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AUTOMATIC CONTROL OF A SPACECRAFT TRANSFER
TRAJECTORY FROM AN EARTH ORBIT TO A MOON
ORBIT

Florentin-Alin BUTU?, Romulus LUNGU?

The paper addresses a Spacecraft transfer from an elliptical orbit around the
Earth to a circular orbit around the Moon. The geometric parameters of the transfer
trajectory are computed, consisting of two orbital arcs, one elliptical and one
hyperbolic. Then the state equations are set, describing the dynamics of the three
bodies (Spacecraft, Earth and Moon) relative to the Sun. A nonlinear control law
(orbit controller) is designed and the parameters of the reference orbit are
computed (for each orbital arc);The MATLAB/Simulink model of the automatic
control system is designed and with this, by numerical simulation, the transfer path
(composed of the two orbit arcs) of the Spacecraft is plotted relative to the Earth
and relative to the Moon, the evolution of the Keplerian parameters, the components
of the position and velocity vector errors relative to the reference trajectory, as well
as the components of the command vector.

Keywords: elliptical orbit, nonlinear control, reference orbit.
1. Introduction

Considering that the Spacecraft (S) runs an elliptical orbit, with Earth (P)
located in one of the ellipse foci, the S transfer over a circular orbit around the
Moon (L) is done by traversing a trajectory composed of two orbital arcs, one
elliptical and one hyperbolic.

From the multitude of papers studied on this topic in order to elaborate the
present paper, we mention mainly the following [1] - [15].

In this paper one defines and calculates the parameters of the two orbits of
the two components (arcs) of the trajectory of the transfer, considered as reference
orbits. Starting from the equations describing the dynamics of the three bodies (S,
P and L) relative to the Sun, an automatic control structure is designed for the
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transfer trajectory, comprising a reference trajectory modeling block; this block
shapes successively the two reference orbits.

The control law is obtained from the stability condition of the system
(using a positive defined Lyapunov function).

For the designed automatic control structure, the MATLAB/Simulink
model is built and, by numerical simulation, the transfer trajectory of S is plotted
relative to the Earth and the Moon, the evolution in time of the Keplerian
parameters of the trajectory and the components of the error position and error
velocity vectors of S relative to the reference trajectory components.

2. Computing the transfer trajectory of the spacecraft from an orbit
around Earth to an orbit around the Moon

The transfer of a spacecraft S from an orbit around a planet (for example
Earth) to an orbit around another celestial body (for example Moon) it can be
done on an orbit modeled by various methods, from which are remembered:
Hohman transfer, PCA (patched conic approximation), ballistic capture method
[16].

The PCA method approximates the transfer trajectory with two orbit arcs
(for instance elliptical), as it results from fig. 1; E, represents the orbit around

Earth, from which the transfer is made in the injection point S,;; E, and E, are

the orbits from the componence of the transfer trajectory; E, represents the orbit
S around the Moon. The radius of the Moon sphere of influence is expressed by

the formula [2]
2/5
m
r,="rs — 1
2 LP(mP] ( )

where r, =384400km is the distance between the center of mass of P and L,

. m :
and m, and m_ - the masses of these bodies;, —=—— it results
m

r, =66183km.

If the injection is produced at the perigee of E,, then AV, =0 and
V, =V, =10.88km/s and vy,=0 (the angle between velocity vector and the normal
to vector r;; r, =6700km).

The eccentricity of orbit E, is [2]

K2
e, = [+ 26, 5 2
p

where E, is the specific energy, and K, - specific moment,
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2 K
E, :V_O__p’ K, =1V, COS Y, ©)
2 T
it results e, =0.98973.
The semi-major axis of E2 ellipse is expressed by the formula in [6], it

resultsa, = 652594 km .
The norm of the position vector r, (it represents the position of S) relative
to Earth, according to fig. 1
r = \/rfp +1) —2r,r, COSA, ; (4)
Choosing, = 60grad, one obtains r, ~ 356000 km .
The angle o, is computed with

2 2 2
r’-+r,—r r,—r,Ccosi
0, = arcos—~——L 2 _grcostP—2 7771 (5)
2rlrLP rl

with the previous given values, one obtains ¢, =9.26 grad.

Fig. 1. The orbit of S and the position vectors of S, P and L

In fig. 1 are represented the local horizontal axis of P (perpendicular on the
local vertical in the point Sz, which is the vectorr; ) and the horizontal axis of the

Moon (perpendicular on the Moon vertical, which is the vectorr, ).
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The norm of the velocity vector in the point S, is computed with [3]
2 1
V, =K |——-—], 6
- e[2-2] 0

where K. — gravitational constant of the Moon (K. = 4902.8 km®/s? ); one obtains
V2 =1.276 kml/s.
The slope angle y, is computed with [6]

e, sin

y, =arctg) —2>— |, (7)
1+e,cosv

where v is the true anomaly,

:0(1+e2)—1

V = arcos le— ; (8)
2

it results the values v =166.54 grad and y, =80.766 grad .
The movement time between the points S; and S» is computed with [6]

a -3/2
t, = (e —esin S{K_Zj : 9)

P
where ¢ is the eccentric anomaly,
e, +CoSv

€ =arcos )
l+ecosv

(10)

it results t,, =49,752h .

The medium velocity of the Moon around the Earth is Vi = 1.023km/s. In
the point Sy, on the satellite is acting the velocity \72 and the velocity \7m
(equivalent to fixed Moon). From the triangle of velocities, the resultant velocity
V3 is computed. Finally the following values are obtained y, =57.05 grad, Vs =

1.359 kml/s.
The specific energy of S is computed for the point S;

2
E, = V_3_ﬁ; (11)
2 T,
it results Es = 0.84936 km?/s?. The specific moment on this orbit is
K, =r\V,cosy,; (12)

it results Ks = 48 920 km?/s.
With E3 the semi-major axis of Ez orbit is computed, [6]
KL
a, =-— ; 13
TS (13)
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one obtains a, =—2886,2km.
The eccentricity of the orbit Es is computed with equation [3]

2
e,=_[1- Ks ; (14)
KLaS

one obtains ez = 13.0432. The negative value of the semi-major axis (az) and the
higher than one value of eccentricity (es) expresses the fact that the orbit Ez is
hyperbolical and not elliptical. Es is chosen as a circular orbit with

a=3113x10"m.

3. Dynamics of the three-body relative to the Sun

The dynamics of S on its orbit around Earth is perturbed by the
interactions generated by the other celestial bodies, mainly by the Sun and Moon,
but also by the solar radiation pressure, Earth’s atmosphere and unequal mass
distribution. In fig. 2 the orbit of the spacecraft is represented (satellite, rocket),
the position vectors 1, r,, r, of the three bodies S, Earth and Moon relative to the

Sun and the position vectors which express the position of S relative to the Moon
(T ), respectively the position of Moon relative to the Earth (T, ).
g

Fig. 2. The orbit of S and the position vectors of S, P and L

The force of attraction of the body i toward the body j is expressed with
the equation [14]

- 4 mm;
Fi=—) —5>T;, (15)

=l rij

where y =6.67259-10""'m°kg s~ gravitational constant and ;, =F, —F, with
r, and r; - position vectors of the body i and j relative to the Sun. From this it
results the acceleration of the body i relative to body j
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- 4.m.
.r.ij =_XZ_3JFij 1 Tij :HFij H' (16)
i T
relation which is equivalent with the state equations system
F=Vi,
— 4am. (17)
Vi= —XZ—; F -
=1 rij
Customizing these relations for i = S, P, L, one obtains the following
results, whereV s Ve and V. are the velocities of the bodies S,PandL;
=V,
= S, _ o 18
VS:_X_,mi 3(rs_rP)_x I:,nss s_X_,mI:, 3(rs_rL) ( )
R el |7 s -]
o =Vp
= L m L m, . 19
e LI ) IR | ) RS S
[Fo =7 7o =] [Fo|
f =V,
= L R, _ 20
Vi :_X%('l_rs)_x%(n_rp)_x _r,nsg re (0)
Ire =7 [Fe =7 7.

mg, m,, m_and m are the masses of the Sun, Earth, Moon and spacecraft. The

state equations that express the dynamics of S on Earth’s orbit (according to fig.
2),with r =1, -1, ;

(21)

with £, , Vs and T, , V » of form (18) and (19).

4. Automatic control of spacecraft orbit

In the time interval in which S evolves on the elliptical orbit around the
Earth, the position vector r of S has the origin in the center of the Earth (P is in
one of the ellipse foci).

The structure of the control system for S orbit is given in fig. 3.

The control law is of type non-linear, based on using a Lyapunov function

of form
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V, = %klArTAr +%k2AV TAV, (22)

where k; and k, are positive constants. From the stability condition of the closed
loop circuit system (Ar and AV tend simultaneously to zero), that is from the
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(.
N A - % Yo
REFERENCE 4@—* ORBIT | THETHREE [ =
| Tp,

ORBIT CONTROLLER m BODIES
MODELING (23). with DINAMICS | "he =

BLOCK |V, + NAV | (24) 25) (18), (19), 20) | K
(26)+(31) V
{ 1 11

Iy Tp Iy

a b

Fig. 3. The structure of automatic control system of Spacecraft orbit

condition V, <0, the control law is obtained [13]
K

u :—k—lAr—ksAV —(a, +ay), (23)
2
with k, >0 and
. . m m m m
a, =Vp =V :X—Sgrs +X—Lg(rs _rL)_X—Lg(rP _rL)_X—SgrP
Irs| Irs =rl Ire =1 Ir |
(24)
ag :vrS _vrP :XLg(rrP _rrL)+X m33 e =% msg s — XLg(rrs _rrL)
Ire =1 Iree Iris] Iris =1

(25)
a, and a, are perturbations, having the signification of accelerations, with V
and V,, - reference accelerations of S and P, and r, r., and r, - position vectors

of S, P and L relative to the Sun (see fig. 2) corresponding to the reference orbit
around the Earth. The control law (23) assures the fulfillment of the condition

V, = —k,kKAV AV .
5. Reference orbit model

For the computation of reference orbit, the unperturbed orbit is considered,
defined by the Keplerian elements p and e (the movement is assumed in plane)
with the initial position of the space vehicle at perigee.
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The focal parameter p and the eccentricity of the elliptical orbit are
computed from the semi-major and semi-minor axis a and b of the ellipse;

p=—,e=,1-—, (26)
a

The equation of the reference orbit in polar coordinates has the form:

” ” 1+ ECOS((p Q) @7)

with ¢ - true anomaly, and the formula to compute the reference vector is [16]

r, =[cos(p— @) sin(p—g;) O 1| (28)

For the computation of the true anomaly, the medium anomaly is

computed first M =(2n/T)t, where T is the revolution period (in which a full

orbit is traveled), and t- the current time. Then the eccentric anomaly E is

computed, numerically solving the equation E —esin E =M through Newton
iterative method. The angle ¢ is given by the relation [3], [16]

1+e) tang

@=_2arctan e (29)

The absolute value of satellite velocity is computed with the formula [3]

=53] @

K, being the gravitational constant of Earth, K, =ym, , and the reference
velocity vector of S given by [6]

V, =[cos0 sin® O|V,| (31)
with 6, expressed with formula [6], [13]

e=<p+% 7 — arccos r2—2—1 (32)

6. Numerical simulations

The following values are used as initial vectors: r,(0) = [1,460067 x 10"
0 0]'m r, (0)=[146356x10" 0 O]'m, r, (0)=[146x10" 0 0] m,V,(0)=
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=[0 373929 0] m/s,v, (0)=[0 30772,9 O] m/s,V, (0)= [0 29680 O
m/s. The command u =F, /m (F; - the resultant thrust force of the Spacecraft
engines, m - mass of the spacecraft); m; =1,9891x10% kg, m, =5,972x10* kg,
m, =7,35x10% and m = 300kg .

The values used for the computation of the reference orbits are: for the
Earth  orbit around the Sun a=1496x10"m, e=0,0167086,
T =365,256363004 days; for the orbit of the Moon around the Earth
a=2384748x10°m, e=0,0549006, T =27.554550 days; for the spacecraft

orbit around Earth a =6,7x10°m, e =0.

For the control of the spacecraft trajectory the system with the structure in
fig. 3 is modeled in Matlab/Simulink, in which the reference block generates the
corresponding arcs for the orbits E», Es, E4. The block contains a Matlab function
that computes the orbital state vectors (position and velocity) for the Earth, the
Moon and the Spacecraft given the orbital parameters.

®  Earth

Moon orbit, E L

Transfer orbit E2

Transfer orbit E

A E | 3
Es 3 OrbitE,,

x[m] <108

Fig. 4. Spacecraft trajectory relative to the Earth
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Fig. 6. Spacecraft real trajectory a reference trajectory relative to the Earth
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In fig. 4 the spacecraft reference trajectory is presented for a transfer on an
orbit around the Moon in the Earth centered reference frame, and in fig. 5 the
same trajectory relative to the Moon.

Fig. 6 represents the reference trajectory (with red line) and real trajectory
(with blue line); the two trajectories are overlapped.

In fig. 7 are presented the following time characteristics: a) the time
evolution of some of the Keplerian parameters; b) the components of vector Ar ;
c¢) the components of vector AV ; d) the components of the command vector u.
The moment of time when the transfer maneuver begins (the spacecraft is in Sy) is
marked as t1. The representation of the Keplerian parameters is done relative to the
central body: Earth, before reaching S, and Moon, after S; point when the
spacecraft enters the Moon sphere of influence.
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Fig. 7. The evolution in time of orbital parameters (semi-major axis, semi-minor axis, eccentricity,
focal parameter), of the position and velocity deviation (Ar, AV ) and of the command u
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7. Conclusions

A nonlinear control system is designed for the transfer trajectory of a
spacecraft (S) from an elliptical orbit around the Earth to a circular orbit around
the Moon, starting from the dynamics equations of the three celestial bodies (S, P,
L) relative to the Sun. The orbital parameters are computed for each of the two
orbit arcs (E, and E;) which compose the reference transfer trajectory. The

Matlab/Simulink model of the control system for the transfer trajectory is
designed and with this are plotted the transfer trajectory of S relative to Earth and
to Moon, the time evolution of the Keplerian parameters for the transfer
trajectory, the components of position and velocity vector errors of S relative to
the reference trajectory components, and also the components of the command
vectors. The time intervals in which the two orbit arcs are traveled are delimited
(t, for the elliptical orbit E,, between S; and Sz, and t,, for the hyperbolic E,,

between S, and Ss).
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