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FLOWS ACCOMPANIED BY NORMAL SHOCK
CONSIDERING THE VARIATION WITH TEMPERATURE
OF THERMODYNAMIC FUNCTIONS

Corneliu BERBENTE!, Daniel CRUNTEANU?, Maria-Ramona DINU?

Efectul variatiei functiilor termodinamice cu temperatura este important §i
nu poate fi neglijat in calculele cu acuratetea cerutd, spre exemplu in problemele
aerospatiale. Deoarece caldurile specifice ale gazelor uzuale cresc cu temperatura,
temperatura reald dupd undele de soc poate fi cu sute de grade Kelvin mai scazuta
la numere Mach mari. Diferente la fel de mari se constatd si in cazul temperaturilor
de stagnare. Cresterile importante de entropie duc la pierderi semnificative de
presiune. Metoda de calcul propusd permite pdastrarea relatiilor analitice din cazul
caldurilor specifice constante, prin introducerea unor numere Mach echivalente. In
acelasi timp, calculele sunt simplificate, fiind de rezolvat doar o ecuatie intr-o
singurd necunoscutd. Sunt prezentate aplicatii si comparatii pentru aer in intervalul
de numere Mach (1.3; 8).

The effect of variation of the thermodynamic functions with temperature for
the intensity of normal shock waves is important and cannot be neglected for an
acurate calculation, as required, for example, in aerospace problems. Because the
specific heat of usual gases increases with temperature, the real temperature after
the shock wave can be smaller with hundreds of Kelvin degrees at higher Mach
numbers. The same large differences are in the stagnation temperatures. Big
differences exist in the entropy variation leading to much larger pressure losses. The
proposed method of calculation was able to preserve the analytical relations from
the constant caloric capacities, in terms of new introduced equivalent Mach
numbers. At the same time, the calculation is simplifieed, only one unknown
equation having to be solved. Applications and comparisons are presented for air in
the Mach number interval (1.3; 8). The gas dissociation and/or ionisation at very
high temperature were, for the moment neglected.

Keywords: equivalent Mach number; dimensionless quantities, mean stagnation
temperature; entropy average caloric capacity.
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1. Introduction

One studies the 1D flows of an ideal gas initially at supersonic speeds. The
initial stationary state 1 is a gas mixture, having a constant velocity u;, at
temperature 7; and pressure p;. The final state 2 is a gas of the same composition
at subsonic regime with physical parameters modified due to a normal shock wave
and depending on the initial state. At very high initial Mach numbers a gas
dissociation, ionization etc. are possible; however this case is not studied here.
The velocity, temperature and pressure after the shock wave are u,, 7, and p,,
respectively.

The overall transformation is considered at constant total mass enthalpy.
The viscous effects are concentrated in the shock wave structure.

2. The governing equations

The transformation of the initial gas mixture from state 1 to the final
mixture (state 2) (Fig.2.1) is subjected to the laws of mass, momentum and energy
conservation, written as follows [1;2;8]:

P = pou p(mass) ; (2.1)

)41 +p1u12 =D +p2u§ (momentum) ; (2.2)
12 12

hl(Tl)JrEul :hz(T2)+E”2 (energy). (2.3)

In the above equations, p;, p, are gas mixture densities and 4, /1, mass

enthalpies.
One replaces the enthalpy 4, ( T>) as follows:

Iy () =hy (1) +(h (1)~ (1)) = b (1) (T2 = T1) Cpma (T3, T2) . (2.4)
where C,,2(T7,T,) represents the mean specific caloric capacity at constant
pressure, for the temperature interval [ 77,75 ].

Because the gas mixture composition is unchanged within large
temperature intervals, one has:
(%) =hy (T)=0, (2.5)

and the energy equation becomes:

12 )
Cme(TlsT2)Tl+Eul =Cpm2(T1,T2)T2+5”2- (2.6)



Flows accompanied by normal shock [...] temperature of thermodynamic functions 153

M;>1 M><lI
E— Uy U —
- D D> -
- D1 b2 -

Fig.2.1. 1-D supersonic flow with normal shock wave

By introducing the ratios: ratio of specific volumes 1, the pressure ratio p,
and the temperature ratio 7,, defined by:

T
5= p, =221 =22, 2.7)
o)) )2 n
from conservation laws one obtains: B
p,=1+m(l-7,) (2.8-a)
R —
T, _R—2[1+m(1—zr)]rr (2.8-b)

where R;, R, are the gas mixtures constants.

The Clapeyron equation was also used; m is a dimensionless mass flow
parameter given by:

_ 2 C,. (7
m=—L =k M2 by = p(A) (2.9)

RiTy Cpi(h)-R
k; 1s the ratio of specific heats in state 1 and M, the corresponding Mach number.
For a given flow rate parameter, m , for 7, one gets the quadratic equation:

E[l— Ry ]r,?—(1+%)r,,+%+m—Rz=o (2.10)

2Cpm2 1 2Cpm2
If the gas composition is unchanged, one may write:
R1=R2=R. (211)

Depending on the sign of the discriminant, A, of the equation (2.10) given

—\2  — .
A=(1+m) —4m B By mRy 2.12)
2C,m )| R 2Cpma
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one obtains, for a chosen m : a) 2 solutions; b) 1 solution and c¢) no solution.
These possibilities are studied in the following.

3. The case of unchanged gas composition

In this case, one has the same mixture in the two states 1 and 2. The
previous relations are simplified, by writing:
R1:R2 ZR; (31-3)

C
=P (3.1-b)

Cpm —R

Cme (TI’TZ) = Cpm; km

The equation (2.10) becomes:
2_2km(1+m) 2km+Z(km—1)

T ) T w8
or:
2y +m (ki —1) ) ]
(7, 1){7, %(kanl) }—0 (3.2-b)

Therefore, in case the gas composition is unchanged, there are always two
solutions:
a) atrivial solution when the gas flow remains unmodified:
r,=Lp.=1T.=1. (3.3)

b) a non trivial solution:

d m(km+1) ’ L
2m—(k, —1
P, :%’"); T.=p,z,. (3.4-b)
m 1

A discussion via the mass rate parameter m = M 12 is interesting. Thus:

1) for m >k,, >1 one obtains a shock wave:

my >k, L YRR (3.5-a)
m
T <Lipeg >LT. ¢ >1, (3.5-b)

the index s indicating a state with shock wave.
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An interesting fact can be pointed out: the condition for a shock wave (3.5-
a) is not M;>1 as for constant caloric capacities with temperature: an equivalent
Mach number of the initial flow, M/, is obtained from (3.5-a), namely:

My, =M, /:—1 My, >1; > T, (3.6)
m

and the shock wave occurence condition is M;.>1. As for the most gases the ratio
of specific heats, k, decreases with temperature, one obtains:

T>Ti 5 ky > ks My > Mys by =k (1.1 3.7)

Therefore, in principle, a shock wave could be produced even for M; < [ if

the ratio k,/k, is sufficiently large. In fact, k;/k,, is pretty close to unity (k;/k,>1,

T,>Ty); on the other hand, the entropy source should be non-negative. In fact,

only in case of reacting flows one finds a value M,,=1, with M, <1 (so called

Chapman-Jouguet detonation wave).
2) a weak wave ( Mach wave) can be obtained for M;.=1, or:

M=k 2t —p =T =1, (3.8-a)
km
Because 7,=1 (T,=T>), one yields:
klzkm;Mlzl, (38-b)

that is the Mach wave occurrence is still M;=1;
3) an expansion wave is theoretically possible for:

O<m<k,; p,<1;T,.<1 (3.9-a)
ﬂMf <Lk <k, (3.9-b)
km

Because 7,<I, (T,<T}), it results k,> k;. If the initial flow is supersonic,
the conditions (3.9) give:

1< M <’;—m;(km > k) (3.9-c)
1

therefore a small interval of M, is possible to obtain an expansion.

If the initial flow is subsonic (M;<1) the condition (3.9-b) seems easier to
be satisfied, however a wave can travel only in the neighbourhood of the speed of
sound .

Remark.1 The above discussed cases require however some additional
conditions to be actually produced. For example, a shock wave requires a
downstream obstacle or a downstream narrowing of the channel.

Similarly, to produce a Mach wave (both for compression or expansion) a
small perturbation of the flow is necessary.
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3.1. Expressions in terms of equivalent Mach numbers

The above relations for density, pressure and temperature ratios can be
written in terms of the equivalent Mach number M/, [4].

Thus one obtains:

- for the pressure ratio:

k
2 2 1 2
pr=(1+lm )Mle_lm 5 Mlezk_Ml 5 (310-3)
m
- for the density ratio:
1—
tp ==y = (3.10-b)
le
where one has denoted:
k, —1
;(m=kZ+1=;(m[TLTr]=;(m[Tl,pr7r]. (3.10-c)

Determination of the Mach number M»

In order to determine the final state Mach number AM,, one writes:
2 2 2 - 2 =
w2 :“_2:(ﬂJ M _mr_man 5
koRoTy \p2) kRTy ky T, Ky py
k, corresponding to the temperature 7, .
By replacing the ratios z,, p, from (3.4), finally, it yields:
2 _ 2km +m(km —1)

Pk (2m—(ky 1))

2
( 12 +km_1][ 12 +k’”_1}=(k’”+lj , (3.12-b)
Mle 2 MZe 2 2

M. and M, being the equivalent Mach numbers of the two states, in case of
transformation without change of gas composition:

k k
ME ="Mt M3, =2 M3 (3.13)
km km
One can see the analogy with the case of constant specific heats [1;2;8]

(3.12-a)

or:

where:
by =ky =k (T1,T2) s My = Myp; My =M, . (3.14)
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4. Calculation of the caloric capacities, enthalpies and entropies

By introducing the temperature ratio, 6 =T /ATy, ; ATy, =1000K, a
temperature interval [0,2;6], and by writing the dimensionless caloric capacity
5(9) =F_(0) as functions on intervals [;=[0.2 ;1];7, =[1;6] as follows:

C,(9) Fu(0),if 0l =[0.2;1];

P C (0)= =
R, OO {Fcz(ﬁ),web:[l;@; @b

u
where the caloric capacity functions F; (9), i= 1,_2, are:

1,if 01;=[0.2;1];
2,if Oel,=[1;6];

7 )
Fi(0)= Y a;0'7, j=17,i= (4.1-a)
=

one can introduce the coefficients o jisd =1;_7,i =1;_2 as pure numbers. The only

reference to Kelvin degree appears in connection with the temperature interval
AT, - In particular, for ATy;,, = 1000K, one has the advantage of maintaining

the mantissa of the NASA [6] existing data. Only the exponents are modified, the
difference in orders of magnitude being reduced up to 18 orders and a few other
small inconveniences are thus avoided.

The dimensionless enthalpy, E(&) , is written as follows :
7(6) Bt (Orer )+ Fi (0)if 0 € 1=[0231];
b2 (6rer )+ Fi2 (0)if 6 € I =[1;6];

where Fj, i(@),izl;_2, are the enthalpy functions on intervals, given by the

(4.2-a)

relations:

F(0)=> &01‘2 +ay; 0, j=1;7,i

{1, if el =[02;1];
jz2 )~

2,if Oel,=[1;6];
(4.2-b)

The dimensionless coefficients Ehi (Href), i=1;2, are:

bm (eref):H(Href)‘Fhl(é’ref); by (Href):bhl (eref')+Fhl(1)_Fh2(l)-
(4.2-c)
In this way one obtains for the dimensionless enthalpy, H (9), more

compact if- expressions.
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The average caloric capacity at constant pressure for the temperature
interval [6y,0], C pm (6’0 ,H) , and its dimensionless

correspondent, C,,, (6y,0) are “3- if’- functions:

Fu(0)=Fu (&) if 6.0 € I;
(0=60)C pm (60, 0) = Fy1 (1) = Fi2 (1) + Fy2 (€)= Fa (6 ) if 6 € 11,0 € I;
F2 (0)=Fp2(60)if 69,0 € I

(4.3)
Com (90,0)=RuCpm(00,<9). (4.3-a)
An average ratio of specific heats, k,,, (6, , ), has also been defined by:
Com (6,0
bl 0) =2\ 0-0) (4.4)
Cpm(6y.6)-1

The dimensionless entropy.
As regards the gas entropy, this is a function, S(6,p), of both

temperature and pressure for any gas. For the molar entropy variation,

S(6,p) and its dimensionless correspondent, S(6,p), one applies the
relation[7]:

E(eap)za(erefapref)'i_Fs (9)_IH(L]’ (4.5)
Pref

where this time E(@ref, p,,ef) and Fy (6)are interval functions. One writes:

F (0) Fy(0),if 0 =[02;1];
| Fal0). if 01 =[156]; (4.6)
with:
L oaj; i3 T 1.
Fsi(9)=ZjT9 +a3;In@, j=1,7,i=1;2; (4.6-a)
j#3

by (gref’pref):S(Href’pref)_Fsl(eref); bsy (eref’prejf):
=0s1 (aref’prefr)+Fsl(1)_Fs2(1)'
In connection with the entropy variation with temperature, one has
defined a referred to entropy average caloric capacity at constant pressure,

(4.6-b)
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Coms (69,0), for the temperature interval [6),6], and its dimensionless

correspondent, C pms (HO ,9) :

(9) Fvl (90) szO,Hell,

Coms (60,0)-n-0-=1 Foy (1) Fyg ()4 Fp (6) Fua (6). f g < 0= Iy
0
2

Fy2(0)-Fy2 (6 )zfeo,eelz
B (4.6-c)
Cpms (60,0)=R,,C pms (69,0) - (4.6-d)

A referred to entropy average ratio of specific heats, k,,;(6,,0), was also
defined by:

C 6.0
ks (6 ,0) == pms( ) . 4.7)
C pms (6’0 6’) 1
The coefficients « ; jirJ= 1_ E, are given in [3]. In dimensional form,

these coefficients are given in [6].
5. Applications

For calculations, one starts with two estimates of the temperature 0,, in
order to obtain a sign change in the temperature function (3.4-a or 3.10-b) and
apply a chord method. The value 7, ..,5 1s always an overestimation. Thus one has
only to solve one variable equations. For M;= 8, the extension of formulae in
chapter 4 to the temperature interval [6;20], as given in Ref. [3] was necessary.

In Table 5.1, a comparison for the main parameters in case of constant and
variable specific heats is given. The fluid is air; and the equations (3.4) are
applied.

As one can see, the effect of the specific heat variation with temperature is
important for higher Mach numbers (M;>2), depending on the initial gas
temperature 6;, as well. Two initial temperatures, 300 K (6; = 0.3; k= 1.4) and

600 K (8, =0.6; ky=1.37575) were selected.

Table 5.1(Air)
Flow and thermodynamic parameters at normal shock

Ml e1 Mlc Pr const Prvar HZCOHSI 02 var Treonst Trvar
0.3 | 1.300462 | 1.8050 1.80614 0.35726 0.35721 | 0.659763 | 0.65926

1.3 ] 0.6 | 1.302940 | 1.8050 1.80645 0.71452 0.70792 | 0.659763 | 0.65313

0.3 | 2.004028 | 4.5000 | 4.51283 0.50625 0.50454 | 0.375000 | 0.37267

2 | 0.6 | 2015098 | 4.5000 | 4.52222 1.0125 0.97664 | 0.375000 | 0.35994
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0.3 | 3.021579 | 10.3333 | 10.4280 0.80370 0.78743 0.25926 0.25170
3 0.6 | 3.043616 | 10.3333 | 10.4540 1.60741 1.45464 0.25926 0.23645
0.3 | 5.100631 | 29.000 | 29.6990 1.74000 1.565978 | 0.20000 0.17998
5 0.6 | 5.125082 | 29.000 | 29.6516 3.48000 | 2.942780 | 0.20000 0.16695
0.3 | 8265574 | 74.500 77.3895 4.01601 3401180 | 0.179687 | 0.14739
8 0.6 | 8268567 | 74.500 76.8554 8.03203 | 6.382471 | 0.179687 | 0.13847

The differences in the final temperature behind the shock wave — that can
reach hundreds of Kelvin degrees — is increase with the initial temperature 6; At
Mach number M, = 3, for example, the difference in the final temperature 7, is
152.77 K for T; = 600 K and only 16.27 K for 7; =300K. As regards the pressure
jump, there is some increasing due to the specific heat variation with temperature,
but less than 1.5% at M; = 3. The equivalent Mach numbers are slowly larger than
the current Mach numbers, the increment being larger at larger initial
temperatures.

In Table 5.2, the enthalpy-average capacity C pm (eqgs.4.3), the entropy-
C, s (€gs.4.6-c) and the corresponding ratios k,, (eq.4.4) and

average capacity C,,
k,,s (€q.4.7) for the same initial Mach numbers and temperatures as in Table 5.1

are given. In addition, the Mach numbers behind the shock wave, M,, are also

given.

As one can see, it results Cp, > C,,g, and k, < k,g, that is the
isentropic exponent is larger then the enthalpy-average capacities ratio.
Table 5.2 (Air)
Flow and thermodynamic parameters at normal shock
M, | 6 Cpm ky, Mo M, C pms Kims
P —

0.3 | 3.506705 1.398929 0.785687 0.785387 3.506504 1.398961
1.3 [T0.6 [ 3.706018 | 1.369546 0.783454 0.774886 | 3.704776 | 1.369716
0.3 | 3.536114 | 1.394303 0.575895 0.574723 3.532327 | 1.394893
2 0.6 | 3.815236 1.355209 0.568510 0.559342 3.803014 1.356759
0.3 | 3.631567 1.380001 0.469440 0.466075 3.606006 1.383728
3 0.6 | 3.970876 1.336601 0.457743 0.447259 3.930077 1.341287
0.3 | 3.896604 1.345231 0.397073 0.389229 3.785813 1.358961
3 0.6 | 4.231895 1.309415 0.384565 0.371916 4.122542 1.320251
0.3 | 4211185 1.311411 0.360719 0.349121 3.984740 | 1.335037
8 0.6 | 4478026 1.287519 0.351019 0.336623 4.288511 1.304088
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5.1 The state of stagnation. Pressure losses through normal shock
waves

The state of stagnation is a state corresponding to null velocity. From this
condition and from the equation of energy (2.3) one gets the stagnation
temperature T or 0

1 > T*
by (T)+uf =hy (T*); hy (T*) =hy (T)+]. ep(dT.  (5.1)
1
By introducing the average specific heats, one obtains for the two states:

(T,,T*)T; +%ui2 = Cpi (1. T*) T i =132,

€ pmi

o oi—1 o« * k

?=1+—m12 My My ==L M, (5.1-a)
1 ml

* *
Ty =Ty =T*; cp(T) =cpa(T),

the two stagnation temperatures being equal as the gas composition is unchanged.
As regards the pressure at stagnation state, by definition, one takes

isentropic gas evolutions between the temperatures 7;,i :1;_2,and T* , the

isentropic exponent being k,,.; (7; ,T%);i =1;_2 ; (see (4.7)).

By denoting:
kmsi(n' ’T*)Zk:S,; EP mSi(]} DT*)Z C;msi’ =12, (5-2)
one can write the ratio of stagnation pressures under the form:
pilp =0 16) =12 (5.3)
The ratio of stagnation pressure is then:
* * * c % C
P2/ pr=p, (0 16) "™ (G/16) ™", (5.3-a)
the entropy variation being given by the equation:
AS=In(T.5"™ / p.): T, =0, /6, (5.4)

Thus three entropy average heat capacities: Cppmsi(T;,T%),i =1;2 , and

¢pms (1, T2) are involved.

We also introduce an average stagnation temperature, T; , defined bellow:
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1 .
¢pm (0.12)T; +5ul~2 = cpm (01T, i =132,

N (5.5
H—“:1+—km _lMlze;
) 2

by using the average specific heat ¢, (TI,T 2) . In terms of the average stagnation

. *
temperature, average stagnation pressures, p;,,i=1;2, can also be defined, and
their ratio can be simpler expressed, as follows:

* o x -AS
P2y P1a=0; O=e . (5.6)
where o is a pressure loss coefficient depending on the entropy variation through
the shock wave only.
In Table 5.3 the ratios of the stagnation temperatures 6/ 6, and 0:; 16,
the variation of the dimensionless entropy, AS , and the ratios of the stagnation

pressures after and before the shock wave jump, p; / pf , (representing the

pressure losses through the normal shock wave) are compared for constant and
variable caloric capacities. One can see that the two stagnation temperatures,

6" and HZ are very closed; the differences do not exceed 1% even for high Mach

numbers (M; = 8). In exchange, some formulae are much simpler in terms of the
mean stagnation temperature.
Table5.3 (Air)
Flow and termodynamic parameters at normal shock. Comparisons for constant [5] and
variable caloric capacities

Ml 61 % * L3 ~ * * * *
(0 10)JO 10 yar (6,7 6)yar] DSer ASyar (P2 P var (P20 ! Pra)var
0.3 1.3380 1.336689 1.337337 [ 0.02084 [ 0.020897 [ 0.979314 [ 0.9793198
13 706 | 13380 1.310915 1.310917 | 0.02084 | 0.021411 | 0.978766 | 0.9788166
0.3 1.8000 1.789822 1791787 | 0.32729 | 0.329447 | 0.719166 | 0.7193214
2 [06 | _1.8000 1.717380 1721187 | 0.32729 | 0.343819 | 0.708618 | 0.7090573
03 | 28000 2729000 2734697 | 1.11369 | 1.135309 | 0320994 | 0.3213228
3 706 | 2.8000 2551240 | 2559068 | 1.11369 | 1.209683 | 0.297640 | 0.2982918
03 | 6.0000 5.468163 5490853 | 278521 | 2.954786 | 0.051791 | 0.0520898
> [06 |_6.0000 5.053860 5063632 | 2.78521 | 3.204330 | 0.040444 | 0.0405861
0.3 13.800 11.61501 11.63777 | 4.76912 | 5.350805 | 4.7164D-3 | 4.7443D-3
8 06 | 13300 10.81894 10.83111 | 4.76912 | 5.799841 | 3.0178D-3 | 3.0280D-3

One obtains lower stagnation temperatures for variable caloric capacities,
the diminution being more important for larger initial temperature of gas.
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As regards the entropy, at lower initial temperatures the adverse effect of
pressure increase and isentropic exponent increase leads to a slightly smaller
entropy growth, as one can also see from the formula (5.4).

6. Conclusions

The effect of the variation of the specific heats with temperature on the
intensity of normal shock wave is important, leading to large differences in the
temperature values and pressure losses, for higher Mach numbers (M; >2),
depending on the initial gas temperature 6;, as well. Although the expressions of
the caloric capacities, enthalpies and entropies as functions of temperature are
rather complicated, the main analytical formulas for pressure, density etc. ratios
are preserved in terms of the equivalent Mach numbers introduced by authors
[3;4]. The calculations now necessary in terms of the new introduced parameters
are simplified. One recommends the use of dimensionless parameters.

The extension of the presented study for the case when the gas
composition changes is possible in terms of the defined equivalent parameters.

For M; = §, the air properties were calculated by using NASA values for
oxygen and nitrogen at temperatures higher the 6000K. The dissociation,
ionization etc. at high temperatures were for the moment neglected.

An average stagnation temperature and an average stagnation pressure
were also defined presenting some advantages in order to simplify the calculation.
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