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In this work we are interested to prove a general fized point theorem for
a pair of multivalued mappings in extended b—metric spaces. The results in this paper
generalize the results obtained in [7], [12],[17] and to obtain other particular results with
application Volterra-type integral inclusion.
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1. Introduction and Preliminary

Since the famous Banach fixed point theorem, the study of fixed point theory in metric
spaces has several applications in mathematics, especially in solving differential and func-
tional equations. Many authors have introduced a new class of generalized metric space, in
particular those called b-metric spaces, and obtained several results in fixed point theory, (see
[1),[3]-[16)).

The one due to I. A. Bakhtin [2] and S. Czerwik [4], [5] who, motivated by the
problem of the convergence of measurable functions with respect to measure, introduced
b-metric spaces (a generalization of metric spaces) and proved the contraction principle in
this framework.

Kamran et al. [13] introduced the concept of extended b-metric space by further
weakening the triangle inequality.

In this work we are interested to prove a general fixed point theorem for a pair of
multivalued mappings in extended b—metric spaces with application Volterra-type integral
inclusion.

Definition 1.1 ([13]). Let X be a nonempty set and 6 : X x X — [1,00). A function
do : X x X — RT is said to be a extended b-metric on X if the following conditions hold:
(1) do(z,y) = 0 if and only if x =y,
(”) dg(l’,y) = dﬂ(yax) fOT all T,y € Xa
(141) do(z,y) < 0(z,y)[dg(z, 2) + dg(z,9)] for all x,y,z € X.
Note that every b-metric space is a extended b—metric space with 0 = s > 1.

Example 1.1. Let X = {1,2,3} We define : X x X — [1,00) and dp : X x X — RT
such that:
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Oz, y)=1+z+y
do(1,1) = dy(2,2) = dg(3,3) = 0
de(1,2) = dp(2,1) =8, dg(1,3) = dy(3,1) = 10, dy(2,3) = dy(3,2) =6
Proof (i) and (ii) trivially hold. For (iii) we have:
dg(1,2) =8, 0(1,2)[dg(1,3) + dg(3,2)] = 4(10 + 6) = 64
do(1,3) = 10, 6(1,3)[dg(1, 2) + dg(2,3)] = 5(8 + 6) = 70
do(2,3) = 6, 0(2,3)[dy(2,1) + do(1,3)] = 6(8 + 10) = 108.
So, for all x,y,z € X we have: dg(x,y) < 0(x,y)[de(z,2) + dg(z,y)].
Then (X,dp) is a extended b-metric space.

Definition 1.2 ([13]). Let (X,dg) be a extended b—metric space, x € X and (z,) be a
sequence i X. Then

(i) (zyn) converges to x if and only if lim dy(z,x,) = 0. We denote this by x,, —

n—oo
(n = o) or lim x, = x.
n—roo
(ii) (zn) s Cauchy if and only if lim dg(xn,zm) = 0.
n,m—oo
(iil) (X,dp) is complete if and only if every Cauchy sequence in X is convergent.
(iv) A subset A C X is said to be closed if for every sequence x,, € A such that x, — x

we have x € A.

(v) A subset A C X is said to be bounded if sup dg(x,y) < +oo.
z,y€EA

(vi) A subset A C X is said to be compact if every sequence x, € A has a convergent
subsequence.

We denote by B(X) the set of nonempty closed bounded subsets of X provided with

the Hausdorff-Pompeiu metric Hy defined by Hy(A, B) = max (sup dy(z, B), sup dg(y, )) ,
z€eA yeB

we define also 6(A4, B) by §(A, B) = max (sup 0(z, B), sup 0(y, )) ,
z€A yeB
where 0(z, B) = inf 0(z,y).
yeB

Given F,G : X — B(X), for ¢,d € [0,1] and x,y € X, we shall use the following
notation:

No(z,y) = max{de(xv y), cdy(z, Fx), cdo(y, Gy), %(de(x» Gy) +dp(y, F'z))}

for a sequence (z,,), of elements from X, sometimes, for the sake of brevity, we shall
use the notation: d,, = dg(xy, xnr1), where n € N.

Definition 1.3 ([17]). A function F : X — B(X), where (X, dy) is a extended b-metric

space, is called closed if for all sequences (x,,) and (y,) of elements from X and xz,y € X

such that im z, =z, lim y, =y and y, € F(x,) for every n € N, we have y € F(x).
n—oo

n—oo

Definition 1.4 ([17]). Given a extended b-metric space (X,dp), the b-metric dg is called
x-continnuous if for every A € B(X), every x € X and every sequence (x,) of elements
from X such that lim z, =z, we have hm do(xp, A) = dg(z, A).

n—o00
Lemma 1.1 ([17]). Every sequence (x,,) of elements from a extended b-metric space (X, d)
having the property that there exists v € [0,1) such that
do(Tn+1,70) < vdo(Tn, Tn-1),
for every n € N. If
lim sup 0(xy,, ) < 00, (1)

n,Mm—00

then (z,,) is Cauchy.
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2. Main results

Theorem 2.1. Let (X,dy) be a extended b-metric space and F,G : X — B(X) having the
property that there exist ¢,d € [0,1] and k € [0,1) such that:

Hy(Fx,Gy) < kNg(z,y) for all z,y € X. (2)

Then for every xg € X, there exists () C X, Tapnt1 € Fxoy and xa, € Gray—1 such that

do(T2n, Tant1) < BNo(T2n, Tan—1) and do(Tan—1,T2n) < BNe(T2n—2,T2n—1) where B = T

If lim sup k0(xp, ) < é then:

n,m— 00
(a) d9($n+17$n) S ’YdO(l'wan—l)? 7€ [0, 1); fOT’ every n € N*a
(b) (zy) is Cauchy.

Proof. Let g € X and x1 € Fzq, us consider 5 = ﬁ—kk, then using (2), we have

dg(ZEl,Gl'l) S H@(Fl’o,Gl‘ﬂ S kNg(l’o,ﬂn).

According to the characterization of the lower bound we have for € = }:_—’ZH(;(F:EO, Gxq),
there exists x9 € Gx1 such that

1—-k
d@(.%‘l,mg) < H@(Fﬁ?o,Gl‘l)—‘rmHg(Fxo,Gl‘l)
2
= ——Hy(Fxo,Gxy)

1+k

2k
2N,
Tk o(z0, 1)

= [Ng(wo,71)
Since
dg(xz,Fl'Q) S Hg(sz,Gl‘l) S kNg(xQ,xl).

According to the characterization of the lower bound we have for ¢ = %H@(FZ‘Q, Gx1),
there exists 3 € Fxo such that

1—k
dg(r2,23) < H9<F$2aG-T1)+mH9(F-T27G$1)
2
= mHe(F$2an1)

2k
=" N,
Tk o(x2, 1)

= [Ng(w2,21)
In the same there exists x4 € Gxs such that
do(x3, 1) < BNo(22,73).

By recurrence, we construct a sequence (z,,) such that xs,41 € Faa,, and g, € Gay_1
which satisfies:

dg(T2n, Tant1) < BNg(22n, Ton—1) and do(z2p—1, Tan) < BNg(2n—2,T2n-1), n=1,2,3,... (3)

We put s = sup{0(zp, zm), n,m € N}
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According to (3) we have:
d2n S BNO (1'27“ x2n71)

3 max { dg(Ton, Tan—1), cdg(Ton, Faay), cdo(xan—1, GTon—1), }
g(de (r2n, Gron_1) + do(2n—1, Fr2,))

d
< fBmax {d2n17 cdon, cdan 1, §d9(£€2n717 $2n+1)}
ds
< Bmax < dop_1,cday, cda,—1, ?(danl +da,) ¢ because (0(z2n-1,%2n41) < 5)

ds
< fmax {dgn_l, ?(dZn—l + d2n)} )

for every n € N*, where the justification of the last inequality is as follow :
if max{day—1, cdan, cdan—1, %(dgn,l + don)} = cday, then we get that
doyn < Beds, < Bda, < do,,which is a contradiction.
Consequently, da, < Bda,—1 or da, < B%(dQn—l + d2n)7 i.e dap, < Bdap—1 or

doy, < %d%_l for every n € N*, thus da,, < max{g, %}dgn_l, ie

dsp

do(Zant1,T2n) < vdo(Tan, Xan—1) Vn € N*| where v = max{f, 5 dsﬂ} <1. (4)
Similarly we find:
dg(Ton, Ton—1) < vdg(Tan—2,T2n—1) Vn € N*. (5)

According to (4) and (5) we have for everythingn € N*  dy(z41,2,) < vdo(Tpn, Tn_1).
Hence the sequence (z,,) satisfies (a). From Lemma 1.1 we deduce that it also satisfies
(0).

Theorem 2.2. Let (X, dy) be a complete extended b—metric and F,G : X — B(X), such
that:

(i) there exist c,d € [0,1] and k € [0,1) such that
Hy(Fz,Gy) < kENg(z,y) for all z,y € X,

(ii) for every xo € X, there exists (x,) C X, xopy1 € Fao, and xo, € Gra,_1 for every
n € N.

If limsup kO(zy,, ) < é, and any of the following conditions are satisfied:
n,Mm—00

(iii) F and G are closed,

(iv) dg is *-continuous.
Then F' and G have a common fized point x € X.
Moreover, if © is absolutely fixed for F' or G (which means that F(x) = {z} or G(z) = {z}),
then the fixed point is unique.

proof.

Existence.
Based on (i) and (i%), according to Theorem 2.1, there exists a Cauchy sequence (z,) of
elements of X such that:

Tont1 € Fxo, and xo, € Groy_1  for everyn € N. (6)

As the extended b-metric space (X, dp) is complete, there exists € X such that lim z, = z.
n—oo

(#31) Suppose that F' and G are closed, according to (6) we see that x € Fx and
x € Gz, i.e F and G have a common fixed point z € X.
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(iv) Suppose that dy is *-continuous, according to (6), with the notation dy(x,,z) =
6, we have

do(w2nt1,Gx) < Hp(Fron,Gx) < kENg(w2n, 1)
d
S k maX{(SQTLv CdQ('TQ’n,) x2n+1)7 Cde(xa Gx), §(d9(x2na G.’L‘) + d@(l‘, $2n+1))}
because To,4+1 € Fray,
d
= k max{dap, cdan, cdg(x, Gx), E(dg(l‘gn, Gz) + dant1)}, (7)

for every n € N.

Since hm 0241 = hm 0oy, = hm do, = 0 and

hm dg(xgn,Gx) = hm dg(x2n+1,Gx) = d@(m Gz)
( as d is *- contmuous and don < O0(zan, Tan+1)(02n + d2pt1) and lim z, = x), letting
n— oo

n — oo in (7), we get dg(x, Gx) = 0, because if dg(z, Gz) > 0, then

do(z, Gx)

IN

k mazx{cdg(z, Gx), gde (z,Gx)}

IN

max{ke, %}da(l’, Gz)

kd
< do(z,Gz) because max{kc,7}<1,

which is a contradiction, hence z € Gz and G has a fixed point.
In the same way we find: © € Fz and consequently F' and G have a common fixed point
reX.

Unicity.
Suppose that F(z) = {z} and y € X is another common fixed point of F' and G, then by
(7) we have

dg(l',y) SHQ(anGy) < kN@(x7y)
d
<k max{ds(z,y), 5 (de(w,y) +do(y, )}, becausey € Gy
<k max{dg(x,y),do(z,y)} becaused <1

k d9($7y) < dG(CU?y)

which is a contradiction. Hence dy(z,y) = 0 then z = y.
So z is the unique common fixed point of F' and G.

Example 2.1. Let (X =[0,1],dy) be a complete extended b—metric space with
O(x,y) =2 +y+2 and do(z,y) = |v — y|>. We define

F.G: X — B(X), by Fx=1[0,%2], Gz=][0,%]

and

Qo Fx) = [e— 2P doly,Gy) = ly— 2P Ho(Fz,Gy) = |2 — L2

(1) It is easy to see that F and G are closed.

(#1) We prove that F and G check

1 1
H@(anGy) S 8max{d@(x,y),dg(x,Fx),dg(y,Gy),2(d9($,Gy)+d9(y7Fx))}

1
S §N1,1($7y)'

Indeed, we have the following situations:
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1

)Ife<¥ then |2 —¥%|=%—2=2XY_z)<lly—a| from where

ool

x 1 1 1
|Z - %|2 < Ed9($7y) < 8HlaX{d@(.’L‘,y),de(.’l?,Fﬂ?%dg(y,Gy), E(de(x7Gy) +d9(yan))} .

2) If & > ¥, we have dg(x,Gy) = |z — £|?. Then
Y =

8
<

from where

y‘2

N

T 1 1,1

IN

1 1
§ o {do(o,0), dol, P2, doly. G, (oG G + daly Fa) |
This implies

1 1
HG(nyGy) < é max {dg(amy),dg(x,Fa?),dg(y,Gy), §(d9(vay) + d@(y,F.’E))} 3

1
< gNl,l(x,y) for all z,y € X.

(#3i) For every xo € X we have . 71;11}100 %H(wn,xm) = Tlrilmoo %(l‘n +r,+2) < % < 1.

So all the conditions of Theorem 2.2 are satisfied, then 0 is the unique common ab-
solutely fized point of F' and G.

Corollary 2.1. Let (X, dy) be a complete extended b—metric space where the condition (1)
is fulfilled and F,G : X — B(X), such that:

Hy(Fx,Gy) < kdg(z,y) for all z,y € X, (8)

where k € [0,1). Then there exists a sequence (x,) C X converges to some point x € X such
that xop+1 € Fxoyn and xo, € Gron—1 for every n € N. Also, x is a common fized point of
F and G if any of the following conditions are satisfied:

(i) F and G are closed,

(ii) dg is *-continuous.
Moreover, if © is absolutely fixed for F or G (which means that F(x) = {z} or G(z) = {z}),
then the fixed point is unique.

proof. (8) = (2), with ¢ =d = 0. Let 2o € X and 21 € Fxo, let us consider 8§ =
ﬁ—kk = =, then there exists a sequence (z,) C X such that for every n € N*  dg(z,41,2,) <
vdo(xy, Tp—1). According to lemma 1.1 we have (z,) is a Cauchy sequence, so using the
same argument as in theorem 2.2, we deduce that x € Fz N Gz. Similarly from theorem

2.2, if = is absolutely fixed for F' or G, then the fixed point is unique.

3. Consequences of the main result

From theorem 2.1, with 6 = s constant we obtain theorem 3.1 [7]
From theorem 2.2, with § = s constant we obtain theorem 3.3 and theorem 3.6 [7]
From theorem 2.1, if F = G =T, with § = s constant we obtain theorem 2.1 [12]
From theorem 2.2, if F = G =T, with 6§ = s constant we obtain theorem 3.2 [12]
From corollary 2.1, if F' = G =T, then we obtain theorem 4.8 [17]
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4. Application

In this section, we give existence theorem for Volterra-type integral inclusion. Let
X = C([0,1],R) be the set of real continuous functions defined on [0,1]. For z,y € X, take
dg : X x X - R" and 6: X x X — [1,00) given by

do(x,y) = sup [a(t) —y(t)|* and 0(z,y) = [=(t)] + [y(t)] + 2. (9)

te[0,1]

Then (X, dy) is a complete extended b-metric space.
Consider the Volterra-type integral inclusion as

z(t) € /0 F(t,u,z(u))du+ g(t), te€]0,1], (10)

where F' : [0,1] x [0,1] x R — CV(R), such that F,(t,u) = F(t,u,x(u)) is continuous
function for all (t,u) € [0,1] x [0,1], z € X and CV(R) denotes the family of nonempty
compact and convex subsets of R and g : [0,1] — R is continuous.

We can define a multivalued operator T: X — CV(X) by

t
Tx(t) = {v eX:ve / F(t,u,z(u))du+g(t), te€]0, 1]} . (11)
0
Suppose that the following condition is satisfied :
(H) For all z(.),y(.) € X, t,u € [0,1], we have
Hy (Fy(t,u), Fy(t,u)) < e T|z(u) — y(u)* where 7 > 0.

Then the integral inclusion (10) has a solution in X.
proof. We have to show that the operator T satisfies all conditions of corollary 2.1.
(i) Let x,y € X and v € Tz then there exists f,(¢t,u) € Fy(¢,u), for t,u € [0,1] such
that:

v(t) = g(¥) +/O fz(t,u)du € Tz(t), te]0,1].

Also by hypothesis (H),
Hy (Fy(t,u), Fy(t,u)) < e 7|z(u) — y(u)?, Vt,ue0,1].
Then
do (fo(t,u), Fy(t,u)) < Ho (Fo(t,w), Fy(t,u) < e Tla(u) — y(u)®,  Vtu e [0,1].

Since dp is continuous and Fy is compact then there exists f(t,u) € F,(t,u) such that:

do (fo(t,w), f(t,u) < e Tla(u) —y(u)?,  Vtu e 0,1],
from where

[folt,u) = f(tw)* < e M) —y(w)]?,  Vu e [0,1].
Define a multivalued operator R by

R(t,u) = Fy(t,u) N {w € R, |fo(t,u) — w]* < e Tla(u) —y(w)|*},

for all t,u € [0, 1]. Since R is continuous operator with compact convex values, there exists
a continuous operator f, : [0,1] x [0,1] — R such that f,(¢,u) € R(¢,u) for all ¢t,u € [0, 1].
Thus we get

h(t) = g(t) + / fy(twdu € Ty(t), ¢ € [0,1],
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and for each ¢ € [0,1], we have

do(v(t), Ty(t)) < de(v(t)ah(t))=t:1[tp1] [o(t) — h(t)]*

o ( / F2lt.0 ~ £yt 0l )

(L) ([rea-sers)’]

= st [ 1At~ fPin < e s [ la(a) — y(o) P

te[0,1] te(0,1] JO
< kdg(x(t),y(t)), where k =e~7 € (0,1).

Since v(t) is arbitrary, we have

2

IN

IN

sup dg(v,Ty) < kdg(x,y), Vz,y € X. (12)
veTx

Similarly, we get
sup do(h,Tx) < kdg(x,y), Vz,ye€ X. (13)
heTy

From (12) and (13), we get Ho(T'z,Ty) < kdg(x,y), Vz,y € X.

(1) Let’s show that T is closed.

Let z,y € X and (x,), (y,) two sequences of element X with y,, € Ta, such that
lim x, =z et hm Yn = y. We prove that y € Tz.

n— oo

We have yn e Tz, then there exists f,, (t,u) € Fy, (¢t,u) for everything ¢,u € [0,1]
such that

yn(t) = g(t) + /t fz, (t,u)du € Tx,(¢), te[0,1].
According to the hypothesis (H), Vt(,)u € [0, 1] we get:
do (fo, (t:0), Fo(t;w)) < Ho (Fy, (t0), Fo(t,u) < e lan(u) — 2(u)]?,
< e Tdy (xp, ).
Since dy is continuous and F,, is compact then there exists f(¢,u) € F,(¢,u) such that:
do (fz, (t,u), f(t,uw) < e Tdg (zn,x), Vt,uel0,1].
So lim f,, (t,u) = f(t w).

We put h(t) = +f0 (t,u)du € Tx(t), te]l0,1].
for all t € [0, 1] we have
do(yn(t), 1)) = sup |ya(t) = h(t)[?
telo,1]
¢ 2
< s ([ 1o = flan)
tef0,1] \Jo
- 192
_ 2
< [( [an) ([ et - sopa) ]
< d9 (fﬂcn(t u)’f(t7u)) .

Therefore lim y,(¢t) = h(t), V¢ € [0,1]. By the uniqueness of the limit, we find
n—oo
y(t) = h(t) € Tx(t). ¥t € [0,1]. From where y € T'z.
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(i77) Let 2o € X and z1 € T then there exists fy, (t,u) € Fy,(t,u), for t,u € [0,1]
such that:

xz1(t) = g(t) + /Ot Juo(t,u)du € Txo(t), te0,1].
Also by hypothesis (H),
Hy (Fy, (t,u), Fy, (t,u) < e "zo(u) — 21 (u)]?,  Vt,u € [0,1].
Then
do (fuo (t,0), Fuy (t,u)) < Ho (Fyy (t,u), Fy, (t,u)) < e Tlzo(uw) — 1 (w)|?, Vt,u € [0,1].
Since dy is continuous and F, is compact then there exists f1(t,u) € Fy, (t,u) such that:
do (fo, (t,u), f1(t,u)) < e |ao(u) —z1(u)?, Vt,u € 0,1],
from where
[ fro (t1) = fi(t,w)] < e |2(u) — y(u)],  Vi,u e [0,1].
Define a multivalued operator R; by
Ra(t,u) = By (t,0) 0 {un € R, | fog (6, 0) = w] < e ao(u) — a1 (w) |

for all t,u € [0, 1]. Since R; is continuous operator with compact convex values, there exists
a continuous operator fy, : [0,1] x [0, 1] — R such that f5, (t,u) € Ry(t,u) for all ¢,u € [0, 1].
Thus we get

¢
2a(t) = 9(0)+ [ fur(tudu € Tarfe), ¢ (0.1,
0
and for each ¢ € [0, 1], we have

aa(t) — a2 (8)] = \ [ Gt =

<e= sup |zi(t) — zo(t)].
teo,1]

From where

sup |zo(t) —x1(t)] < e sup |z (t) — zo(t)).
tel0,1] te[0,1]

By recurrence, we construct a sequence (x,,) such that x, 11 € Tx,, which satisfies :

sup |Tn41(t) — 2 ()] < ez sup |xn(t) — zp—1(t)] n=1,2,3,...
tefo,1] t€[0,1]

from where for everything n € N*, we have

SUp |Zng1(t) — zn(t)| < e sup |ai(t) — z0(t)| (14)
te[0,1] te[0,1]

Now we have to show that (z,) is a Cauchy sequence. Let m,n € N*, then
[0 () = Znsm O] < [2n() = 2ns1 ()] + o+ [Enim1 () — Tasm(®l, VEE[0,1].  (15)
According to (14) and (15) we have

—nr —(nt1)T —(ntm—1)r
|2n () — Zpam ()] < (e 2 +e 2z +..+e 2 ) sup |z1(t) — zo(t)]
t€[0,1]

o [1—e 2
— 73 <T> sup |z1(t) — zo(t)]

1—ez / teo]

—_nT
e 2

— sup Jas(t) — zo(0).
1—e7=2 telo,1]

IN
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from where lim |z, (t) — Zniym(t)] = 0 for m € N*. Then (z,) is a Cauchy sequence. As
n— oo
(X,dp) is complete, there exists [ € X such that lim xz,(¢) =1(t) Vte[0,1].
n— oo
Consequently lim sup 6(z,,, £,,) = limsup(|z,, (t)| + |2m (£)] + 2) = 2|I(t)] + 2 < 0.

n,m— oo n,m—
So all the conditions of corollary 2.1 are satisfied, then the integral inclusion (10) has
a solution in X.
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