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RESEARCH ON SEMANTIC SLAM SYSTEM TECHNOLOGY 

FOR DRIVERLESS VEHICLES 

Xiaojing CHEN1*, Libing ZHOU1, Zhengqian YU1, Jianjian WEI1, Xueli JIANG1, 

Baisong YE1, Yexin ZHAO1, Tianyu WANG1, Guoqing WANG1, Jun BIAN1 

In response to the problem of a single sensor being unable to complete 

localization and map construction in large-scale scenarios, as well as dynamic 

obstacles reducing the accuracy of positioning and mapping, a framework called 

LIS_SLAM for simultaneous localization and map construction framework that 

combines image semantic segmentation and laser inertial odometer is proposed. First, 

the efficiency and performance of the image segmentation model are improved by 

replacing the backbone network and introducing an attention mechanism. Second, 

spatio-temporal synchronization between sensors is established, enabling semantic 

segmentation of single-frame point clouds. The framework also includes the 

establishment of a semantic SLAM system and the construction of a three-dimensional 

semantic map. Finally, the algorithm is verified in campus and urban environment 

roads. The experimental results show that LIS _ SLAM can achieve simultaneous 

localization and mapping in large-scale scenes. 

Keywords: multi-sensor fusion; semantic segmentation; simultaneous localization 

and mapping; dynamic scenarios 

1. Introduction 

The rapid growth of China’s motor vehicle industry resulted in a sharply 

increased traffic volume, providing convenience to people but also leading to more 

frequent traffic accidents. Unmanned driving technology has emerged as a potential 

solution to address these challenges. SLAM technology, as a fundamental 

component of autonomous driving, enables vehicles to map their surroundings and 

accurately position themselves, thereby reducing accidents caused by human 

factors and propelling the automotive industry towards intelligence. 

SLAM refers to a carrier equipped with sensors (such as camera, lidar, and 

IMU), which enable the perception of environmental information and the 

construction of an environment map without prior environmental information to 

achieve autonomous localization. There are two main types of SLAM: laser SLAM 

and visual SLAM. Visual SLAM can collect a wealth of characteristic 

environmental information at a low cost, but it is easy to be affected by light and 
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prone to errors and drift. The advantage of laser SLAM is that it is not affected by 

light changes and can provide accurate depth information, but it is expensive and 

may have accuracy issues. In the case of fast movement and missing features, it 

may lead to low accuracy or even failure of the map. Based on the above analysis, 

it is difficult for a single sensor SLAM system to adapt the construction of three-

dimensional maps in large-scale scenarios such as urban environments. To 

overcome these limitations, sensor fusion, such as using lidar and cameras, has 

become a future trend in SLAM development. Traditional SLAM assumes 

stationary objects in the environment to collect information for map construction 

and localization. At present, map construction in static environments has met the 

requirements of practical applications. However, most objects in the real 

environment are moving, and dynamic objects will affect the positioning accuracy 

of unmanned vehicles, resulting in errors in the constructed maps. In view of the 

above problems, this paper introduces advanced semantic information to realize the 

detection and elimination of dynamic objects, thereby improving the localization 

accuracy of semantic SLAM systems based on LIDAR in dynamic environments. 

To this end, a semantic SLAM system that integrates advanced semantic 

information is proposed to detect and eliminate dynamic objects. The integration of 

sensors such as LIDAR, camera, and IMU in this semantic SLAM system is 

important for building a high-precision and robust 3D environmental semantic map. 

 The original data collected by the lidar is preprocessed by distortion 

correction and ground segmentation, and the image information collected by the 

camera is semantically segmented using the Dv3p-RS algorithm. Spatio-temporal 

synchronization is performed on the point cloud data of lidar key frames to realize 

semantic segmentation. Then a surface element map is established to detect and 

eliminate dynamic obstacles, extract edge and plane features from the dynamically 

eliminated point cloud and reduce the time-consuming feature extraction. The 

semantic information is used to correct the mismatch of features, and improve the 

inertia of LIDAR. The efficiency and accuracy of the odometer can improve the 

overall localization accuracy of the algorithm. This, in turn, enables the calculation 

of the pose transformation relationship through inter-frame matching. After 

achieving the motion trajectory of the lidar a local semantic map is established. This 

local semantic map can be added to the global semantic map to create a 3D semantic 

point cloud map. Fig. 1 shows the semantic SLAM framework. The main work 

includes the following aspects: 

(1) An improved image segmentation algorithm named Dv3p-RS is 

proposed, which improves the performance of the algorithm by replacing the 

backbone network and adding the attention module. 

(2) A three-dimensional semantic slam framework is proposed. Through 

adding image semantic information to the LIDAR inertial SLAM system and 

eliminating dynamic obstacles based on the surface element model, autonomous 



Research on semantic SLAM system technology for driverless vehicles                259 

localization and mapping in large-scale scenes are realized. 

The remaining part is organized as follows: Section 2 presents the related 

work; Section 3 introduces the Lidar inertial odometer, image semantic 

segmentation, single-frame point cloud segmentation, and dynamic obstacle 

removal; Section 4 carries out experimental verification, and Section 5 draws the 

conclusion. 
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Fig. 1. Semantic SLAM system framework 

 

2. Previous Work 

Lidar SLAM: The lidar is divided into two-dimensional lidar and three-

dimensional lidar based on the number of lines. Two-dimensional laser SLAM can 

be classified into two types: filter-based method and optimization-based method. 

Thrun et al. [1] put forward a Fast SLAM based on particle filters, which combines 

Monte Carlo positioning with low-dimensional Kalman filtering to realize 

localization and map construction. Grisetti et al. [2] proposed Gmapping, which can 

effectively overcome the shortcomings of particle filter and use the Maximum 

Likelihood Estimation Method to improve the quality of sampling, while reducing 

the number of particles to alleviate the problem of memory explosion. The 

Cartographer proposed by Google uses correlation scanning matching for violent 
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search at the rough level to avoid local extrema and uses gradient optimization for 

fine searches and find the optimal solution for linear interpolation. Additionally, it 

incorporates branch and bound method for loop-closing optimization, effectively 

eliminating cumulative error caused by frame-to-local sub-image matching [3]. 

According to the fusion of Lidar and IMU, 3D laser SLAM is divided into two 

categories: loose coupling and tight coupling. The laser load [4] and [5] belong to 

the loosely coupled methods. LIO mapping proposed by Ye et al. [6] and LIO-SAM 

proposed by Shan et al. [7] are both tightly coupled methods. LOAM proposes a 

novel feature extraction method, which divides feature points into plane points and 

edge points based on the smoothness of the plane. It narrows the range of feature 

extraction and proposes an accurate and fast matching method between frames and 

sub-images. The disadvantage is that there is no loopback detection, which will 

inevitably cause drift. LeGO-LOAM uses ground for feature point segmentation 

and point cloud clustering to eliminate noise points, improve the extraction 

accuracy of feature points, and introduce loop detection to improve the accuracy of 

localization and mapping. The LIO mapping algorithm proposes a rotation-

constrained thinning algorithm, which optimizes all measurements but lacks real-

time performance. The LIO-SAM algorithm constructs the odometry, pre-

integration, GPS, and loop-closing factors, and uses the factor map to realize tight 

coupling and global optimization of lidar and IMU. Qi and Guan [8] proposed a 

real-time 3D positioning method for mechanical working surfaces based on laser 

SLAM to address the issue of difficulty in meeting the accuracy of the odometer 

for underground coal mine movement survey. This method uses inertial navigation 

to eliminate the motion distortion of Lidar and adopts the feature extraction method 

of principal component analysis. The LM method is used to solve the attitude 

transformation relationship and realize the attitude estimation. 

Image Semantic Segmentation: Long et al. [9] proposed the fully 

convolutional network (FCN). This method replaces all fully connected layers in 

the traditional convolutional neural network (CNN) with convolution and restores 

the image dimension by upsampling. FCN cannot perform real-time reasoning and 

cannot utilize global context information. Chen [10] proposed the Deeplabv1 

algorithm that combines deep learning convolutional neural network (DCNN) with 

conditional random field (CRF). It can effectively solve the problem of defect 

location and improve the accuracy of boundary segmentation. Chen et al. [11] 

proposed the Deeplabv2, which introduced the hollow pyramid pooling (ASPP) 

based on Deeplabv1. It can improve the segmentation of the network for different 

scales of targets, but still relies on fully connected conditional random fields [12]. 

Deeplabv3 introduced the Multi-Grid strategy and optimized ASPP structure, no 

longer relying on fully connected conditional random fields [13]. Deeplabv3 

introduced a multi-grid strategy and optimizes the ASPP structure, no longer relying 

on fully connected conditional random fields [13].The Deeplabv3+ adopts an 
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encoder-decoder structure. Using the Deeplabv3 network structure as the encoder, 

the decoder is introduced to obtain clearer segmentation boundaries [14] 

Semantic SLAM: Vineet et al. [15] proposed a method based on the 

combination of hash and conditional random field models. This method evaluates 

the features extracted by image semantic segmentation through random forest, and 

uses a densely connected CRF model to reduce the computational burden and 

construct 3D semantic maps in real time. Combined with classical surface mapping 

methods, Chen et al. [16] used semantic information to improve the position and 

pose estimation accuracy of lidar. By using the methods such as flood filling and 

filtering, it can achieve semantic segmentation and denoising of point clouds. Bojko 

et al. [17] proposed a self-supervised dynamic elimination SLAM algorithm, which 

cannot only avoid the negative impact of the system caused by direct recognition, 

but also eliminate dynamic objects without prior information. Eslamian et al. [18] 

proposed a semantic map system based on Detectron2 and ORB-SLAM3 algorithm. 

In ORB-SLAM3, the depth information of feature points is obtained through 

camera movement, and dynamic points are eliminated by using the semantic 

information. The results are more accurate than the method using geometric 

information constraints, but this method is not suitable for outdoor and fast-moving 

scenes [19]. 

3. Methods 

3.1. Lidar inertial odometer 

First, to address the issue of motion distortion in Lidar, the pose 

transformation within one frame of lidar is obtained through IMU pre-integration, 

and the laser point coordinates are converted to the first laser point coordinate 

system to eliminate motion distortion. Second, when the laser radar collects 

information, a large amount of ground point cloud information will be obtained, 

which will reduce the operating efficiency of the algorithm. Through calculating 

the pitch angle of the distance image, the point cloud is divided into two parts: 

location and non-location, as shown in Fig. 2(a) and Fig. 2(b). Then, using the 

calculated plane smoothness, these feature points are divided into edge points and 

plane points, as shown in Fig. 2(c) and Fig. 2(d). Finally, the distance between two 

objects is obtained through point-to-line and point-to-surface feature matching 

methods, and then the pose transformation matrix is solved through levenberg-

Marquart iteration [20]. 
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Fig. 2. Point cloud ground segmentation and feature extraction. (a) Location cloud (b) Non-

location clouds; (c) Edge feature points; (d) Planar feature points 

 

3.2. Image semantic segmentation 

Taking the Deeplabv3+ algorithm as the basic framework of image 

segmentation, an improved Dv3p-RS algorithm is presented. It is optimized and 

improved from the following three aspects: 

(1) Due to the Xception goal of the Deeplabv3+algorithm backbone network 

being to train a model that is easy to migrate, computationally efficient, and highly 

accurate, the research scenario here is an urban environment, aiming to process 

image information through a semantic segmentation algorithm. It is a laser radar 

point cloud that provides high-level semantic information. The ResNeXt network 

[21] has a higher efficiency under the same number of parameters. To this end, a 

lightweight ResNeXt is used as a feature extraction network to improve model 

efficiency. 

(2) After extracting deep and shallow feature maps from the backbone 

network, the SE attention module [22] is used to enhance channel characteristics, 

thereby improving the performance of the model. 

(3) The Deeplabv3+ algorithm handles the problem of different dimensions 

between deep and the shallow feature maps through linear interpolation and up 

sampling.  

However, unmanned vehicles may experience significant scale changes 

when collecting environmental image information, with many anomalies occurring 

between pixels. Linear relationship, deconvolution achieves high-precision 

upsampling through parameter learning. Here deconvolution instead of linear 

interpolation is used to ensure the accuracy of segmentation. 
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3.3. Single frame point cloud segmentation 

The topic subscription mechanism of the time synchronizer under the robot 

operating system (ROS) is used to achieve soft synchronization of sensor time. The 

PTP network protocol synchronization method is used for clock source alignment, 

thereby realizing the hard synchronization of the sensor time, and obtaining the 

sensor time through external parameter calibration. Using a rotation matrix and a 

translation matrix, the coordinate values of each sensor are projected into the same 

coordinate system, thereby achieving realize spatio-temporal synchronization of 

sensors. Under spatio-temporal synchronization, the lidar and camera establish a 

mapping relationship between the point cloud and image, that is, the pixel 

coordinates corresponding to each point cloud are obtained. After semantic 

segmentation processing, the 2D images captured by the camera have consistent 

semantic labels for the same type of objects. The pixel coordinates correspond one-

to-one with semantic labels to establish a mapping relationship between the three-

dimensional point cloud and semantic tags. Fig. 3(a) is the original point cloud, and 

Fig. 3(b) is the semantic segmentation point cloud. 
 

 
 (a) Original point cloud;                          (b) Semantic segmentation point cloud 

Fig. 3. Point cloud semantic segmentation 

 

3.4. Dynamic obstacle removal 

A surfel is a circular plane with directions and sizes in space. Compared 

with a point cloud, a surfel contains position information, normal vector 

information, and area information. The point cloud data with the same normal 

vectors is described by the same surfel, which cannot only reduce the data storage, 

but also provide richer geometric information for the data. To be suitable for 

dynamic environments, we extend the surface elements and define them as follows: 

𝑠𝑢𝑟𝑓𝑒𝑙′ = {𝑝𝑠, 𝑛⃗ 𝑠, 𝑟𝑠, 𝑡𝑐𝑡, 𝑡𝑢𝑑 , 𝑙𝑠}                                    (1) 

where, 𝑡𝑐𝑡 represents the creation time of the surfel; 𝑡𝑢𝑑 represents the update time 

of the surfel, and 𝑙𝑠  is the probability value in logarithmic form, indicating the 

stability of the surfel. The 3D point cloud scanned by a single-frame lidar is 

projected into a 2D depth map, assuming a certain laser point𝑃𝑠(𝑥, 𝑦, 𝑧) .The 
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calculation formula for the coordinate 𝑃𝐷
𝑠(𝑢, 𝑣) of the depth map is as follows: 

(
𝑢
𝑣
) = (

1

2
[1 − arctan(𝑦, 𝑥) ⋅ 𝜋−1] ⋅ 𝑤

[1 − (arcsin(𝑧 ⋅ 𝑟−1) + 𝑓max)𝑓
−1] ⋅ ℎ

)                           (2) 

𝑓 = 𝑓max + 𝑓min                                                  (3) 

where, 𝑟 = ‖𝑃‖2 represents the range;𝑓 represents the vertical field of view of the 

lidar; 𝑓max and 𝑓min are the maximum and minimum values of the vertical field of 

view, respectively;𝑤 and ℎ are the width and height of the depth map, respectively. 

Suppose the center of surface element 𝑠 is the point 𝑃𝑠′(𝑥′, 𝑦′, 𝑧′), the coordinate 

𝑃𝐷
𝑠′
(𝑢′, 𝑣′) in the depth map, the vectors formed by the adjacent point 𝑃𝐷

𝑠′𝐿 on the 

right side of 𝑃𝐷
𝑠′

 and the adjacent point 𝑃𝐷
𝑠′𝑈 on the upper side of 𝑃𝐷

𝑠′
 are 𝑛⃗ 𝐿 and 𝑛⃗ 𝑈 

respectively.The normal vector of the panel is the outer product of 𝑛⃗ 𝐿 and 𝑛⃗ 𝑈,  and 

the normal vector 𝑛⃗ 𝑠
′
 is calculated as follows: 

 

𝑛⃗ 𝑠
′
= 𝑛⃗ 𝐿 × 𝑛⃗ 𝑈 = [𝑃𝐷

𝑠′𝐿(𝑢 + 1, 𝑣) − 𝑃𝐷
𝑠′
(𝑢, 𝑣)] × [𝑃𝐷

𝑠′𝐿(𝑢, 𝑣 + 1) − 𝑃𝐷
𝑠′
(𝑢, 𝑣)]   

(4) 

The static objects and dynamic objects are distinguished by detecting the 

geometric consistency of surface elements. Assuming that there are two adjacent 

key frames 𝒦𝑡 and 𝒦𝑡+1, an object detected in keyframe 𝒦𝑡 is at position 𝒮𝑡
𝐿 in the 

lidar coordinate system, and mapped in the global. The position in the coordinate 

system is 𝒮𝑡
𝑊, and the position of the object detected in key frame 𝒦𝑡+1 is 𝒮𝑡

𝐿′
 in 

the lidar coordinate system. If the position mapped in the global coordinate system 

is still 𝒮𝑡
𝑊, it indicates that the object is stationary; otherwise, theobjects in different 

positions are dynamic objects. When a dynamic object is detected, an additional 

penalty will be given for updating the bin stability𝑙𝑠 .The penalty function is as 

follows: 

𝑙𝑠
(𝑡)

= 𝑙𝑠
(𝑡−1)

+ odds (𝑝stable exp (−
𝛼2

𝜎𝛼
2) exp (−

𝑑2

𝜎𝑑
2))

− odds(𝑝prior ) − odds(𝑝penalty )
                           (5) 

𝑜𝑑𝑑𝑠(𝑝) = log(𝑝(1 − 𝑝)−1)                                             (6) 

where, 𝑝stable  is the measured value of the bin;𝑝penalty  is the prior probability of the 

bin; 𝛼 is the angle between the bin normal vector 𝑛⃗ 𝑠 and the measurement normal 

vector, and 𝑑 is the distance between the measurement normal vector and the bin. 

After multiple observations and updates, the stability of the bins belonging to 

moving objects will become very low. If it is lower than a certain threshold, it will 

be removed, while the stability of the bins of stationary objects will always be 

higher than the threshold. Through this method, static objects and dynamic objects 

can be distinguished, and dynamic objects can be eliminated. 
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4. Experimental Verification 

4.1. Image segmentation network dataset test 

The Cityscapes data set [23] is used to train the semantic segmentation 

network. This data set records image information of 50 urban roads in different 

seasons and climate environments, including 5000 finely labeled images and 2000 

coarse-grained labeled images. It contains rich urban environment information, 

including 19 labels such as roads, buildings, vegetation and sky. 

In the data set, the Deeplabv3+ and the Dv3p-RS proposed in this paper are 

used to perform image semantic segmentation, and the final segmentation results 

are shown in Fig. 4. Fig. 4(a) shows the original training image of the dataset; Fig. 

4(b) shows the result of semantic segmentation using the Deeplabv3+ algorithm; 

Fig. 4(c) shows the result of semantic segmentation using the Dv3p-RS.  

 

  
(a) Original image 

  
(b) Image segmentation effect of Deeplabv3+ 

  
(c) Image segmentation effect of Dv3p-RS 

Fig. 4. Comparison of semantic segmentation results 

 

The places marked with the red circle in the middle indicate they are different from 

the segmentation results of the Deeplabv3+ algorithm. According to the semantic 
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segmentation results, the Dv3p-RS algorithm can efficiently refine the boundaries 

when segmenting objects such as pedestrians, vehicles, and traffic signs under 

urban roads. The segmentation network has higher precision performance. 
 

The improvement of the Dv3p-RS algorithm compared with other 

mainstream semantic segmentation algorithms is quantitatively verified from the 

perspectives of test accuracy and average test loss, as shown in Fig. 5. Fig. 5 shows 

that Dv3p-RS has higher test accuracy and lower average loss than other algorithms, 

which again verifies that the Dv3p-RS algorithm has higher accuracy and efficiency. 
 

 
(a) Test accuracy 

 
(b) Test Average Loss 

Fig. 5. Dataset test results 
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4.2. Urban road environment test 

When collecting information in urban road environment, three original 

images are randomly selected from the image sequence collected by the camera, as 

shown in Fig. 6. The original image information is imported into the semantic 

segmentation network, and the image segmentation results are shown in Fig. 7. The 

semantic information of the segmented image is mapped to the laser point cloud 

under the same time stamp, and a local point cloud map with semantic labels is 

constructed, as shown in Fig. 8. The constructed local 3D semantic point cloud map 

is added to the global map to realize the construction of the global semantic map, 

as shown in Fig. 9. 

 

     

 
Fig. 6. Camera image 
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Fig. 7. Semantic segmentation image 

 

      

 
Fig. 8. Semantic point cloud map 
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Fig. 9. Semantic map of urban road environment construction 

 

In order to prove that removal of dynamic obstacles can improve the 

location precision of the system, the experimental verification is carried out in an 

urban road environment with denser dynamic objects, and compared with the 

representative algorithms LOAM and LeGo_LOAM of laser SLAM. We use the 

evaluation index APE (Absolute Position Error) to evaluate the system performance. 

APE is the calculation of the difference between the estimated position and the 

known reference position or ground truth. The lower APE indicates that the SLAM 

system can accurately estimate the absolute position of the camera or robot, while 

the higher APE indicates that the positioning error is large. The results of error 

comparison and distribution are shown in Fig. 10. The specific values of error 

results such as root mean square and standard deviation are shown in Table 1. The 

error rate of the LSI_SLAM algorithm is 0.42%, which is 1.25% and 0.95% lower 

than the error rates of the LOAM and the LeGo_LOAM, respectively. This indicates 

that the LSI_SLAM has higher positioning accuracy and robustness. 
 

 
(a) APE error comparison chart 
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(b) APE error distribution map 

Fig. 10. Autonomous positioning error of urban road environment 

 

Table 1 

Error results in urban road environment 

Errors LOAM LeGo_LOAM LIS_SLAM 

Root mean square error 53.62 43.81 13.40 
mean error 24.75 20.61 4.67 
Error rate 1.67% 1.37% 0.42% 

5. Conclusions 

Combined image semantic segmentation technology with laser inertial 

ranging technology, a high precision SLAM system in a dynamic environment is 

presented. First, the laser odometer is constructed by fusing LiDAR and IMU data 

to estimate the attitude change and position displacement of the mobile robot using 

the scanned laser point cloud and the inertial measurement information from the 

IMU. Then the image semantic segmentation algorithm Dv3p-RS with high 

precision and efficiency is proposed. The single frame point cloud is spatio-

temporal synchronized to complete semantic segmentation, and dynamic obstacles 

are removed through geometric consistency detection using the surface model. The 

algorithm is tested under an urban traffic environment and compared with LOAM 

and LeGo_LOAM. The experiment results show that the LIS_SLAM algorithm can 

achieve high precision in a dynamic environment. Although this study provides 

some clues for SLAM systems in dynamic environments, there are also some 

limitations. Specifically, the results of image segmentation will greatly affect the 

removal effect of dynamic obstacles and also increase additional operation time. 

Future work will focus on improving the performance of image segmentation 

models to achieve better rejection results and faster running speed. 
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