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TZITZEICA 2ND ORDER LAGRANGIAN DYNAMICS

Constantin Udrişte1, Corina Cipu2, Vasile Arsinte3

Ecuaţiile neliniare joacǎ un rol major ı̂n diverse aplicaţii ale matem-
aticii şi fizicii moderne. Scopul lucrǎrii este de a realiza un studiu de sta-
bilitate a schemelor numerice obţinute dintr-un Lagrangian de ordinul al
doilea, asociat ecuaţiei cu derivate parţiale a lui Ţiţeica. Se face o analiza
a stabilitaţii von Neumann. Ultima secţiune precizeazǎ diferenţele dintre
noua ecuaţie discretǎ a lui Ţiţeica şi cea liniarizatǎ.

Nonlinear equations play a major role in many applications of mod-
ern mathematics and physics. The goal of the paper is to make a stability
study of numerical schemes derived from the second order Lagrangian as-
sociated to Tzitzeica PDE. A discrete Tzitzeica Euler-Lagrange equation is
written using this second order Lagrangian. Von Neumann stability analysis
for this equation is made. Final section underlines the differences between
the new discrete Tzitzeica equation and the linearized one.
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1. Tzitzeica hyperbolic PDE

The Tzitzeica hyperbolic nonlinear PDE is

(ln h)uv = h− 1

h2
.

With a change of function ln h = ω, this equation rewrites as

ωuv = eω − e−2ω. (1)

The great Romanian geometer Tzitzeica arrived at his equation from the view-
point of the geometry of surfaces [1, 2], obtaining an associated linear repre-
sentation and a Backlund transformation [4, 5]. Now, the PDE (1) is known
under various names, and has been studied from several perspectives, [6]-[8],
including geometry, [3], and non-linear mechanics [10].
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The PDE (1) is in fact the Euler-Lagrange PDE associated to the second
order Lagrangian:

L =
1

2
ω ωuv − eω − 1

2
e−2ω. (2)

2. Discrete two-parameter second order Lagrangian dynamics

A two-parameter second order Lagrangian

L(u, v, ω, ωu, ωv, ωuv)

produces the Euler-Lagrange PDE

Lω −DuLωu −DvLωv + DuvLωuv = 0

with the unknown function ω(u, v). The theory of integrators for multi-
parameter Lagrangian dynamics shows that instead of discretization of Euler-
Lagrange PDEs we must use a discrete Lagrangian, a discrete action, and then
discrete Euler-Lagrange equations. The discrete Euler-Lagrange equations as-
sociated to multi-time discrete Lagrangian can be solved successfully by the
Newton method if it is convergent for a convenient step.

The discretization of a two-parameter second order Lagrangian can be
performed by using the centroid rule (see [13], [14]) which consists in the
substitution of the point (u, v) with the fixed step (k1, k2), of the point ω(u, v)
with the fraction

ωkl + ωk+1l + ωkl+1 + ωk+1l+1

4
,

of the partial velocities ωα, α = 1, 2, by the fractions

ωk+1l − ωkl

k1

,
ωkl+1 − ωkl

k2

and of the mixed second order derivative ωuv, by the fraction

ωk+1l+1 − ωkl+1 − ωk+1l + ωkl

k1k2

.

One obtains a discrete Lagrangian

L2d : R2 ×R4 → R,

L2d = L(k1, k2,
u1 + u2 + u3 + u4

4
,
u2 − u1

k1

,
u3 − u1

k2

,
u4 − u3 − u2 + u1

k1k2

).

The second order Lagrangian (2) determines the 2-dimensional discrete
action

S : R2 ×R(N1+1)(N2+1) → R,

S(k1, k2, A) =

N1−1∑

k=0

N2−1∑

l=0

L2d(k1, k2, ωkl, ωk+1l, ωkl+1, ωk+1 l+1),

where

A = (ωkl), k = 0, ..., N1, l = 0, ..., N2.
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The discrete variational principle, see [14], consists in the characteri-
zation of the matrix A for which the action S is stationary, for any family
ωkl(ε) ∈ R with

k = 0, ..., N1 − 1, l = 0, ..., N2 − 1,

ε ∈ I ⊂ R, 0 ∈ I, ωkl(0) = ωkl

and fixed elements
ω0l, ωN1l, ωk0, ωkN2 .

The discrete variational principle is obtained using the first order variation of
S. In other words the matrix (point) A = (ωkl) is stationary for the action S
if and only if (discrete Euler-Lagrange equation)

∑

ξ

∂L2d

∂ωkl

(ξ) = 0, (3)

where ξ runs over the following four points,

ξ1 = (ωkl, ωk+1l, ωkl+1, ωk+1 l+1), ξ2 = (ωk−1l, ωkl, ωk−1l+1, ωkl+1)

ξ3 = (ωkl−1, ωk+1l−1, ωkl, ωk+1l), ξ4 = (ωk−1l−1, ωkl−1, ωk−1l, ωkl)

and
k = 1, ..., N1 − 1, l = 1, ..., N2 − 1,

in which the first two variables k1, k2 are omitted being fixed for all points.
The variational integrator described by a discrete Euler-Lagrange equa-

tion works as follows:
- Step 1: define the lines (ω00, ω01, ..., ω0N), (ω10, ω11, ..., ω1N);
- Step 2: denote by

u = ωk+1l+1

A(kl) =
∂L2d

∂ωkl

(ωk−1l, ωkl, ωk−1l+1, ωkl+1)

B(kl) =
∂L2d

∂ωkl

(ωkl−1, ωk+1l−1, ωkl, ωk+1l)

C(kl) =
∂L2d

∂ωkl

(ωk−1l−1, ωkl−1, ωk−1l, ωkl);

f(u) =
∂L2d

∂ωkl

(ωkl, ωk+1l, ωkl+1, u) + A(kl) + B(kl) + C(kl);

- Step 3: solve the nonlinear equation f(u) = 0 at each step (k1, k2) using eight
points of starting as shown a part of the grid

♣ωk−1l−1 ♣ωk−1l ♣ωk−1l+1

♣ωkl−1 ♣ωkl ♣ωkl+1

♣ωk+1l−1 ♣ωk+1l ∗ u = ωk+1l+1

Giving the boundary elements ω0l, ωN1l, ωk0, ωkN2 , the discrete Euler-
Lagrange equation is solved by the Newton method if it is contractive for a
small step (k1, k2) (see [13], [14]).
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We introduce the discrete momenta via a discrete Legendre transforma-
tion

pkl =
∂L2d

∂ωkl

(ωkl, ωk+1l, ωkl+1, ωk+1l+1). (4)

Then (3) becomes a linear initial value problem with constant coefficients

pkl + pk−1l + pkl−1 + pk−1l−1 = 0, (5)

called dual variational integrator equation.

3. Discrete Tzitzeica equation

Schief [4] have obtained an integrable discrete version of the Tzitzeica
equation as the compatibility condition of the discrete Gauss equation, and
transformed the discrete Tzitzeica equation into the trilinear form. R. Hi-
rota [9] shows that the Tzitzeica equation is equivalent to the Toda molecule
equation with the special boundary condition, hence he studies discrete Toda
molecule equation with a special boundary condition.

The associated discrete second order Tzitzeica Lagrangian is

L2d =
ωkl + ωk+1l + ωkl+1 + ωk+1l+1

8
· ωk+1l+1 − ωkl+1 − ωk+l + ωkl

k1k2

−e(ωkl + ωk+1l + ωkl+1 + ωk+1l+1)/4 − 1

2
e−(ωkl + ωk+1l + ωkl+1 + ωk+1l+1)/2.

It produces the discrete Tzitzeica equation (discrete Euler-Lagrange equation)

1

k1k2

(ωk−1l−1 + 2ωkl + ωk+1l+1) +
1

4k1k2

(ωk−1l + ωkl−1 + ωkl+1 + ωk+1l)

−e(ωkl + ωk+1l + ωkl+1 + ωk+1l+1)/4 − e(ωk−1l + ωkl + ωk−1l+1 + ωkl+1)/4

−e(ωkl−1 + ωk+1l−1 + ωkl + ωk+1l)/4 − e(ωk−1l−1 + ωkl−1 + ωk−1l + ωkl)/4

+e−(ωkl + ωk+1l + ωkl+1 + ωk+1l+1)/2 + e−(ωk−1l + ωkl + ωk−1l+1 + ωkl+1)/2

+e−(ωkl−1 + ωk+1l−1 + ωkl + ωk+1l)/2+e−(ωk−1l−1 + ωkl−1 + ωk−1l + ωkl)/2 = 0.

This is a second order nonlinear implicit finite difference equation. The
singularity set with respect to u = ωk+1l+1 is defined by the equation

e(ωkl + ωk+1l + ωkl+1 + ωk+1l+1)/4+2e−(ωkl + ωk+1l + ωkl+1 + ωk+1l+1)/2 =
4

k1k2

.

If we denote Y = e(ωkl + ωk+1l + ωkl+1 + u)/4, the singularity set with respect
to u is given by positive solutions of third degree algebraic equation,

Y 3 − 4

k1k2

Y 2 + 2 = 0.

For k1k2 >
4 3
√

2

3
, the singularity set is empty, [12].
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For k1k2 <
4 3
√

2

3
, the previous implicit equation gives three real solutions

but only one is a positive solution,

u = U − (ωkl + ωk+1l + ωkl+1),

and

U = log(− 8

3k1k2

cos(π/3 + δ/3)), δ = arccos(
27

64
(k1k2)

3 − 1).
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Figure 1. Singularity set with respect to u

4. Von Neumann analysis of dual variational integrator equa-
tion

To verify the stability of the dual variational equation (5), we pass to the
frequency domain, accepting that u is a spatial coordinate and v is a temporal
coordinate. Using a 1D discrete spatial Fourier transform with respect to
variable k, which can be obtained via the substitutions

pkl → P l(α)ejαh,

where α denotes the radian wave scalar, and h the new variable. We find a
second order linear difference equation (digital filter)

P l + P le−jαh + P l−1 + P l−1le−jαh = 0

that need its stability checked. For this purpose we introduce the z-transform
E(z, α) and we must impose that the poles of the recursion do not lie outside
the unit circle in the z-plane. To simplify, we accept the initial conditions
P 0 = 0. One obtains the homogeneous linear equation

(1 + e−jαh)(1 + z−1)E = 0.
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The pole z = −1 satisfies the condition

|z| ≤ 1

that ensures the stability of the scheme over the region that not contains the
singularity set, whatever will be relation between the grid spacing h and the
wave number α.

5. Von Neumann analysis of linearized discrete Tzitzeica equa-
tion

The linearization of discrete Tzitzeica equation is

1

k1k2

(ωk−1l−1 + 2ωkl + ωk+1l+1) +
1

k1k2

(ωk−1l + ωkl−1 + ωkl+1 + ωk+1l)− 3

4
ωkl

−3

2
(ωk+1l+ωkl+1+ωkl−1+ωk−1l)− 3

4
(ωk+11l+1+ωk+1l−1+ωk−1l+1+ωk−1l−1) = 0.

To verify the stability of this finite difference scheme, we pass to the frequency
domain, through what is called von Neumann analysis. For that

(1) accept that u is a spatial coordinate and v is a temporal coordinate;
(2) consider a uniform grid spacing in u, i.e., h = k1 is constant, and an

unbounded domain R;
(3) denote by τ = k2 the ”time” step regarding v and we define the

constant level sets
4

3k1k2

= ρ.

Introducing a 1D discrete spatial Fourier transform which can be ob-
tained via the substitutions

ωkl → Ωl(α)ejαh,

where α denotes the radian wave scalar. We find a second order linear differ-
ence equation (digital filter)

ρ(Ωl−1 + Ωl)e
−jαh + ρ(Ωl + Ωl+1)e

jαh

−(Ωl+1 + 2Ωl + Ωl−1)(e
jαh + e−jαh + 2− ρ) = 0.

In order to check the stability of the digital filter we introduce the z-
transform F (z, α) and we must impose that the poles of the recursion do not
lie outside the unit circle in the z-plane. To simplify, we accept the initial
conditions Ω0 = 0. One obtains the homogeneous linear equation

ρ(z−1 + 1)e−jαhF + ρ(1 + z)ejαhF

−(z + 2 + z−1)(ejαh + e−jαh + 2− ρ)F = 0.

The poles are the roots of the characteristic equation

ρ(z−1 + 1)e−jαh + ρ(1 + z)ejαh

−(z + 2 + z−1)(ejαh + e−jαh + 2− ρ) = 0.

with the unknown z. Explicitly, we have

(z + 1)(a1z + a0) = 0,
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where

a1 = (ρ− 2)(1 + cos(αh)) + jρ sin(αh), a0 = ā1.

As long as a1 6= 0 the stability is verified, since |z| = 1.
There are two cases in which a1 becomes zero, namely for:
1. h = π/α;
2. h = 2π/α and ρ = 2, i.e., hk2 = 2/3.
In all other cases our scheme is marginally stable.

6. Conclusions

The von Neumann analysis was used to prove the stability of the finite
difference scheme regarding the linearized discrete Tzitzeica equation. Com-
paring the foregoing results with those in paper [16], we can formulate the
following statements.

1. The singularity set is empty for k1k2 >
3
3
√

4
, in case of the Lagrangian

of order one, and for k1k2 >
4 3
√

2

3
, in case of the Lagrangian of second order.

2. When the singularity set is not empty, the cubic equation that leads
to the singularity set for u = ωk+1l+1, implies two positive solutions

u = U1 − (ωkl + ωk+1l); u = U2 − (ωkl + ωk+1l)

where

U1,2 = 3 log((3/2− 3cos(π/3± δ/3))/(k1k2)), δ = arccos(−(6k1k2+8(k1k2)
3)/27),

in case of the Lagrangian of order one, and a single solutio,:

u = U − (ωkl + ωk+1l + ωkl+1),

with

U = log(− 8

3k1k2

cos(π/3 + δ/3)), δ = arccos(
27

64
(k1k2)

3 − 1).

in case of the Lagrangian of second order.
3. The conditions of stability implies a critical surface F (ρ, αh) for which

the positiveness ensure the stability of the scheme:
F1,2 ≥ 0 with F1,2 = 4(1− ρ)

√
2− 2cos(αh)− | − a1 ±

√
∆|,

in case of a Lagrangian of order one. For the second order Lagrangian there is
no critical surface.

The results are more general in case of Lagrangian of order two.

Future works: We shall consider two directions of our research. One
is related to numerical simulations by scattering methods (see [11]), for which
stability verification properties could be made. On the other hand we shall
use the second order Lagrangian form, [15], in order to improve the scheme
stability.
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