

ASPECTS REGARDING THE POSSIBILITY OF INCREASING HARDNESS ON A LOW CARBON STEEL ST37-2 BY SURFACE TREATMENT WITH CO₂ LASER

Olga TURCAN¹, Octavian DONȚU², Jose Luis OCANA MORENO³, Ionelia VOICULESCU⁴, Ion Mihai VASILE⁵

This paper is presenting an interesting subject from the technological point of view regarding the possibility of a local hardening on pieces made from ST37-2 by applying a laser surface treatment on a well defined zone. The paper is presenting a study of the hardening effects on a low carbon steel ST37-2. By varying the laser process parameters the result was an increase in hardness, from 150 HV₁ in the initial base material, to 550HV₁ in a layer with the depth of 500 µm.

Keywords: heat treatment, CO₂ laser, surface heat treatment, ST37-2 steel

1. Introduction

The heat treatments applied on steels can lead to an improvement of properties and characteristics of the treated material. Laser treatment realized on material surface is based on the possibility of generating high and controlled energy densities that can be applied on well defined areas with small depth. The energy absorbed by material can be transformed into thermal energy, leading to local heat treating or melting, producing phase transformations. The effect of rapid cooling after heating, can promote the appearance of some microstructures with high hardness values (Fig. 1).

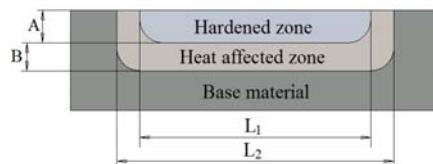


Fig.1. Hardening with laser. A – depth of hardened zone, B – depth of heat affected zone, L1 width of hardened zone, L2 – width of heat affected zone.

¹ PhD. student, University POLITEHNICA of Bucharest, Romania, e-mail: turcan_olga@yahoo.com

² Prof., University POLITEHNICA of Bucharest, Romania, e-mail: o.dontu@yahoo.com

³ Prof., Universidad Politecnica de Madrid, Spain, e-mail: joseluis.ocana@upm.es

⁴ Prof. University POLITEHNICA of Bucharest, Romania ioneliaiv@yahoo.co.uk

⁵ Assist., University POLITEHNICA of Bucharest, Romania, vasileionmihai@yahoo.com

Surface heat treatment shows a considerable interest today because it allows reconstruction of parts from strategic materials or allows improvement of the hardness and wear resistance [1, 2]. Due to high operation costs, manufacturing processes using laser are limited to special applications, where precise depth of intervention and value of energy input must be kept within very tight limits.

As an unconventional heat treatment, hardening with laser consists in a local heating followed by a rapid cooling of the material's surface, from a temperature situated above the phase transformation point, but without reaching the melting temperature [3,4].

Laser hardening process is applied in order to obtain higher values of mechanical and physical characteristics on material's surface, such as: hardness, surface quality, corrosion resistance and other physicochemical properties [5].

The advantages of laser surface hardening are given by the precise positioning and selection of heat treatment areas, precise control of heat treatment's depth, high processing speed and lack of technological cooling liquid [6-12].

2. Theoretical consideration

To estimate the penetration depth some formulas based on isothermal distribution of temperatures that is obtained as an effect of surface treatment can be used. In the case of laser surface treatment the equation for bi-dimensional propagation of heat can be used, from which can be estimated the penetration depth of treated area, by calculating the cooling time $t_{8/5}$ [8]:

$$t_{8/5} = (4300 - 4.3 \cdot T_0) \cdot 10^5 \cdot \frac{Q^2}{d^2} \cdot \left[\left(\frac{1}{500 - T_0} \right)^2 - \left(\frac{1}{800 - T_0} \right)^2 \right] \cdot F_2 \quad [s] \quad (1)$$

where $t_{8/5}$ = cooling time between 800°C and 500°C [s]

T_0 = initial temperature of the base material [$^{\circ}\text{C}$]

d = the depth of the treated area [mm]

F_2 = shape factor that takes into account the deviations from the idealized physical model (for depositing a layer on a plate it is equal to 1) [14]

Q = input energy [kJ/mm]

To determine the optimum values of the regime parameters for CO_2 laser surface treatment different values of depth penetration have been calculated using a constant value of $t_{8/5}$, for steel ST37-2 (table 1)

Table 1.
Calculation values of the depth of treated area using different values of linear energy

$t_{8/5}$ [s]	T_0 [°C]	Q[kW/cm ²]	d[μm]
0.8	17	4.2	157.32
0.8	17	6.3	235.98
0.8	17	8.41	315.01
0.8	17	10.51	393.67
0.8	17	12.61	472.33

3. Experimental procedure

In order to study the effects of laser surface treatment some samples (plate type) were used, with sizes 60x100x5mm, made from a low carbon steel ST37-2, whose chemical composition is shown in Table 2. Process parameters used in laser processing were: Power density (having values between 4.2kW/cm² and 12.61 kW/cm²), laser beam speed (having values between 1 – 6 mm/s) and a constant value of laser spot diameter (1mm).

Table 2

Chemical composition of low carbon steel ST37-2 DIN 17100

Chemical elements	C≤16mm max	C>16mm max	Si max	Mn max	P max.	S max.
wt.%	0.17	0.17	--	1.40	0.045	0.045

The cooling time $t_{8/5}$ is frequently used to characterize the thermal cycle for the metallic component submitted to heat treatment, in this way allowing the calculation of penetration depth and estimation of the effects of phase transformations that may appear during the heat processing [11, 12, 13, 14].

The cleaning of parts surfaces that undertake the laser heat treatment must be performed with extreme care in order to ensure the removal of impurities such as dust, paint, grease, traces of water, etc. These impurities are quickly evaporated by laser beam energy and may lead to formation of numerous defects such as craters, oxidation of the surface, porosities, and cracks [15].

In order to point out the hardening level of heat treated zone, microhardness measurements were performed using Matsuzawa MXT30 microhardness tester, with a force of 1kgf. The hardness was measured in the three characteristic areas, respectively: base material, heat affected zone and treated zone. For each zone 10 imprints were made, and later the arithmetic average was calculated. For base material (steel ST37-2) average hardness was Hvmed = 150 HV1. The penetration depths of the zones that were laser heat treated were measured by the optical macroscopy (Fig. 2), using an Olympus GX51 optical microscope equipped with image analysis software AnalySis.

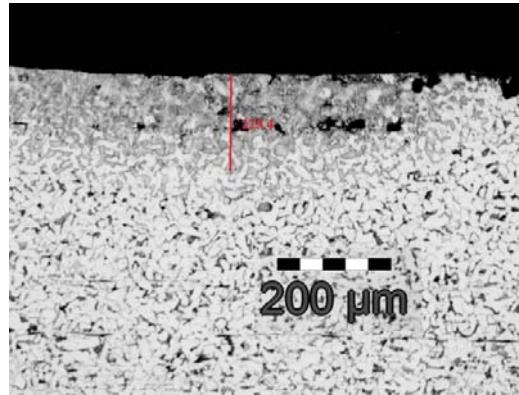


Fig. 2. Macroscopic analysis of an area treated with CO₂ laser, Power density 6.3 kW/cm², 20x.

4. Results

After analyzing the experimental data it was found that for values of power density that are under 4.2 kW/cm² for all displacement' laser speeds used, a heat treated area was not obtained, but only a heat affected zone with surface oxidation effects (Fig. 3).

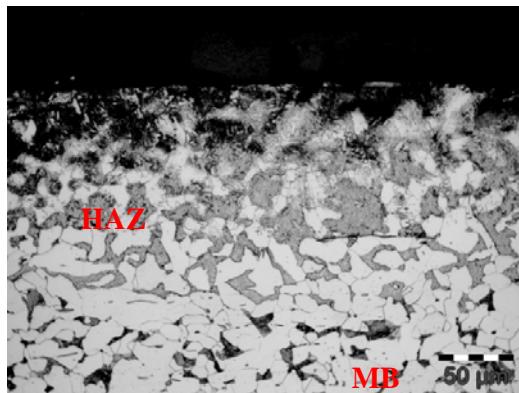


Fig.3. Macroscopic analysis of a heat treated zone with the CO₂ laser, the power density 4.2kW/cm² and the laser beam speed 3 mm/s.

When applying a higher power density of 4.2 kW/cm² in the microstructure, martensite and residual austenite (zone A - heat treated), ferrite and pearlite (zone B - heat affected) and ferrite and Pearlite (zone C - heat unaffected base material) were obtained (Fig. 4).

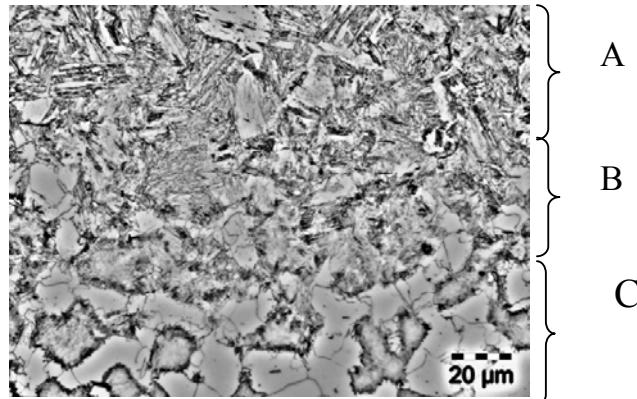


Fig.4. Granular structure of the material (A – fine grains in the thermal treatment zone, B – transition zone or heat affected zone – HAZ and C – base material).

By measuring the penetration depth resulting from the application of laser heat treatment a comparison of its effects on the treated zone could be done, using equation 1 (Fig. 5).

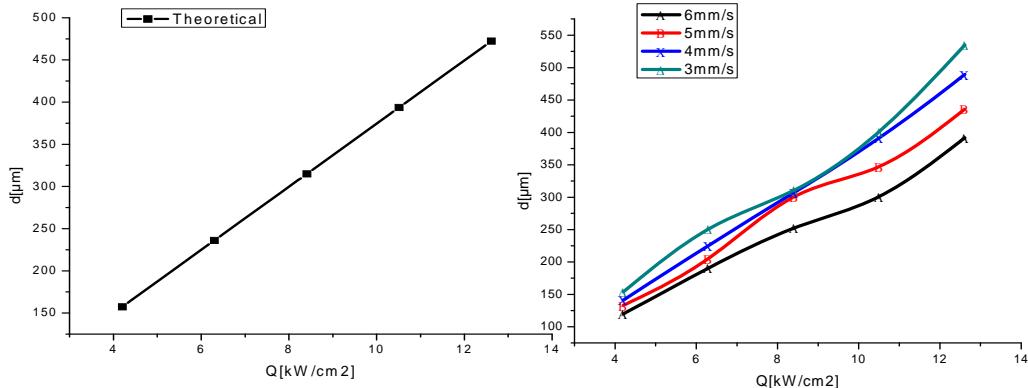


Fig.5.a)

Fig.5.b)

Fig.5. Evolution of penetrations depth calculated theoretically a) and experimentally b) as a function of measured depth after performing a laser surface treatment.

It has been observed that for a constant value of 0.8 s for $t_{8/5}$ the theoretical depth varies linearly with the laser beam power, while in the experimental model an exponential variation with limits of variation positioned near to the theoretical curve appears. After performing a correct heat treatment and measuring the hardness of the treated areas, a Gaussian shape of the distribution of the measured

values was obtained (Fig. 7), while in the case of the formation of a molten zone, an anomaly in the distribution of data (Gaussian bell) was obtained (Fig. 8).

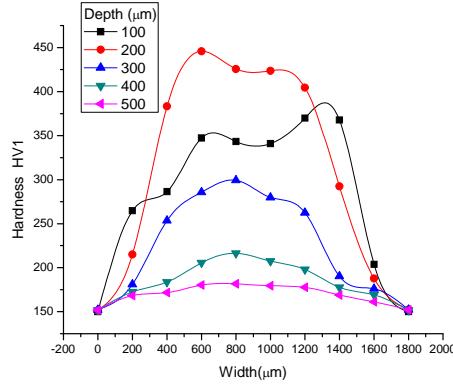


Fig.7. Power density 8.41 kW/cm^2 , speed 2 mm/s

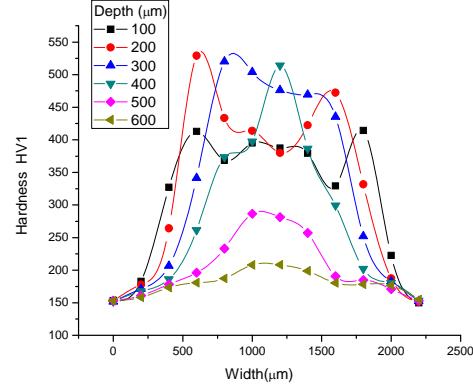


Fig.8. Power density 12.61 kW/cm^2 , speed 3 mm/s

It was found that with increasing speed hardness increases, but Gaussian bell shape changes due to the extension of the molten zone. The evolution of the average values of hardness depending on the power density is presented in Fig. 9.

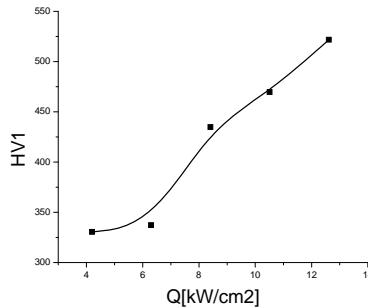


Fig.9. Hardness evolution depending on the power density

The best results were obtained for values of displacement speed of the laser beam between 4 mm/s and 3 mm/s (Fig. 10), for which penetration depths up to $400\text{-}500 \mu\text{m}$ and a change of crystalline microstructure of the material were obtained. Observations are supported with microhardness measurements, confirming the phase transformations occurring in the material by increasing the hardness of the material in the layer heat treated up to 465 HV_1 .

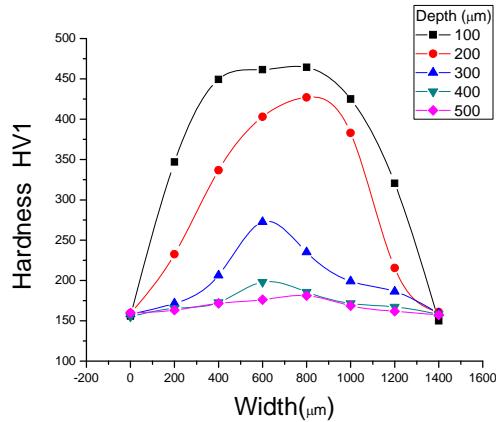


Fig. 10. Power density 8.41 kW/cm², speed 3 mm/s

6. Conclusions

The experimental researches on ST37-2 steel showed that hardening of surfaces is possible using laser radiation for this type of material. Tests and investigations have allowed to establish the optimal process values, respectively: speed and power required to achieve the desired results.

By increasing the speed of the laser beam movement, a significant decrease in the penetration depth of heat treated zone is obtained. At the same time, increasing power density of the laser beam an increase in the depth of the heat treated zone is obtained (fig.5).

For a power density of the CO₂ laser that exceeds 10.51 kW/cm² the effect is melting of the base material ST 37-2. This results in a hardness that doesn't present a perfect Gaussian distribution (fig.7).

The results offer an encouraging perspective regarding the use of this low carbon steel grade in different applications, other than classical ones, as structural steel, and further studies of practical applicability are necessary to confirm the results presented in this paper.

Acknowledgment

The work has been funded by the Sectoral Operational Programme Human Resources Development 2007-2013 of the Romanian Ministry of Labour, Family and Social Protection through the Financial Agreement POSDRU/107/1.5/S/76903.

The authors would like to thanks to Laboratory LAMET from UPB and Centro Laser from UPM, Madrid for experimental measuring and microscopically analysis.

R E F E R E N C E S

- [1] *W. Steen*, Laser material processing, ed. Springer, 1998.
- [2] *L. Migliore*, Laser Material Processing, ed. M. Dekker, 1996.
- [3] *J. F. Ready*, Industrial Application Of Laser, ed. Academic Press, 1997.
- [4] *O. Donțu* –Tehnologii de prelucrare cu laser, Editura Tehnica, Bucuresti, 1986.
- [5] *O. Donțu* s.a. – Unele aspecte privind durificarea superficiala cu radiatii emise de o instaltie laser CO₂ pentru piese de mecanica fina, Buletinul IPB, seria Mecanica, Tom XLVII-1984.
- [6] *L.A. Dobrzański, J. Domagala, T. Tański, A. Klimpel, D. Janicki* Laser surface treatment of magnesium alloy with WC and TiC powders using HPDL, Journal of Achievements in Material and Manufacturing Engineering, june 2008, issue 2, **Vol.28**, p.179-186.
- [7] *M. Heitkemper, A. Fischer, Ch. Bohne and A. Pyzalla*, Laser surface treatment of the high nitrogen steel X30CRMON15 1, 6TH INTERNATIONAL TOOLING CONFERENCE, 2013, p.935-946.
- [8] *Zhenqing Zhao, Chunqing Wang, Mingyu Li, Lei Wang*, Nd:YAG laser surface treatment of copper to improve the wettability of Sn3.5Ag solder on copper, Surface&Coatings Technology 200(2005), p.2181-2186.
- [9] *R.K. Nalla, I. Altenberger, U. Noster, G.Y. Liu, B. Scholtes, R.O. Ritchie*, On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures, Materials Science and Engineering A355 (2003), p.216-230.
- [10] *Khansa Dawood Salman*, Effect of Laser Surface Treatment on Wear Resistance of 100Cr6 Steel, Eng. & Tech. Journal, **Vol.27**, No.6, 2009.
- [11] *M. Morales, J. Torres, C. Molpeceres, J. A. Porro, J. L. Ocana*: “Numerical Simulation of Laser Shock Processing of Metal Alloys”, LANE Laser Assisted Net Shape Engineering, **vol. 4**, 2004, P. 885-896.
- [12] *J.L. Ocaña, D. Iordachescu, M. Blasco, M. Iordachescu*. Remote laser welding of automotive thin sheets. Metalurgia International. 2009, **Vol 14** (10): 10-15.
- [13] *V. Miclosi*, Tratamente termice conexe sudarii prin topire a otelurilor-Vol.I, Editura Sudura, Timișoara, 2003.
- [14] *ASM Handbook* **Vol. 6**, 2001, p.34-37.
- [15] *I. Voiculescu, V. Geanta, R. Stefanou, H. Binchiciu*, Researches on laser welding and hardfacing, Sudura, **Vol XXI-4/2011** Chisinau, Moldova.