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FLOWS ACCOMPANIED BY NORMAL SHOCK 
CONSIDERING THE VARIATION WITH TEMPERATURE 

OF THERMODYNAMIC FUNCTIONS 

Corneliu BERBENTE1, Daniel CRUNTEANU2, Maria-Ramona DINU3 

Efectul variaţiei funcţiilor termodinamice cu temperatura este important şi 
nu poate fi neglijat în calculele cu acurateţea cerută, spre exemplu în problemele 
aerospaţiale. Deoarece căldurile specifice ale gazelor uzuale cresc cu temperatura, 
temperatura reală după undele de şoc poate fi cu sute de grade Kelvin mai scăzută 
la numere Mach mari. Diferenţe la fel de mari se constată şi în cazul temperaturilor 
de stagnare. Creşterile importante de entropie duc la pierderi semnificative de 
presiune. Metoda de calcul propusă permite păstrarea relaţiilor analitice din cazul 
căldurilor specifice constante, prin introducerea unor numere Mach echivalente. În 
acelaşi timp, calculele sunt simplificate, fiind de rezolvat doar o ecuaţie într-o 
singură necunoscută. Sunt prezentate aplicaţii şi comparaţii pentru aer în intervalul 
de numere Mach (1.3; 8). 

 
The effect of variation of the thermodynamic functions with temperature for 

the intensity of normal shock waves is important and cannot be neglected for an 
acurate calculation, as required, for example, in aerospace problems. Because the 
specific heat of usual gases increases with temperature, the real temperature after 
the shock wave can be smaller with hundreds of Kelvin degrees at higher Mach 
numbers. The same large differences are in the stagnation temperatures. Big 
differences exist in the entropy variation leading to much larger pressure losses. The 
proposed method of calculation was able to preserve the analytical relations from 
the constant caloric capacities, in terms of new introduced equivalent Mach 
numbers. At the same time, the calculation is simplifieed, only one unknown 
equation having to be solved. Applications and comparisons are presented for air in 
the Mach number interval (1.3; 8). The gas dissociation and/or ionisation at very 
high temperature were, for the moment neglected.   

 
Keywords: equivalent Mach number; dimensionless quantities, mean stagnation  
                    temperature; entropy average caloric capacity.  
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1. Introduction 

One studies the 1D flows of an ideal gas initially at supersonic speeds. The 
initial stationary state 1 is a gas mixture, having a constant velocity u1, at 
temperature T1 and pressure p1. The final state 2 is a gas of the same composition 
at subsonic regime with physical parameters modified due to a normal shock wave 
and depending on the initial state. At very high initial Mach numbers a gas 
dissociation, ionization etc. are possible; however this case is not studied here. 
The velocity, temperature and pressure after the shock wave are u2, T2 and p2, 
respectively. 

The overall transformation is considered at constant total mass enthalpy. 
The viscous effects are concentrated in the shock wave structure. 

2. The governing equations 

The transformation of the initial gas mixture from state 1 to the final 
mixture (state 2) (Fig.2.1) is subjected to the laws of mass, momentum and energy 
conservation, written as follows [1;2;8]: 

                                    1 1 2 2( )u u massρ ρ= ;                                          (2.1) 

   2 2
1 1 1 2 2 2 ( )p u p u momentum+ = +ρ ρ ;                 (2.2) 

   ( ) ( )2 2
1 1 1 2 2 2

1 1 ( )
2 2

h T u h T u energy+ = + .           (2.3) 

In the above equations, 1ρ , 2ρ  are gas mixture densities and 1h , 2h  mass 
enthalpies. 

One replaces the enthalpy h2 ( T2 ) as follows: 
     ( ) ( ) ( ) ( )( ) ( ) ( ) ( )2 2 2 1 2 2 2 1 2 1 2 1 2 1 2,pmh T h T h T h T h T T T C T T= + − = + − .     (2.4)  
where Cpm2(T1,T2) represents the mean specific caloric capacity at constant 
pressure, for the temperature interval [ 1 2,T T ]. 

Because the gas mixture composition is unchanged within large 
temperature intervals, one has: 

   ( ) ( )1 1 2 1 0,h T h T− =         (2.5) 
and the energy equation becomes: 

                                           ( ) ( )2 2
2 1 2 1 1 2 1 2 2 2

1 1, ,
2 2pm pmc T T T u c T T T u+ = + .    (2.6) 
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Fig.2.1. 1-D supersonic flow with normal shock wave 

 
By introducing the ratios: ratio of specific volumes τr, the pressure ratio pr 

and the temperature ratio Tr, defined by: 

   1 2 2

2 1 1
; ;r r r

p Tp T
p T

= = =
ρτ
ρ

,                  (2.7) 

from conservation laws one obtains: 

   ( )rr mp τ−+= 11                  (2.8-a) 

   ( )1

2
1 1r r r

RT m
R

⎡ ⎤= + −⎣ ⎦τ τ     (2.8-b) 

where R1, R2 are the gas mixtures constants. 
The Clapeyron equation was also used; m  is a dimensionless mass flow 

parameter given by: 

  
( )

( )
2 1 121

1 1 1
1 1 1 1 1

; p

p

C Tvm k M k
R T C T R

= = =
−

;      (2.9) 

k1 is the ratio of specific heats in state 1 and M1 the corresponding Mach number. 
For a given flow rate parameter, m , for τr one gets the quadratic equation: 

  ( )22 2 2

2 1 2
1 1 0

2 2r r
pm pm

R R mRm m
C R C

⎛ ⎞
− − + + + =⎜ ⎟⎜ ⎟

⎝ ⎠
τ τ    (2.10) 

If the gas composition is unchanged, one may write: 
    1 2R R R= = .                 (2.11) 
Depending on the sign of the discriminant, Δ, of the equation (2.10) given 

by: 

  ( )2 2 2 2

2 1 2
1 4 1

2 2pm pm

R R mRm m
C R C

⎛ ⎞ ⎡ ⎤
Δ = + − − +⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

   (2.12) 

u1 u2

ρ1 ρ2

p1 p2

M1>1 M2<1
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one obtains, for a chosen m : a) 2 solutions; b) 1 solution and c) no solution. 
These possibilities are studied in the following. 

3. The case of unchanged gas composition 

In this case, one has the same mixture in the two states 1 and 2. The 
previous relations are simplified, by writing: 

   1 2R R R= = ;                 (3.1-a) 

   ( )2 1 2, ; pm
pm pm m

pm

C
C T T C k

C R
= =

−
.  (3.1-b) 

The equation (2.10) becomes: 

                    
( )

( )
( )

( )
2 2 1 2 1

0
1 1

m m m
r r

m m

k m k m k
m k m k

+ + −
− + =

+ +
τ τ   (3.2-a) 

or: 

   ( ) ( )
( )

2 1
1 0

1
m m

r r
m

k m k
m k

⎛ ⎞+ −
− − =⎜ ⎟⎜ ⎟+⎝ ⎠

τ τ    (3.2-b) 

Therefore, in case the gas composition is unchanged, there are always two 
solutions: 

a)  a trivial solution when  the gas flow remains unmodified: 
    1; 1; 1r r rp T= = =τ .                  (3.3) 
b) a non trivial solution: 
     

  
( )

( ) ( )2
1 1

2 1
;

1
m m

r
m

k m k
m k M

m k
+ −

= =
+

τ                           (3.4-a) 

  
( )2 1

;
1

m
r r r r

m

m k
p T p

k
− −

= =
+

τ .                          (3.4-b) 

A discussion via the mass rate parameter 2
1 1m k M=  is interesting. Thus: 

1) for 1mm k> >  one obtains a shock wave: 

   21
11; 1s m

m

km k M
k

> > >                (3.5-a) 

   1; 1; 1r s r s r sp T< > >τ ,     (3.5-b) 
the index s indicating a state with shock wave. 
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An interesting fact can be pointed out: the condition for a shock wave (3.5-
a) is not M1>1 as for constant caloric capacities with temperature: an equivalent 
Mach number of the initial flow, M1e is obtained from (3.5-a), namely: 

   1
1 1 1 2 1; 1;e e

m

kM M M T T
k

= > > ,                  (3.6) 

and the shock wave occurence condition is M1e>1. As for the most  gases the ratio 
of specific heats, k, decreases with temperature, one obtains: 

  2 1T T>  ; ( )1 1 1 1 2; ; ,m e m mk k M M k k T T> > = .     (3.7) 
Therefore, in principle, a shock wave could be produced even for M1 < 1 if 

the ratio k1/km is sufficiently large. In fact, k1/km is pretty close to unity (k1/km>1, 
T2>T1); on the other hand, the entropy source should be non-negative. In fact, 
only in case of reacting flows one finds a value 2eM =1, with 2M < 1 (so called 
Chapman-Jouguet detonation wave). 

2) a weak wave ( Mach wave) can be obtained for M1e=1, or: 

  21
1; 1; 1.m r r r

m

km k M p T
k

= = = = =τ    (3.8-a) 

Because Tr=1 (T1=T2), one yields: 
   1 1; 1mk k M= = ,     (3.8-b) 

that is the Mach wave occurrence is still M1=1; 
3) an expansion wave is theoretically possible for: 
   0 ; 1; 1m r rm k p T< < < <     (3.9-a) 

   21
1 11; m

m

k M k k
k

< <                 (3.9-b) 

Because Tr<1, (T2<T1), it results km> k1. If  the initial flow is supersonic, 
the conditions (3.9) give: 

   ( )2
1 1

1
1 ;m

m
kM k k
k

< < >     (3.9-c) 

therefore  a small interval of  M1 is possible to obtain an expansion. 
If the initial flow is subsonic (M1<1) the condition (3.9-b) seems easier to 

be satisfied, however a wave can travel only in the neighbourhood of the speed of 
sound . 

Remark.1 The above discussed cases require however some additional 
conditions to be actually produced. For example, a shock wave requires a 
downstream obstacle or a downstream narrowing of the channel. 

Similarly, to produce a Mach wave  (both for compression or expansion) a 
small perturbation of the flow is necessary. 
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3.1. Expressions in terms of equivalent Mach numbers 

The above relations for density, pressure and temperature ratios can be 
written in terms of the equivalent Mach number  M1e [4]. 

Thus one obtains: 
- for the pressure ratio: 

                    ( ) 12 2 2
1 1 11 ; ;r m e m e

m

k
p M M M

k
= + − =χ χ           (3.10-a) 

- for the density ratio: 

                                       2
1

1 ,m
r m

eM
−

= +
χ

τ χ r r rT p= τ ,                   (3.10-b) 

where one has denoted:  

                            [ ]1, 1
1 ,
1

m
m m r m r r

m

k T T T p
k

− ⎡ ⎤= = =⎣ ⎦+
χ χ χ τ .           (3.10-c) 

Determination of the Mach number M2 
  
In order to determine the final state Mach number M2, one writes: 

  
22 2 2

2 2 1 1
2

2 2 2 2 2 2 2 2

r r

r r

u v m mM
k R T k RT k T k p

⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠

ρ τ τ
ρ

,      (3.11) 

2k corresponding to the temperature 2T . 
By replacing the ratios τr,  pr from (3.4), finally, it yields: 

  ( )
( )( )

2
2

2

2 1

2 1
m m

m

k m k
M

k m k

+ −
=

− −
                        (3.12-a) 

or: 

 
2

2 2
1 2

1 1 11 1
2 2 2

m m m

e e

k k k
M M

⎛ ⎞⎛ ⎞− − +⎛ ⎞+ + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
,            (3.12-b) 

M1e and M2e being the equivalent Mach numbers of the two states, in case of 
transformation without change of gas composition:  

  2 2 2 21 2
1 1 2 2;e e

m m

k kM M M M
k k

= = .                (3.13) 

    One can see the analogy with the case  of constant specific heats  [1;2;8] 
where: 

  ( )1 2 1 2 1 1 2 2, ; ;m e ek k k T T M M M M= = = = .   (3.14) 
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4. Calculation of the caloric capacities, enthalpies and entropies 

By introducing the temperature ratio, dim dim/ ; 1000 ,T T T K= Δ Δ =θ a 
temperature interval [0,2;6], and by writing the dimensionless caloric capacity 

( ) ( )p cC F=θ θ  as  functions on intervals 1 2[0.2 ;1]; [1;6]I I= =  as follows: 

                  
( )

( ) ( )
( )
( )

1 1

2 2

, [0.2 ;1];

, [1;6];
cp

p c
u c

F if IC
C F

R F if I

⎧ ∈ =⎪≡ = =⎨
∈ =⎪⎩

θ θθ
θ θ

θ θ
     (4.1) 

where the caloric capacity functions ( ) , 1, 2,c iF i =θ  are: 

( )
7

13

21

1, [0.2 ;1];
, 1;7 ,

2, [1;6];
j

ci j i
j

if I
F j i

if I
−

=

∈ =⎧
= = =⎨ ∈ =⎩
∑

θ
θ α θ

θ
                  (4.1-a) 

one can introduce the coefficients , 1;7 , 1;2j i j i= =α  as pure numbers. The only 
reference to Kelvin degree appears in connection with the temperature interval 

dimTΔ . In particular, for dimTΔ  = 1000K, one has the advantage of maintaining 
the mantissa of the NASA [6] existing data. Only the exponents are modified, the 
difference in orders of magnitude being reduced up to 18 orders and a few other 
small inconveniences are thus avoided. 

 
The dimensionless enthalpy, ( )H θ , is written as follows : 

                 ( )
( ) ( )

( ) ( )
1 1 1

2 2 2

, [0.2 ;1];

, [1;6];

h ref h

h ref h

b F if I
H

b F if I

⎧ + ∈ =⎪=⎨
+ ∈ =⎪⎩

θ θ θ
θ

θ θ θ
      (4.2-a) 

where ( ) , 1;2hiF i=θ , are the enthalpy functions on intervals, given by the 
relations: 

( ) 12
2

22

1, [0.2 ;1];
ln , 1;7 ,

2, [1;6];2
j i j

hi i
j

if I
F j i

if Ij
−

≠

∈ =⎧
= + = =⎨ ∈ =− ⎩
∑

α θ
θ θ α θ

θ
 

(4.2-b) 
The dimensionless coefficients ( ) , 1;2hi refb i=θ , are: 

 ( ) ( ) ( )1 1 2 1 1 2( ) ( ); (1) (1).h ref ref h ref h ref h ref h hb H F b b F F= − = + −θ θ θ θ θ   

(4.2-c) 
In this way one obtains for the dimensionless enthalpy, ( )H θ , more 

compact if- expressions. 
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The average caloric capacity at constant pressure for the temperature 
interval [ 0,θ θ ], ( )0 ,pmC θ θ , and its dimensionless 

correspondent, ( )0 ,pmC θ θ are “3- if”- functions:  
          

( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 1 0 0 1

0 0 1 2 2 1 0 0 1 2

2 2 0 0 2

, , ;

( ) ( , ) 1 1 , , ;

, , ;

h h

pm h h h h

h h

F F if I

C F F F F if I I

F F if I

⎧ − ∈
⎪

− = − + − ∈ ∈⎨
⎪ − ∈⎩

θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ

 

    (4.3) 
                                       ( ) ( )0 0, ,pmpm uC R C=θ θ θ θ .                     (4.3-a) 

An average ratio of specific heats, 0( , )mk θ θ , has also been defined by: 

                                   
( )

( )
0

0
0

,
( , )

, 1
pm

m
pm

C
k

C
=

−

θ θ
θ θ

θ θ
.                              (4.4) 

The dimensionless entropy. 
As regards the gas entropy, this is a function, ( ),S pθ , of both 

temperature and pressure for any gas. For the molar entropy variation, 
( ),S pθ and its dimensionless correspondent, ( ),S pθ , one applies the 

relation[7]: 

      ( ) ( ) ( ), , ln ,s ref ref s
ref

pS p b p F
p

⎛ ⎞
= + − ⎜ ⎟⎜ ⎟

⎝ ⎠
θ θ θ                      (4.5) 

where this time ( ),s ref refb pθ and ( )sF θ are interval functions. One writes: 

                               
( )
( )

1 1

2 2

, [0.2 ;1];
( )

, [1;6];
s

s
s

F if I
F

F if I

⎧ ∈ =⎪= ⎨
∈ =⎪⎩

θ θ
θ

θ θ                    (4.6) 

with: 

                  ( )
7

3
3

3
ln , 1;7 , 1;2

3
j i j

si i
j

F j i
j

−

≠
= + = =

−∑
α

θ θ α θ ;            (4.6-a) 

   
( ) ( )
( )

1 1 2

1 1 2

, ( , ) ( ) ; ,

, (1) (1).

s ref ref ref ref s ref s ref ref

s ref refr s s

b p S p F b p

b p F F

= − =

= + −

θ θ θ θ

θ
       (4.6-b) 

  In connection with the entropy variation with temperature, one has 
defined a referred to entropy average caloric capacity at constant pressure, 
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( )0 ,pmsC θ θ , for the temperature interval [ 0,θ θ ], and its dimensionless 

correspondent, ( )0 ,pmsC θ θ :  
               

( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 1 0 0 1

0 1 2 2 1 0 0 1 2
0

2 2 0 0 2

, , ;

( , ).ln 1 1 , , ;

, , .

s s

pms s s s s

s s

F F if I

C F F F F if I I

F F if I

⎧ − ∈
⎪

= − + − ∈ ∈⎨
⎪ − ∈⎩

θ θ θ θ
θθ θ θ θ θ θ
θ

θ θ θ θ

      

 (4.6-c) 
                                       ( ) ( )0 0, ,pmspms uC R C=θ θ θ θ .                  (4.6-d) 

 A referred to entropy average ratio of specific heats, 0( , )msk θ θ , was also 
defined by: 

                                     
( )

( )
0

0
0

,
( , )

, 1
pms

ms
pms

C
k

C
=

−

θ θ
θ θ

θ θ
.                         (4.7) 

The coefficients , 1;7 , 1;2,j i j i= =α are given in [3]. In dimensional form, 
these coefficients are given in [6]. 

5. Applications 

For calculations, one starts with two estimates of the temperature θ2, in 
order to obtain a sign change in the temperature function (3.4-a or 3.10-b) and 
apply a chord method. The value τr const is always an overestimation. Thus one has 
only to solve one variable equations. For M1= 8, the extension of formulae in 
chapter 4 to the temperature interval [6;20], as given in Ref. [3] was necessary. 

In Table 5.1, a comparison for the main parameters in case of constant and 
variable specific heats is given. The fluid is air; and the equations (3.4) are 
applied. 

As one can see, the effect of the specific heat variation with temperature is 
important for higher Mach numbers (M1>2), depending on the initial gas 
temperature θ1, as well. Two initial temperatures, 300 K (θ1 = 0.3; 1k = 1.4) and 
600 K (θ1 = 0.6; 1k = 1.37575) were selected.  

Table 5.1(Air) 
Flow and thermodynamic parameters at normal shock 

M1 θ1 M1e pr const pr var 2constθ  2 varθ  τrconst τrvar 

 
1.3 

0.3 1.300462 1.8050 1.80614 0.35726 0.35721 0.659763 0.65926 
0.6 1.302940 1.8050 1.80645 0.71452 0.70792 0.659763 0.65313 

 
2 

0.3 2.004028 4.5000 4.51283 0.50625 0.50454 0.375000 0.37267 
0.6 2.015098 4.5000 4.52222 1.0125 0.97664 0.375000 0.35994 
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3 

0.3 3.021579 10.3333 10.4280 0.80370 0.78743 0.25926 0.25170 
0.6 3.043616 10.3333 10.4540 1.60741 1.45464 0.25926 0.23645 

 
5 

0.3 5.100631 29.000 29.6990 1.74000 1.565978 0.20000 0.17998 
0.6 5.125082 29.000 29.6516 3.48000 2.942780 0.20000 0.16695 

 
8 

0.3 8.265574 74.500 77.3895 4.01601 3.401180 0.179687 0.14739 
0.6 8.268567 74.500 76.8554 8.03203 6.382471 0.179687 0.13847 

 
The differences in the final temperature behind the shock wave – that can 

reach hundreds of Kelvin degrees – is increase with the initial temperature θ1  At 
Mach number M1 = 3, for example, the difference in the final temperature  T2 is 
152.77 K for T1 = 600 K and only 16.27 K for T1 =300K. As regards the pressure 
jump, there is some increasing due to the specific heat variation with temperature, 
but less than 1.5% at M1 = 3. The equivalent Mach numbers are slowly larger than 
the current Mach numbers, the increment being larger at larger initial 
temperatures. 

   In Table 5.2, the enthalpy-average capacity pmC (eqs.4.3), the entropy-

average capacity pmsC (eqs.4.6-c) and the corresponding ratios mk (eq.4.4) and 

msk (eq.4.7) for the same initial Mach numbers and temperatures as in Table 5.1 
are given. In addition, the Mach numbers behind the shock wave, M2, are also 
given. 

As one can see, it results pmC > pmsC , and mk < msk , that is the 
isentropic exponent is larger then the enthalpy-average capacities ratio. 

Table 5.2 (Air) 
Flow and thermodynamic parameters at normal shock 

M1 θ1 pmC  mk  M2e M2 pmsC  msk  

 
1.3 

0.3 3.506705 1.398929 0.785687 0.785387 3.506504 1.398961 
0.6 3.706018 1.369546 0.783454 0.774886 3.704776 1.369716 

 
2 

0.3 3.536114 1.394303 0.575895 0.574723 3.532327 1.394893 
0.6 3.815236 1.355209 0.568510 0.559342 3.803014 1.356759 

 
3 

0.3 3.631567 1.380001 0.469440 0.466075 3.606006 1.383728 
0.6 3.970876 1.336601 0.457743 0.447259 3.930077 1.341287 

 
5 

0.3 3.896604 1.345231 0.397073 0.389229 3.785813 1.358961 
0.6 4.231895 1.309415 0.384565 0.371916 4.122542 1.320251 

 
8 

0.3 4.211185 1.311411 0.360719 0.349121 3.984740 1.335037 
0.6 4.478026 1.287519 0.351019 0.336623 4.288511 1.304088 
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5.1 The state of stagnation. Pressure losses through normal shock 
waves  

The state of stagnation is a state corresponding to null velocity. From this 
condition and from the equation of energy (2.3) one gets the stagnation 
temperature *T or *θ : 

            ( ) ( ) ( ) ( )
1

*2
1 1 1 1 1 1 1 1

1 * ; * ( ) .
2

T
pT

h T u h T h T h T c T d T+ = = + ∫      (5.1) 

 By introducing the average specific heats, one obtains for the two states: 

                      

( ) ( )2

**
* 2 * 2 21 1
1 1 1*1 1

* *
1 2 1 2

1, * , * *; 1;2,
2

11 ; ,
2

*; ( ) ( ) ,

pmi i i i pmi i

m
e e

m

p p

c T T T u c T T T i

k kM M M
k

T T T c T c T

+ = =

−
= + =

= = =

θ
θ

        (5.1-a) 

the two stagnation temperatures being equal as the gas composition is unchanged. 
As regards the pressure at stagnation state, by definition, one takes 

isentropic gas evolutions between the temperatures , 1;2,iT i = and *T , the 

isentropic exponent being ( , *); 1;2msi ik T T i = ; (see (4.7)). 
By denoting: 

                 * *( , *) ; ( , *) , 1;2
msi p m s imsi i i pmsik T T k C T T C i= = = ,         (5.2) 

one can write the ratio of stagnation pressures under the form:                                 

                         
** */ ( / ) , 1;2pmsiC

i i ip p i= =θ θ .                                     (5.3) 
The ratio of stagnation pressure is then: 

                        
* *

2 1* * * *
2 1 2 1/ ( / ) ( / )pms pmsC C

rp p p= θ θ θ θ ,                   (5.3-a) 
the entropy variation being given by the equation: 

                              2 1ln ( / ) ; /pmsC
r r rS T p TΔ = =θ θ ,                             (5.4) 

Thus three entropy average heat capacities: ( , *) , 1;2p m s i iC T T i = , and 

( )1 2,pmsc T T  are involved. 

We also introduce an average stagnation temperature, *
aT , defined bellow: 
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( ) ( )2 *

1 2 1 2

*
2
1

1

1, , , 1; 2 ,
2

11 ;
2

pm i i pm a

a m
e

c T T T u c T T T i

k M

+ = =

−
= +

θ
θ

             (5.5) 

by using the average specific heat ( )1 2,pmc T T . In terms of the average stagnation 

temperature, average stagnation pressures, * , 1;2,iap i = can also be defined, and 
their ratio can be simpler expressed, as follows: 

                                * *
2 1/ ; .S

a ap p e−Δ= =σ σ                                       (5.6) 
where σ  is a pressure loss coefficient depending on the entropy variation through 
the shock wave only.  

In Table 5.3 the ratios of the  stagnation temperatures *
1/θ θ and *

1/aθ θ , 

the variation of the dimensionless entropy, SΔ , and the ratios of the stagnation 
pressures after  and before the shock wave jump, * *

2 1/p p , (representing the 
pressure losses through the normal shock wave) are compared for constant and 
variable caloric capacities. One can see that the two stagnation temperatures, 

*θ and *
aθ are very closed; the differences do not exceed 1% even for high Mach 

numbers (M1 = 8). In exchange, some formulae are much simpler in terms of the 
mean stagnation temperature. 

Table5.3 (Air) 
Flow and termodynamic parameters at normal shock. Comparisons for constant [5] and 

variable caloric capacities 
M1 θ1 *

1( / )cθ θ
 

*
1 var( / )θ θ

 

*
1 var( / )aθ θ

 
ctSΔ  varSΔ  * *

2 1 var( / )p p
 

* *
2 1 var( / )a ap p

 

 
1.3 

0.3 1.3380 1.336689 1.337337 0.02084 0.020897 0.979314 0.9793198 

0.6 1.3380 1.310915 1.310917 0.02084 0.021411 0.978766 0.9788166 
 

2 
0.3 1.8000 1.789822 1.791787 0.32729 0.329447 0.719166 0.7193214 

0.6 1.8000 1.717380 1.721187 0.32729 0.343819 0.708618 0.7090573 
 

3 
0.3 2.8000 2.729000 2.734697 1.11369 1.135309 0.320994 0.3213228 

0.6 2.8000 2.551240 2.559068 1.11369 1.209683 0.297640 0.2982918 

 
5 

0.3 6.0000 5.468163 5.490853 2.78521 2.954786 0.051791 0.0520898 

0.6 6.0000 5.053860 5.063632 2.78521 3.204330 0.040444 0.0405861 
 

8 
0.3 13.800 11.61501 11.63777 4.76912 5.350805 4.7164D-3 4.7443D-3 

0.6 13.800 10.81894 10.83111 4.76912 5.799841 3.0178D-3 3.0280D-3 
 

One obtains lower stagnation temperatures for variable caloric capacities, 
the diminution being more important for larger initial temperature of gas. 
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As regards the entropy, at lower initial temperatures the adverse effect of 
pressure increase and isentropic exponent increase leads to a slightly smaller 
entropy growth, as one can also see from the formula (5.4). 

6. Conclusions 

The effect of the variation of the specific heats with temperature on the 
intensity of normal shock wave is important, leading to large differences in the 
temperature values and pressure losses, for higher Mach numbers (M1 >2), 
depending on the initial gas temperature θ1, as well. Although the expressions of 
the caloric capacities, enthalpies and entropies as functions of temperature are 
rather complicated, the main analytical formulas for pressure, density etc. ratios 
are preserved in terms of the equivalent Mach numbers introduced by authors 
[3;4]. The calculations  now necessary in terms of the new introduced parameters 
are simplified. One recommends the use of dimensionless parameters. 

The extension of the presented study for the case when the gas 
composition changes is possible in terms of the  defined equivalent parameters.  

For M1 = 8, the air properties were calculated by using NASA values for 
oxygen and nitrogen at temperatures higher the 6000K. The dissociation, 
ionization etc. at high temperatures were for the moment neglected. 

An average stagnation temperature and an average stagnation pressure 
were also defined presenting some advantages in order to simplify the calculation. 
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