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In this work we are interested to prove a general fixed point theorem for
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1. Introduction and Preliminary

Since the famous Banach fixed point theorem, the study of fixed point theory in metric
spaces has several applications in mathematics, especially in solving differential and func-
tional equations. Many authors have introduced a new class of generalized metric space, in
particular those called b-metric spaces, and obtained several results in fixed point theory,(see
[1],[3]-[16]).

The one due to I. A. Bakhtin [2] and S. Czerwik [4], [5] who, motivated by the
problem of the convergence of measurable functions with respect to measure, introduced
b-metric spaces (a generalization of metric spaces) and proved the contraction principle in
this framework.

Kamran et al. [13] introduced the concept of extended b-metric space by further
weakening the triangle inequality.

In this work we are interested to prove a general fixed point theorem for a pair of
multivalued mappings in extended b−metric spaces with application Volterra-type integral
inclusion.

Definition 1.1 ([13]). Let X be a nonempty set and θ : X × X → [1,∞). A function
dθ : X ×X → R+ is said to be a extended b-metric on X if the following conditions hold:

(i) dθ(x, y) = 0 if and only if x = y,
(ii) dθ(x, y) = dθ(y, x) for all x, y ∈ X,
(iii) dθ(x, y) ≤ θ(x, y)[dθ(x, z) + dθ(z, y)] for all x, y, z ∈ X.
Note that every b-metric space is a extended b−metric space with θ = s ≥ 1.

Example 1.1. Let X = {1, 2, 3} We define θ : X ×X −→ [1,∞) and dθ : X ×X −→ R+

such that:
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θ(x, y) = 1 + x+ y

dθ(1, 1) = dθ(2, 2) = dθ(3, 3) = 0
dθ(1, 2) = dθ(2, 1) = 8, dθ(1, 3) = dθ(3, 1) = 10, dθ(2, 3) = dθ(3, 2) = 6

Proof (i) and (ii) trivially hold. For (iii) we have:

dθ(1, 2) = 8, θ(1, 2)[dθ(1, 3) + dθ(3, 2)] = 4(10 + 6) = 64
dθ(1, 3) = 10, θ(1, 3)[dθ(1, 2) + dθ(2, 3)] = 5(8 + 6) = 70
dθ(2, 3) = 6, θ(2, 3)[dθ(2, 1) + dθ(1, 3)] = 6(8 + 10) = 108.

So, for all x, y, z ∈ X we have: dθ(x, y) ≤ θ(x, y)[dθ(x, z) + dθ(z, y)].
Then (X, dθ) is a extended b-metric space.

Definition 1.2 ([13]). Let (X, dθ) be a extended b−metric space, x ∈ X and (xn) be a
sequence in X. Then

(i) (xn) converges to x if and only if lim
n→∞

dθ(x, xn) = 0. We denote this by xn → x

(n→∞) or lim
n→∞

xn = x.

(ii) (xn) is Cauchy if and only if lim
n,m→∞

dθ(xn, xm) = 0.

(iii) (X, dθ) is complete if and only if every Cauchy sequence in X is convergent.
(iv) A subset A ⊂ X is said to be closed if for every sequence xn ∈ A such that xn −→ x

we have x ∈ A.
(v) A subset A ⊂ X is said to be bounded if sup

x,y∈A
dθ(x, y) < +∞.

(vi) A subset A ⊂ X is said to be compact if every sequence xn ∈ A has a convergent
subsequence.

We denote by B(X) the set of nonempty closed bounded subsets of X provided with

the Hausdorff-Pompeiu metric Hθ defined by Hθ(A,B) = max

(
sup
x∈A

dθ(x,B), sup
y∈B

dθ(y,A)

)
,

we define also θ(A,B) by θ(A,B) = max

(
sup
x∈A

θ(x,B), sup
y∈B

θ(y,A)

)
,

where θ(x,B) = inf
y∈B

θ(x, y).

Given F,G : X −→ B(X), for c, d ∈ [0, 1] and x, y ∈ X, we shall use the following
notation:

Nθ(x, y) = max{dθ(x, y), cdθ(x, Fx), cdθ(y,Gy), d2 (dθ(x,Gy) + dθ(y, Fx))}
for a sequence (xn), of elements from X, sometimes, for the sake of brevity, we shall

use the notation: dn = dθ(xn, xn+1), where n ∈ N.

Definition 1.3 ([17]). A function F : X −→ B(X), where (X, dθ) is a extended b-metric
space, is called closed if for all sequences (xn) and (yn) of elements from X and x, y ∈ X
such that lim

n→∞
xn = x, lim

n→∞
yn = y and yn ∈ F (xn) for every n ∈ N, we have y ∈ F (x).

Definition 1.4 ([17]). Given a extended b-metric space (X, dθ), the b-metric dθ is called
∗-continnuous if for every A ∈ B(X), every x ∈ X and every sequence (xn) of elements
from X such that lim

n→∞
xn = x, we have lim

n→∞
dθ(xn, A) = dθ(x,A).

Lemma 1.1 ([17]). Every sequence (xn) of elements from a extended b-metric space (X, d)
having the property that there exists γ ∈ [0, 1) such that

dθ(xn+1, xn) ≤ γdθ(xn, xn−1),

for every n ∈ N. If

lim sup
n,m→∞

θ(xn, xm) <∞, (1)

then (xn) is Cauchy.
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2. Main results

Theorem 2.1. Let (X, dθ) be a extended b-metric space and F,G : X → B(X) having the
property that there exist c, d ∈ [0, 1] and k ∈ [0, 1) such that:

Hθ(Fx,Gy) ≤ kNθ(x, y) for all x, y ∈ X. (2)

Then for every x0 ∈ X, there exists (xn) ⊂ X, x2n+1 ∈ Fx2n and x2n ∈ Gx2n−1 such that

dθ(x2n, x2n+1) ≤ βNθ(x2n, x2n−1) and dθ(x2n−1, x2n) ≤ βNθ(x2n−2, x2n−1) where β =
2k

1 + k
.

If lim sup
n,m→∞

kθ(xn, xm) < 1
d then:

(a) dθ(xn+1, xn) ≤ γdθ(xn, xn−1), γ ∈ [0, 1), for every n ∈ N∗,
(b) (xn) is Cauchy.

Proof. Let x0 ∈ X and x1 ∈ Fx0, us consider β = 2k
1+k , then using (2), we have

dθ(x1, Gx1) ≤ Hθ(Fx0, Gx1) ≤ kNθ(x0, x1).

According to the characterization of the lower bound we have for ε = 1−k
1+kHθ(Fx0, Gx1),

there exists x2 ∈ Gx1 such that

dθ(x1, x2) ≤ Hθ(Fx0, Gx1) +
1− k
1 + k

Hθ(Fx0, Gx1)

=
2

1 + k
Hθ(Fx0, Gx1)

≤ 2k

1 + k
Nθ(x0, x1)

= βNθ(x0, x1)

Since

dθ(x2, Fx2) ≤ Hθ(Fx2, Gx1) ≤ kNθ(x2, x1).

According to the characterization of the lower bound we have for ε = 1−k
1+kHθ(Fx2, Gx1),

there exists x3 ∈ Fx2 such that

dθ(x2, x3) ≤ Hθ(Fx2, Gx1) +
1− k
1 + k

Hθ(Fx2, Gx1)

=
2

1 + k
Hθ(Fx2, Gx1)

≤ 2k

1 + k
Nθ(x2, x1)

= βNθ(x2, x1)

In the same there exists x4 ∈ Gx3 such that

dθ(x3, x4) ≤ βNθ(x2, x3).

By recurrence, we construct a sequence (xn) such that x2n+1 ∈ Fx2n, and x2n ∈ Gx2n−1

which satisfies:

dθ(x2n, x2n+1) ≤ βNθ(x2n, x2n−1) and dθ(x2n−1, x2n) ≤ βNθ(x2n−2, x2n−1), n = 1, 2, 3, ... (3)

We put s = sup {θ(xn, xm), n,m ∈ N}.
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According to (3) we have:

d2n ≤ βNθ(x2n, x2n−1)

= βmax

{
dθ(x2n, x2n−1), cdθ(x2n, Fx2n), cdθ(x2n−1, Gx2n−1),

d
2 (dθ(x2n, Gx2n−1) + dθ(x2n−1, Fx2n))

}
≤ βmax

{
d2n−1, cd2n, cd2n−1,

d

2
dθ(x2n−1, x2n+1)

}
≤ βmax

{
d2n−1, cd2n, cd2n−1,

ds

2
(d2n−1 + d2n)

}
because (θ(x2n−1, x2n+1) ≤ s)

≤ βmax

{
d2n−1,

ds

2
(d2n−1 + d2n)

}
,

for every n ∈ N∗, where the justification of the last inequality is as follow :
if max{d2n−1, cd2n, cd2n−1,

ds
2 (d2n−1 + d2n)} = cd2n, then we get that

d2n ≤ βcd2n ≤ βd2n < d2n,which is a contradiction.
Consequently, d2n ≤ βd2n−1 or d2n ≤ β ds2 (d2n−1 + d2n), i.e d2n ≤ βd2n−1 or

d2n ≤ dsβ
2−dsβd2n−1 for every n ∈ N∗, thus d2n ≤ max{β, dsβ

2−dsβ }d2n−1, i.e

dθ(x2n+1, x2n) ≤ γdθ(x2n, x2n−1) ∀n ∈ N∗, where γ = max{β, dsβ

2− dsβ
} < 1. (4)

Similarly we find:

dθ(x2n, x2n−1) ≤ γdθ(x2n−2, x2n−1) ∀n ∈ N∗. (5)

According to (4) and (5) we have for everything n ∈ N∗ dθ(xn+1, xn) ≤ γdθ(xn, xn−1).
Hence the sequence (xn) satisfies (a). From Lemma 1.1 we deduce that it also satisfies

(b).

Theorem 2.2. Let (X, dθ) be a complete extended b−metric and F,G : X −→ B(X), such
that:

(i) there exist c, d ∈ [0, 1] and k ∈ [0, 1) such that
Hθ(Fx,Gy) ≤ kNθ(x, y) for all x, y ∈ X,

(ii) for every x0 ∈ X, there exists (xn) ⊂ X, x2n+1 ∈ Fx2n and x2n ∈ Gx2n−1 for every
n ∈ N.

If lim sup
n,m→∞

kθ(xn, xm) < 1
d , and any of the following conditions are satisfied:

(iii) F and G are closed,

(iv) dθ is ∗-continuous.

Then F and G have a common fixed point x ∈ X.
Moreover, if x is absolutely fixed for F or G (which means that F (x) = {x} or G(x) = {x}),
then the fixed point is unique.

proof.
Existence.

Based on (i) and (ii), according to Theorem 2.1, there exists a Cauchy sequence (xn) of
elements of X such that:

x2n+1 ∈ Fx2n and x2n ∈ Gx2n−1 for every n ∈ N. (6)

As the extended b-metric space (X, dθ) is complete, there exists x ∈ X such that lim
n→∞

xn = x.

(iii) Suppose that F and G are closed, according to (6) we see that x ∈ Fx and
x ∈ Gx, i.e F and G have a common fixed point x ∈ X.
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(iv) Suppose that dθ is ∗-continuous, according to (6), with the notation dθ(xn, x) =
δn we have

dθ(x2n+1, Gx) ≤ Hθ(Fx2n, Gx) ≤ kNθ(x2n, x)

≤ k max{δ2n, cdθ(x2n, x2n+1), cdθ(x,Gx),
d

2
(dθ(x2n, Gx) + dθ(x, x2n+1))}

because x2n+1 ∈ Fx2n

= k max{δ2n, cd2n, cdθ(x,Gx),
d

2
(dθ(x2n, Gx) + δ2n+1)}, (7)

for every n ∈ N.
Since lim

n→∞
δ2n+1 = lim

n→∞
δ2n = lim

n→∞
d2n = 0 and

lim
n→∞

dθ(x2n, Gx) = lim
n→∞

dθ(x2n+1, Gx) = dθ(x,Gx)

( as d is ∗-continuous and d2n ≤ θ(x2n, x2n+1)(δ2n + δ2n+1) and lim
n→∞

xn = x), letting

n −→∞ in (7), we get dθ(x,Gx) = 0, because if dθ(x,Gx) > 0, then

dθ(x,Gx) ≤ k max{cdθ(x,Gx),
d

2
dθ(x,Gx)}

≤ max{kc, kd
2
}dθ(x,Gx)

< dθ(x,Gx) because max{kc, kd
2
} < 1,

which is a contradiction, hence x ∈ Gx and G has a fixed point.
In the same way we find: x ∈ Fx and consequently F and G have a common fixed point
x ∈ X.

Unicity.
Suppose that F (x) = {x} and y ∈ X is another common fixed point of F and G, then by
(i) we have

dθ(x, y) ≤ Hθ(Fx,Gy) ≤ kNθ(x, y)

≤ k max{dθ(x, y),
d

2
(dθ(x, y) + dθ(y, x))}, because y ∈ Gy

≤ k max{dθ(x, y), dθ(x, y)} because d ≤ 1

= k dθ(x, y) < dθ(x, y).

which is a contradiction. Hence dθ(x, y) = 0 then x = y.
So x is the unique common fixed point of F and G.

Example 2.1. Let (X = [0, 1], dθ) be a complete extended b−metric space with
θ(x, y) = x+ y + 2 and dθ(x, y) = |x− y|2. We define
F,G : X −→ B(X), by Fx =

[
0, x4

]
, Gx =

[
0, x8

]
and
dθ(x, Fx) = |x− x

4 |
2 dθ(y,Gy) = |y − y

8 |
2 Hθ(Fx,Gy) = |x4 −

y
8 |

2.
(i) It is easy to see that F and G are closed.
(ii) We prove that F and G check

Hθ(Fx,Gy) ≤ 1

8
max

{
dθ(x, y), dθ(x, Fx), dθ(y,Gy),

1

2
(dθ(x,Gy) + dθ(y, Fx))

}
.

≤ 1

8
N1,1(x, y).

Indeed, we have the following situations:
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1) If x ≤ y
2 , then |x4 −

y
8 | =

y
8 −

x
4 = 1

4 (y2 − x) ≤ 1
4 |y − x|, from where

|x
4
− y

8
|2 ≤ 1

16
dθ(x, y) ≤ 1

8
max

{
dθ(x, y), dθ(x, Fx), dθ(y,Gy),

1

2
(dθ(x,Gy) + dθ(y, Fx))

}
.

2) If x ≥ y
2 , we have dθ(x,Gy) = |x− y

8 |
2. Then

|x
4
− y

8
| =

x

4
− y

8
=

1

4
(x− y

2
)

≤ 1

4
|x− y

8
|,

from where

|x
4
− y

8
|2 ≤ 1

16
dθ(x,Gy) ≤ 1

8
(
1

2
(dθ(x,Gy) + dθ(y, Fx)))

≤ 1

8
max

{
dθ(x, y), dθ(x, Fx), dθ(y,Gy),

1

2
(dθ(x,Gy) + dθ(y, Fx))

}
.

This implies

Hθ(Fx,Gy) ≤ 1

8
max

{
dθ(x, y), dθ(x, Fx), dθ(y,Gy),

1

2
(dθ(x,Gy) + dθ(y, Fx))

}
,

≤ 1

8
N1,1(x, y) for all x, y ∈ X.

(iii) For every x0 ∈ X we have lim
n,m→∞

1
8θ(xn, xm) = lim

n,m→∞
1
8 (xn +xm + 2) ≤ 4

8 < 1.

So all the conditions of Theorem 2.2 are satisfied, then 0 is the unique common ab-
solutely fixed point of F and G.

Corollary 2.1. Let (X, dθ) be a complete extended b−metric space where the condition (1)
is fulfilled and F,G : X −→ B(X), such that:

Hθ(Fx,Gy) ≤ kdθ(x, y) for all x, y ∈ X, (8)

where k ∈ [0, 1). Then there exists a sequence (xn) ⊂ X converges to some point x ∈ X such
that x2n+1 ∈ Fx2n and x2n ∈ Gx2n−1 for every n ∈ N. Also, x is a common fixed point of
F and G if any of the following conditions are satisfied:

(i) F and G are closed,

(ii) dθ is ∗-continuous.

Moreover, if x is absolutely fixed for F or G (which means that F (x) = {x} or G(x) = {x}),
then the fixed point is unique.

proof. (8) ⇒ (2), with c = d = 0. Let x0 ∈ X and x1 ∈ Fx0, let us consider β =
2k

1+k = γ, then there exists a sequence (xn) ⊂ X such that for every n ∈ N∗ dθ(xn+1, xn) ≤
γdθ(xn, xn−1). According to lemma 1.1 we have (xn) is a Cauchy sequence, so using the
same argument as in theorem 2.2, we deduce that x ∈ Fx ∩ Gx. Similarly from theorem
2.2, if x is absolutely fixed for F or G, then the fixed point is unique.

3. Consequences of the main result

From theorem 2.1, with θ = s constant we obtain theorem 3.1 [7]
From theorem 2.2, with θ = s constant we obtain theorem 3.3 and theorem 3.6 [7]
From theorem 2.1, if F = G = T , with θ = s constant we obtain theorem 2.1 [12]
From theorem 2.2, if F = G = T , with θ = s constant we obtain theorem 3.2 [12]
From corollary 2.1, if F = G = T , then we obtain theorem 4.8 [17]
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4. Application

In this section, we give existence theorem for Volterra-type integral inclusion. Let
X = C([0, 1],R) be the set of real continuous functions defined on [0, 1]. For x, y ∈ X, take
dθ :X ×X → R+ and θ : X ×X → [1,∞) given by

dθ(x, y) = sup
t∈[0,1]

|x(t)− y(t)|2 and θ(x, y) = |x(t)|+ |y(t)|+ 2. (9)

Then (X, dθ) is a complete extended b-metric space.
Consider the Volterra-type integral inclusion as

x(t) ∈
∫ t

0

F (t, u, x(u))du+ g(t), t ∈ [0, 1], (10)

where F : [0, 1] × [0, 1] × R −→ CV (R), such that Fx(t, u) = F (t, u, x(u)) is continuous
function for all (t, u) ∈ [0, 1] × [0, 1], x ∈ X and CV (R) denotes the family of nonempty
compact and convex subsets of R and g : [0, 1]→ R is continuous.

We can define a multivalued operator T : X −→ CV (X) by

Tx(t) =

{
v ∈ X : v ∈

∫ t

0

F (t, u, x(u))du+ g(t), t ∈ [0, 1]

}
. (11)

Suppose that the following condition is satisfied :
(H) For all x(.), y(.) ∈ X, t, u ∈ [0, 1], we have

Hθ (Fx(t, u), Fy(t, u)) ≤ e−τ |x(u)− y(u)|2 where τ > 0.

Then the integral inclusion (10) has a solution in X.
proof. We have to show that the operator T satisfies all conditions of corollary 2.1.
(i) Let x, y ∈ X and v ∈ Tx then there exists fx(t, u) ∈ Fx(t, u), for t, u ∈ [0, 1] such

that:

v(t) = g(t) +

∫ t

0

fx(t, u)du ∈ Tx(t), t ∈ [0, 1].

Also by hypothesis (H),

Hθ (Fx(t, u), Fy(t, u)) ≤ e−τ |x(u)− y(u)|2, ∀t, u ∈ [0, 1].

Then

dθ (fx(t, u), Fy(t, u)) ≤ Hθ (Fx(t, u), Fy(t, u)) ≤ e−τ |x(u)− y(u)|2, ∀t, u ∈ [0, 1].

Since dθ is continuous and Fy is compact then there exists f(t, u) ∈ Fy(t, u) such that:

dθ (fx(t, u), f(t, u)) ≤ e−τ |x(u)− y(u)|2, ∀t, u ∈ [0, 1],

from where

|fx(t, u)− f(t, u)|2 ≤ e−τ |x(u)− y(u)|2, ∀t, u ∈ [0, 1].

Define a multivalued operator R by

R(t, u) = Fy(t, u) ∩
{
w ∈ R, |fx(t, u)− w|2 ≤ e−τ |x(u)− y(u)|2

}
,

for all t, u ∈ [0, 1]. Since R is continuous operator with compact convex values, there exists
a continuous operator fy : [0, 1] × [0, 1] → R such that fy(t, u) ∈ R(t, u) for all t, u ∈ [0, 1].
Thus we get

h(t) = g(t) +

∫ t

0

fy(t, u)du ∈ Ty(t), t ∈ [0, 1],
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and for each t ∈ [0, 1], we have

dθ(v(t), T y(t)) ≤ dθ(v(t), h(t)) = sup
t∈[0,1]

|v(t)− h(t)|2

≤ sup
t∈[0,1]

(∫ t

0

|fx(t, u)− fy(t, u)|du
)2

≤ sup
t∈[0,1]

[(∫ t

0

du

) 1
2
(∫ t

0

|fx(t, u)− fy(t, u)|2du
) 1

2

]2

= sup
t∈[0,1]

t.

∫ t

0

|fx(t, u)− fy(t, u)|2du ≤ e−τ sup
t∈[0,1]

∫ t

0

|x(u)− y(u)|2du

≤ kdθ(x(t), y(t)), where k = e−τ ∈ (0, 1).

Since v(t) is arbitrary, we have

sup
v∈Tx

dθ(v, Ty) ≤ kdθ(x, y), ∀x, y ∈ X. (12)

Similarly, we get

sup
h∈Ty

dθ(h, Tx) ≤ kdθ(x, y), ∀x, y ∈ X. (13)

From (12) and (13), we get Hθ(Tx, Ty) ≤ kdθ(x, y), ∀x, y ∈ X.
(ii) Let’s show that T is closed.
Let x, y ∈ X and (xn), (yn) two sequences of element X with yn ∈ Txn such that

lim
n→∞

xn = x et lim
n→∞

yn = y. We prove that y ∈ Tx.

We have yn ∈ Txn then there exists fxn(t, u) ∈ Fxn(t, u) for everything t, u ∈ [0, 1]
such that

yn(t) = g(t) +

∫ t

0

fxn(t, u)du ∈ Txn(t), t ∈ [0, 1].

According to the hypothesis (H), ∀t, u ∈ [0, 1] we get:

dθ (fxn(t, u), Fx(t, u)) ≤ Hθ (Fxn(t, u), Fx(t, u)) ≤ e−τ |xn(u)− x(u)|2,
≤ e−τdθ (xn, x) .

Since dθ is continuous and Fx is compact then there exists f(t, u) ∈ Fx(t, u) such that:

dθ (fxn(t, u), f(t, u)) ≤ e−τdθ (xn, x) , ∀t, u ∈ [0, 1].

So lim
n→∞

fxn(t, u) = f(t, u).

We put h(t) = g(t) +
∫ t

0
f(t, u)du ∈ Tx(t), t ∈ [0, 1].

for all t ∈ [0, 1], we have

dθ(yn(t), h(t)) = sup
t∈[0,1]

|yn(t)− h(t)|2

≤ sup
t∈[0,1]

(∫ t

0

|fxn(t, u)− f(t, u)|du
)2

≤ sup
t∈[0,1]

[(∫ t

0

du

) 1
2
(∫ t

0

|fxn(t, u)− f(t, u)|2du
) 1

2

]2

≤ dθ (fxn(t, u), f(t, u)) .

Therefore lim
n→∞

yn(t) = h(t), ∀t ∈ [0, 1]. By the uniqueness of the limit, we find

y(t) = h(t) ∈ Tx(t). ∀t ∈ [0, 1]. From where y ∈ Tx.
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(iii) Let x0 ∈ X and x1 ∈ Tx0 then there exists fx0(t, u) ∈ Fx0(t, u), for t, u ∈ [0, 1]
such that:

x1(t) = g(t) +

∫ t

0

fx0
(t, u)du ∈ Tx0(t), t ∈ [0, 1].

Also by hypothesis (H),

Hθ (Fx0
(t, u), Fx1

(t, u)) ≤ e−τ |x0(u)− x1(u)|2, ∀t, u ∈ [0, 1].

Then

dθ (fx0
(t, u), Fx1

(t, u)) ≤ Hθ (Fx0
(t, u), Fx1

(t, u)) ≤ e−τ |x0(u)− x1(u)|2, ∀t, u ∈ [0, 1].

Since dθ is continuous and Fx1
is compact then there exists f1(t, u) ∈ Fx1

(t, u) such that:

dθ (fx0
(t, u), f1(t, u)) ≤ e−τ |x0(u)− x1(u)|2, ∀t, u ∈ [0, 1],

from where

|fx0
(t, u)− f1(t, u)| ≤ e

−τ
2 |x(u)− y(u)|, ∀t, u ∈ [0, 1].

Define a multivalued operator R1 by

R1(t, u) = Fx1
(t, u) ∩

{
w1 ∈ R, |fx0

(t, u)− w| ≤ e
−τ
2 |x0(u)− x1(u)|

}
,

for all t, u ∈ [0, 1]. Since R1 is continuous operator with compact convex values, there exists
a continuous operator fx1

: [0, 1]× [0, 1]→ R such that fx1
(t, u) ∈ R1(t, u) for all t, u ∈ [0, 1].

Thus we get

x2(t) = g(t) +

∫ t

0

fx1(t, u)du ∈ Tx1(t), t ∈ [0, 1],

and for each t ∈ [0, 1], we have

|x2(t)− x1(t)| =
∣∣∣∣∫ t

0

(fx1
(t, u)− fx0

(t, u))du

∣∣∣∣ ≤ e−τ
2 sup
t∈[0,1]

|x1(t)− x0(t)|.

From where

sup
t∈[0,1]

|x2(t)− x1(t)| ≤ e
−τ
2 sup
t∈[0,1]

|x1(t)− x0(t)|.

By recurrence, we construct a sequence (xn) such that xn+1 ∈ Txn, which satisfies :

sup
t∈[0,1]

|xn+1(t)− xn(t)| ≤ e
−τ
2 sup
t∈[0,1]

|xn(t)− xn−1(t)| n = 1, 2, 3, ...

from where for everything n ∈ N∗, we have

sup
t∈[0,1]

|xn+1(t)− xn(t)| ≤ e
−nτ

2 sup
t∈[0,1]

|x1(t)− x0(t)| (14)

Now we have to show that (xn) is a Cauchy sequence. Let m,n ∈ N∗, then

|xn(t)− xn+m(t)| ≤ |xn(t)− xn+1(t)|+ ...+ |xn+m−1(t)− xn+m(t)|, ∀t ∈ [0, 1]. (15)

According to (14) and (15) we have

|xn(t)− xn+m(t)| ≤
(
e

−nτ
2 + e

−(n+1)τ
2 + ...+ e

−(n+m−1)τ
2

)
sup
t∈[0,1]

|x1(t)− x0(t)|

= e
−nτ

2

(
1− e−mτ

2

1− e−τ
2

)
sup
t∈[0,1]

|x1(t)− x0(t)|

≤ e
−nτ

2

1− e−τ
2

sup
t∈[0,1]

|x1(t)− x0(t)|.
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from where lim
n→∞

|xn(t) − xn+m(t)| = 0 for m ∈ N∗. Then (xn) is a Cauchy sequence. As

(X, dθ) is complete, there exists l ∈ X such that lim
n→∞

xn(t) = l(t) ∀t ∈ [0, 1].

Consequently lim sup
n,m→∞

θ(xn, xm) = lim sup
n,m→∞

(|xn(t)|+ |xm(t)|+ 2) = 2|l(t)|+ 2 <∞.

So all the conditions of corollary 2.1 are satisfied, then the integral inclusion (10) has
a solution in X.
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