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AUTOMATIC CONTROL OF A SPACECRAFT TRANSFER 
TRAJECTORY FROM AN EARTH ORBIT TO A MOON 

ORBIT 

Florentin-Alin BUŢU1, Romulus LUNGU2 

The paper addresses a Spacecraft transfer from an elliptical orbit around the 
Earth to a circular orbit around the Moon. The geometric parameters of the transfer 
trajectory are computed, consisting of two orbital arcs, one elliptical and one 
hyperbolic. Then the state equations are set, describing the dynamics of the three 
bodies (Spacecraft, Earth and Moon) relative to the Sun. A nonlinear control law 
(orbit controller) is designed and the parameters of the reference orbit are 
computed (for each orbital arc);The MATLAB/Simulink model of the automatic 
control system is designed and with this, by numerical simulation, the transfer path 
(composed of the two orbit arcs) of the Spacecraft is plotted relative to the Earth 
and relative to the Moon, the evolution of the Keplerian parameters, the components 
of the position and velocity vector errors relative to the reference trajectory, as well 
as the components of the command vector. 

Keywords: elliptical orbit, nonlinear control, reference orbit. 

1. Introduction 

Considering that the Spacecraft (S) runs an elliptical orbit, with Earth (P) 
located in one of the ellipse foci, the S transfer over a circular orbit around the 
Moon (L) is done by traversing a trajectory composed of two orbital arcs, one 
elliptical and one hyperbolic. 

From the multitude of papers studied on this topic in order to elaborate the 
present paper, we mention mainly the following [1] - [15]. 

In this paper one defines and calculates the parameters of the two orbits of 
the two components (arcs) of the trajectory of the transfer, considered as reference 
orbits. Starting from the equations describing the dynamics of the three bodies (S, 
P and L) relative to the Sun, an automatic control structure is designed for the 
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transfer trajectory, comprising a reference trajectory modeling block; this block 
shapes successively the two reference orbits. 

The control law is obtained from the stability condition of the system 
(using a positive defined Lyapunov function). 

For the designed automatic control structure, the MATLAB/Simulink 
model is built and, by numerical simulation, the transfer trajectory of S is plotted 
relative to the Earth and the Moon, the evolution in time of the Keplerian 
parameters of the trajectory and the components of the error position and error 
velocity vectors of S relative to the reference trajectory components. 

2. Computing the transfer trajectory of the spacecraft from an orbit 
around Earth to an orbit around the Moon 

The transfer of a spacecraft S from an orbit around a planet (for example 
Earth) to an orbit around another celestial body (for example Moon) it can be 
done on an orbit modeled by various methods, from which are remembered: 
Hohman transfer, PCA (patched conic approximation), ballistic capture method 
[16].  

The PCA method approximates the transfer trajectory with two orbit arcs  
(for instance elliptical), as it results from fig. 1; 1E  represents the orbit around 
Earth, from which the transfer is made in the injection point 1S ; 2E  and 3E  are 
the orbits from the componence of the transfer trajectory; 4E  represents the orbit 
S around the Moon. The radius of the Moon sphere of influence is expressed by 
the formula [2] 
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If the injection is produced at the perigee of 1E , then 0=∆ 1V  and 
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 The eccentricity of orbit 2E  is [2] 
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where 2E  is the specific energy, and 2K - specific moment, 
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it results 98973.02 =e . 
The semi-major axis of E2 ellipse is expressed by the formula in [6], it 

results km6525942 =a . 
The norm of the position vector 1r

 (it represents the position of S) relative 
to Earth, according to fig. 1 
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Choosing grad60λ1 = , one obtains km356000≈1r . 
The angle 1ϕ  is computed with 
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with the previous given values, one obtains 1ϕ =9.26 grad. 
 

 
Fig. 1. The orbit of S and the position vectors of S, P and L 

 
In fig. 1 are represented the local horizontal axis of P (perpendicular on the 

local vertical in the point S2, which is the vector 1r
 ) and the horizontal axis of the 

Moon (perpendicular on the Moon vertical, which is the vector 2r
 ). 
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The norm of the velocity vector in the point S2 is computed with [3] 
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where KL – gravitational constant of the Moon (KL = 4902.8 km3/s2 ); one obtains  
V2 =1.276 km/s. 

The slope angle 1γ  is computed with [6] 
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where ν  is the true anomaly, 
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it results the values grad54.166=ν and grad766.801 =γ . 
The movement time between the points S1 and S2 is computed with [6] 
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where ε is the eccentric anomaly, 
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it results h752,4912 =t . 
The medium velocity of the Moon around the Earth is Vm = 1.023km/s. In 

the point S2, on the satellite is acting the velocity 2V


 and the velocity mV


 
(equivalent to fixed Moon). From the triangle of velocities, the resultant velocity 
V3 is computed. Finally the following values are obtained grad05.572 =γ , V3 = 
1.359 km/s. 

The specific energy of S is computed for the point S2 
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it results E3 = 0.84936 km2/s2. The specific moment on this orbit is 
232 cos γ= Vr3K ;    (12) 

it results K3 = 48 920 km3/s. 
With E3 the semi-major axis of E3 orbit is computed, [6] 
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one obtains km2,28863 −=a . 
The eccentricity of the orbit E3 is computed with equation [3] 
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one obtains e3 = 13.0432. The negative value of the semi-major axis (a3) and the 
higher than one value of eccentricity (e3) expresses the fact that the orbit E3 is 
hyperbolical and not elliptical. E4 is chosen as a circular orbit with 

m10113,3 7×=a . 

3. Dynamics of the three-body relative to the Sun 

The dynamics of S on its orbit around Earth is perturbed by the 
interactions generated by the other celestial bodies, mainly by the Sun and Moon, 
but also by the solar radiation pressure, Earth’s atmosphere and unequal mass 
distribution. In fig. 2 the orbit of the spacecraft is represented (satellite, rocket), 
the position vectors Sr , Pr , Lr  of the three bodies S, Earth and Moon relative to the 
Sun and the position vectors which express the position of S relative to the Moon 
( SLr ), respectively the position of Moon relative to the Earth ( LPr ). 

 
 

Fig. 2. The orbit of S and the position vectors of S, P and L 
 
The force of attraction of the body i toward the body j is expressed with 

the equation [14] 
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where 21311 skgm1067259.6 −−−⋅=χ – gravitational constant and jiij rrr 
−=  with 

ir
  and jr  - position vectors of the body i and j relative to the Sun. From this it 
results the acceleration of the body i relative to body j 
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relation which is equivalent with the state equations system  
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Customizing these relations for i = S, P, L, one obtains the following 
results, where SV , PV  and LV  are the velocities of the bodies S, P and L; 
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Sm , Pm , Lm  and m  are the masses of the Sun, Earth, Moon and spacecraft. The 
state equations that express the dynamics of S on Earth’s orbit (according to fig. 
2), with PS rrr 

−=  ; 
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with sr

  , sV  and Pr


  , PV of form (18) and (19). 

4. Automatic control of spacecraft orbit 

In the time interval in which S evolves on the elliptical orbit around the 
Earth, the position vector r  of S has the origin in the center of the Earth (P is in 
one of the ellipse foci). 

The structure of the control system for S orbit is given in fig. 3. 
The control law is of type non-linear, based on using a Lyapunov function 

of form  
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where 1k  and 2k  are positive constants. From the stability condition of the closed 
loop circuit system ( r∆ and V∆  tend simultaneously to zero), that is from the 
 

 
 

Fig. 3. The structure of automatic control system of Spacecraft orbit 
 

condition 0≤lV , the control law is obtained [13] 
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(25) 
Aa  and Ba  are perturbations, having the signification of accelerations, with rSV  

and rPV  - reference accelerations of S and P, and rSr , rPr  and rLr - position vectors 
of S, P and L relative to the Sun (see fig. 2) corresponding to the reference orbit 
around the Earth. The control law (23) assures the fulfillment of the condition 

VV ∆∆−= T
32kkVl

  . 

5. Reference orbit model 

For the computation of reference orbit, the unperturbed orbit is considered, 
defined by the Keplerian elements p and e (the movement is assumed in plane) 
with the initial position of the space vehicle at perigee.  
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The focal parameter p and the eccentricity of the elliptical orbit are 
computed from the semi-major and semi-minor axis a and b of the ellipse; 
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 The equation of the reference orbit in polar coordinates has the form: 

)cos(1 0ϕ−ϕ+
=

e
p

rr     (27) 

with ϕ - true anomaly, and the formula to compute the reference vector is [16] 
[ ] rr rr ⋅−−= T

00 0)sin()cos( ϕϕϕϕ   (28) 
For the computation of the true anomaly, the medium anomaly is 

computed first tTM )/2( π= , where T  is the revolution period (in which a full 
orbit is traveled), and t - the current time. Then the eccentric anomaly E is 
computed, numerically solving the equation MEeE =− sin through Newton 
iterative method. The angle ϕ  is given by the relation [3], [16] 



















−

+
=ϕ

e

Ee

1
2

tan)1(
arctan2     (29) 

The absolute value of satellite velocity is computed with the formula [3]  
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pK  being the gravitational constant of Earth, Pp mK χ=  , and the reference 
velocity vector of S given by [6] 

[ ] rr VT0sincos θθ=V    (31) 
with θ , expressed with formula [6], [13] 
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6. Numerical simulations 

The following values are used as initial vectors: [ 11101,460067(0) ×= rs  

]T00 m, [ 11101,46356(0) ×= rL ]T00 m, [ ]T11 001046,1(0) ×=  rP m, =(0)sV  
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[ ]T09.373920  = m/s, [ ]T09,307720(0)   VL = m/s, =(0) VP [ ]T0296800 
m/s. The command mFu T /=  ( TF - the resultant thrust force of the Spacecraft 
engines, m - mass of the spacecraft); kg109891,1 30×=Sm , kg10972,5 24×=Pm , 

221035,7 ×=Lm  and kg300=m . 
The values used for the computation of the reference orbits are: for the 

Earth orbit around the Sun m10496,1 11×=a , 0167086,0=e , 
256363004,365=T  days; for the orbit of the Moon around the Earth 

m1084748,3 8×=a , 0549006,0=e , 27.554550=T  days; for the spacecraft 
orbit around Earth m107,6 6×=a , 0=e .  

For the control of the spacecraft trajectory the system with the structure in 
fig. 3 is modeled in Matlab/Simulink, in which the reference block generates the 
corresponding arcs for the orbits E2, E3, E4. The block contains a Matlab function 
that computes the orbital state vectors (position and velocity) for the Earth, the 
Moon and the Spacecraft given the orbital parameters. 

 

 
 

Fig. 4. Spacecraft trajectory relative to the Earth   
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Fig. 5. Spacecraft trajectory relative to the Moon 
 
 

 
 

Fig. 6. Spacecraft real trajectory a reference trajectory relative to the Earth 
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In fig. 4 the spacecraft reference trajectory is presented for a transfer on an 
orbit around the Moon in the Earth centered reference frame, and in fig. 5 the 
same trajectory relative to the Moon. 

Fig. 6 represents the reference trajectory (with red line) and real trajectory 
(with blue line); the two trajectories are overlapped. 

In fig. 7 are presented the following time characteristics: a) the time 
evolution of some of the Keplerian parameters; b) the components of vector r∆ ; 
c) the components of vector V∆ ; d) the components of the command vector u. 
The moment of time when the transfer maneuver begins (the spacecraft is in S1) is 
marked as t1. The representation of the Keplerian parameters is done relative to the 
central body: Earth, before reaching S2 and Moon, after S2 point when the 
spacecraft enters the Moon sphere of influence. 

   

  
Fig. 7. The evolution in time of orbital parameters (semi-major axis, semi-minor axis, eccentricity, 

focal parameter), of the position and velocity deviation ( r∆ , V∆ ) and of the command u 
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7. Conclusions 

A nonlinear control system is designed for the transfer trajectory of a 
spacecraft (S) from an elliptical orbit around the Earth to a circular orbit around 
the Moon, starting from the dynamics equations of the three celestial bodies (S, P, 
L) relative to the Sun. The orbital parameters are computed for each of the two 
orbit arcs ( 2E  and 3E ) which compose the reference transfer trajectory. The 
Matlab/Simulink model of the control system for the transfer trajectory is 
designed and with this are plotted the transfer trajectory of S relative to Earth and 
to Moon, the time evolution of the Keplerian parameters for the transfer 
trajectory, the components of position and velocity vector errors of S relative to 
the reference trajectory components, and also the components of the command 
vectors. The time intervals in which the two orbit arcs are traveled are delimited 
( 12t  for the elliptical orbit 2E , between S1 and S2, and 23t  for the hyperbolic 3E , 
between S2 and S3). 
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