined
matrix, of dimension NxN.

Jo:¥) = Za 0 1, 2)

L @ 1 t -1
=Z—’exp(—5(y—m) 2 (y—m)j,
= \/(271') det2;
o; €(0,1),i=1,..,m, Z(xi =1.

The parameter, written in a vector form, is

V= (0, Oyl s Mgy Zp e Z )
We consider n independent, identical distributed random vectors, Y,...,Y,, denote
Y=(Y'....,Y.)', and denote by y = (y1',....yn")" the observed data. Then

gy¥)=11/v;%)
j=1

and, for the observed y, the likelihood function is L(y)=g(y;y).
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The missing-data are the indicator variables

L if y; arouse from f(y; u; E;)
ij = , (®)
0, otherwise
We consider the random vectors Z; =(Zj,..., ij)t, j=1,..n, Z=Z\,...7,")".
The complete-data, denoted (y',z")', are the values of the random vector (Y',Z")".
The EM Algorithm
e The initial value: \V(O)=(u1(°)t,...,um(°)t, DI L VA ,ocm(o))t
e The (k+1)-th iteration, the E-step:
3 1 1 o ¥ (¢ | k
o .exp[_z(y] A (yf‘”i())j
KT ! Y (50 e
Zai i) -expﬂ—z(yj u ey, - )j
i=1 det El()
fori=1,...,m, j=1,..,n
e The (k+1)-th iteration, the M-step:
n
ocl-(kH) ZlZZg{), i=1,..m, (10)
nio
1) __ 1 ®, i
- Zzij Y i=1,...m (11)

n
£ _ Zz(k)( ﬂz(kH)ij—ﬂi(kﬂ))/zzgk)' i=lom. (12)

j=1 j=1

The iterative process stops when
L™V ) _Lw® ) < threshold
or when

2
Hﬂ”(kﬂ) - ‘I’(k)H < threshold

Remark In the studied case, the probability density f(yv;w) is a finite linear
combination of Gaussian densities, hence it is a bounded function. It follows that
the sequence (L(l//(k) ) is bounded, hence its convergence is ensured.
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w_tre__ad¥ (_l A ]
oty $ e = )

Remark The complete-data log-likelihood function has the expression

L.(¥)= HH( (yj’”l’ ))Z

i=1 j=1
The conditional expectation of the complete-data log-likelihood,
o, p® )=Egw (lnLc( v) | y), becomes equal to the expression

& (9 -1
Z ZZ() ll’lOCi Z Zz()(ln(detZl)+O/J - ,ui)tZi (y] —,ui))— C,

i=1\ j=1 l 1j=1
where C = (1/2)nN-In(2x). We notice that O(y,y™) is a continuous function with
respect to both Vaziablegk, v and y®. This fact imelies the convergence of
(L(\y(k)))k towards L =L(y ), for some stationary point v .

Training a MAP Classifier

Training the classification system consists in the estimation of the
parameters of the involved statistical models. The estimators of the parameters for
urban areas (modelled through Gaussian mixtures) are obtained by the EM
algorithm. The estimators of the parameters for rural areas should be constructed
by direct statistical estimation, using an appropriate ground truth. When such a
ground truth is not available, an appropriate EM algorithm will be used for
estimation, on the basis of a rural composed zone.

We have considered several mixed, urban & rural hyper-spectral images,
with 4 bands, of free Internet access [12]. The parameters which characterize the
statistical models must be estimated by using some appropriate learning windows
in order to train the classification system. We have developed an algorithm for
training the classification system, by means of the EM Algorithm.

EML algorithm (Estimation-Maximization-Learning)
It estimates (learns) the parameters of an urban or rural zone, by means of
an appropriate EM algorithm
e The input image is a portion of a real, 4 bands SPOT 4 satellite image. It
consists of n pixels;
e Choose the maximal number of classes of the Gaussian mixture;
o Initialize the parameter y;
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e [teratively compute Z(k),\y(kﬂ) on using formulae (9), (10), (11) and (12)
for equal covariance matrices, =%, until

2 m 2
@D a1 3l — ] <0001
i=1

k+1)

e Output: y'

We exemplify the above algorithms on the image Fig. 1, which involves both
rural and urban areas.

1. Real satellite image (3'dlb

and)_

Fig.2. (a) Urban learning window (b) Rurlal lean'ling window

Learning the parameters for the urban area has been achieved by the EML
algorithm and eight components have been retained. The corresponding learning
window is presented in Fig. 2. (a). The Table 1 contains some of the estimated
parameters (the values i, where i is the index of the identified component, and the
mean vectors u(Bk), where k is the index of the spectral band).

Table 1
EML-Estimated Parameters for Urban Area

Comp. 0; uB1) wB2) M(B3) u(B4)
1 0.62 75.3 157.56 145.45 113.46
2 0.1035 104.87 124.23 125.5 112.52
3 0.1026 81.73 192.47 178.66 120

4 0.0411 91.7 181.48 176.38 143.98
5 0.0359 68.63 151.64 138.13 125.28
6 0.0262 83.65 190.23 161.57 121.72
7 0.0216 95.31 221.78 214.43 137.24
8 0.0075 122.34 236.97 240.93 183.95

Learning the parameters for the rural area has been achieved by the EML
algorithm applied to a composed rural image, and seven different classes have
been retained. But, as we mentioned, we don’t have a ground truth, so we cannot
make the correspondence between these classes and different crop types. The
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corresponding learning window is presented in Fig. 2. (b). The table 2 contains
the mean vectors (Bk), where k is the index of the spectral band.

Table 2
EML-Estimated Parameters for Rural Area

Classes 0(B1) 0(B2) 0(B3) 0(B4)

1 105.63 231.22 177.79 161.61
2 183.35 87.69 117.21 88.56

3 81.51 174.31 147.68 129.15
4 131.77 250.19 210.26 193.52
5 150.94 114.59 127.09 115.62
6 190.95 77.08 107.42 118.98
7 123.27 157.22 145.21 131.83

Remark In the EML algorithm, the initial value of the parameter, 1//(0), was
chosen in the most likely region of the parameter space (ai'”=1/m fori=1,...,m,
,ui(o) were chosen such that they cover the interval of grey levels (0,255), and @

was taken equal to the covariance matrix calculated for the whole actual image).

Remark The convergence of the EM algorithm was obtained in a rather small
number of steps (minimum 7 steps, maximum 100 steps).

The quality of the trained classifier was validated through the MAP
segmentation (by solving the optimization problem (3)) and the MAP-Markov
regularization (by solving the optimization problem (5)). The final image is
presented in Fig. 3.

The experiments have been performed using either the Matlab
programming environment or C++.

Conclusions

We have detailed in this paper the construction of the steps of an EM
algorithm for training the classification of both rural and urban areas in satellite
images.

In [9] we’ve established that, when an urban zone will be treated as a
single object, modeling it through Gaussian mixtures is well justified by the
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texture analysis. According to this model, the EM algorithm for a Gaussian
mixture is the natural approach for learning the parameters of an urban zone.

For a rural zone, the traditional training process requires a ground truth,
which is not available in most of the cases. We use an adapted EM algorithm for
learning the parameters of a rural zone and apply it to a representative, composed,
rural training window.

The performances of the trained classifier are fully confirmed by the MAP
segmentation and the MAP-Markov regularization of the image. On the basis of
our study, we can conclude that the EM algorithm is suitable for the training
stage. It is a powerful statistical estimation technique in image analysis, which can
be successfully used in training the classification system both for urban and rural
areas.

As a final conclusion, we consider that the use of the Gaussian mixtures in
the modeling process, the use of the EM algorithm in the training stage, and the
implementation of MAP segmentation and MAP-Markov regularization offer very
good results in the processing of mixed, rural & urban satellite images.
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