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DYNAMICS OF THE TRANSLATIONAL 3-UPU PARALLEL 
MANIPULATOR 

Stefan STAICU1, Constantin POPA2 

Matrix relations for dynamics analysis of a spatial translational 3-UPU 
parallel mechanism are established in this paper. Three identical legs connect the 
moving platform by universal joints. Knowing the translation motion of the platform,  
inverse dynamics problem is solved using an approach based on explicit equations 
of parallel robots dynamics, but it has been verified the results in the framework of 
the Lagrange equations with their multipliers. Finally, matrix equations offer 
expressions and graphs of simulation for the input forces and powers of three 
prismatic actuators.    
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1. Introduction 

Provided with closed-loop structures, the links of the parallel robots can be 
connected one to the other by spherical joints, universal joints, revolute joints or 
prismatic joints. Generally, the number of actuators is typically equal to the 
number of degrees of freedom and each leg is controlled at or near the fixed base 
[1]. Compared with traditional serial manipulators, the accuracy and precision in 
the direction of the tasks are essential for the parallel architectures, since the 
positioning errors of the tool could end in costly damage [2]. 

Recently, considerable efforts have been devoted to the dynamics analysis of 
parallel robots. The class of manipulators known as Stewart-Gough platform, used 
in flight simulators, focused great attention (Stewart [3], Di Gregorio and Parenti 
Castelli [4]). The Delta parallel robot (Clavel [5], Tsai and Stamper [6]) and the 
Star parallel manipulator (Hervé and Sparacino [7]) are equipped with three 
motors, which train on the mobile platform in a three-degrees-of-freedom general 
translational motion. Angeles [8], Wang and Gosselin [9] analysed the kinematics, 
dynamics and singularity loci of Agile Wrist spherical robot with three revolute 
actuators. 
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In the present paper, two recursive matrix methods, already implemented in 
the inverse dynamics of parallel robots, are applied to the analysis of a spatial 
translational mechanism. It has been proved that the number of equations and 
computational operations reduces significantly by using a set of matrices for 
dynamics modelling. 

2. Kinematics reviews 

The 3-UPU parallel robot is a symmetrical structure composed of three 
kinematical chains of variable length with identical topology, all connecting the 
fixed base to the moving platform by means of universal joints. Each leg is made 
up of a cylinder and a piston connected together by a prismatic joint, as well as 
three prismatic actuators can drive the manipulator. The mechanism consists of a 
fixed base, a circular mobile platform and three legs with identical kinematical 
structure. Each limb connects the fixed base to the moving platform by two 
universal joints interconnected through a prismatic joint made up of a cylinder and 
a piston [10].  

The first joint 1A )0( =Aα  is typically contained within the plane 00 yOx , 
whereas the positions of remaining joints 11, CB make the angles 0120=Bα , 

0120−=Cα  respectively, with the line 1OA of first leg. For the purpose of analysis, 
we assign a fixed Cartesian coordinate system )( 0000 TzyOx at the centred point O 
of the fixed base platform and a mobile frame GGG zyGx on the mobile platform at 
its centre G. The angle ν  between GGx axis and the line 4GA is defined as the twist 
angle of the robot (Fig. 1). 

The moving platform is initially located at a central configuration, where the 
platform is not translated with respect to the fixed base and the originO of the 
fixed frame is located at an elevation hOG =  above the mass centreG . To 
simplify the graphical image of the kinematical scheme of the mechanism, in what 
follows we will represent the intermediate reference systems by only two axes, so 
as is used in most of robotics papers [1], [2], [8]. 

The active leg A, for example, consists of a little cross of a fixed Hooke joint 
linked at the frame AAA zyxA 1111 , characterised by a negligible mass, which has the 
angular velocity AA

1010 ϕω = and the angular acceleration AA
1010 ωε = , connected at a 

moving cylinder AAA zyxA 2222 of length 2l , mass 2m and tensor of inertia 2Ĵ , which 
has a relative rotation around AzA 22 axis with the angle A

21ϕ , so that AA
2121 ϕω = , 

AA
2121 ωε = . An actuated prismatic joint is as well as a piston of length 3l , 

mass 3m and tensor of inertia 3Ĵ , linked to the AAA zyxA 3333 frame, having a relative 
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velocity AAv 3232 λ= and acceleration AA v3232 =γ . Finally, a second little universal joint 
is introduced at the edge of a moving platform, which can be schematised as a 
circle of radius r and mass pm . 

At the central configuration, we also consider that the three sliders are initially 
starting from the same position 31 sin/ lhl −= β and that the angles of orientation of 
universal joints are given by  
                                         

3
2,

3
2,0 παπαα −=== CBA  

                       
6
πν = , νδν sintan)cos( 0 rrl =− , δβν sintansin hr = ,                (1) 

whereδ and β are two constant angles of rotation around the axes Az1 and Az2 .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Kinematical scheme of first leg A )0( =Aα of parallel mechanism 
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Starting from the reference origin O  and pursuing three legs 43210 AAAAOA , 

43210 BBBBOB , 43210 CCCCOC , we obtain all transformation  matrices  

                                 Ti appaapp 1212131010 , θθ β
ϕ

αδ
ϕ == , 232 θ=p  

                        ∏
=

−+−=
n

nnn pp
1

,10
τ

ττ    )3,2(),,,(),,,( === nCBAicbap ,                        (2) 

where we denote the matrices: 

      ),( 1,1,
i

kkkk zrotp −− = ϕϕ , ),( i
i zrota αα = , ),( δδ zrota =  

                              )2/,(1 πθ xrot= , )2/,(2 πθ yrot= , ),(3 πθ yrot= .                       (3) 

In the inverse geometric problem, the position of the mechanism is completely 
given through the coordinate GGG zyx 000 ,,  of the mass centre G. Consider, for 
example, that during three seconds the moving platform remains in the same 
orientation and the motion of the centre G  along a rectilinear trajectory is 
expressed in the fixed frame 000 zyOx  through the following analytical functions 

                                    t
z

zh
y
y

x
x

G

G

G

G

G

G

3
cos1

0

0

0

0

0

0 π
−=

−
== ∗∗∗

.                                   (4) 

Pursuing the kinematical modelling developed in our published paper [10], 
nine variables AAA

322110 ,, λϕϕ , BBB
322110 ,, λϕϕ , CCC

322110 ,, λϕϕ will be determined from the 
nine analytical equations. 

Now, we compute the relative velocities iii v322110 ,,ωω  in terms of the angular 
velocity of the platform and velocity of centreG , starting from following matrix 
conditions of connectivity [11]: 

                                                  iii PQV 1][ −= ,                                                  (5) 
where followings terms determines the contents of 3x3 invertible square matrix 

][ iQ  and the column matrix iP : 

}{~
433232213101
iTiTTT

j
i
j rprpupuq += , }{~

4332323202
iTiTT

j
i
j rprupuq += , 1203 upuq TT

j
i
j =   )3,2,1( =j                                    

                                                    TGGG
i zyxP ][ 000= .                                        (6)                                  

     Finally, the expressions of relative velocities are obtained from the column 

matrices 

                                         =iV Tiii v ][ 322110 ωω   ),,( CBAi = .                          (7) 
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Considering some independent virtual motions of the spatial mechanism, 
virtual displacements and velocities should be compatible with the virtual motions 
imposed by all kinematical constraints and joints at a given instant in time. Let us 
assume that the robot has successively three virtual motions determined by 
following sets of velocities:  
                                                   132 =Av

av , 032 =Bv
av , 032 =Cv

av  

                                                   032 =Av
bv , 132 =Bv

bv , 032 =Cv
bv                                        (8) 

                                                   032 =Av
cv , 032 =Bv

cv , 132 =Cv
cv . 

The characteristic virtual velocities are expressed as functions of the pose of 
the mechanism at any time by the general kinematical equations (5). 

Expressions of relative accelerations are obtained from the column matrix 
                                                  =Γi

Tiii ][ 322110 γεε                                         (9) 
using new conditions of connectivity: 

                                                 iii SQ 1][ −=Γ ,                                               (10) 

where following terms determine the contents of column matrix iiii VQPS ][−= : 
  GT

j
i
j rus 0= }{~~

4332322133101010
iTiTTT

j
ii rprpuupu +− ωω −+− }{~~

43323233202121
iTiTT

j
ii rpruupuωω  

      }{~~2 4332323213102110
iTiTTT

j
ii rprupupu +− ωω −− 1213103210

~2 upupuv TTT
j

iiω 13203221
~2 uupuv TT

j
iiω . (11) 

                                                  )3,2,1( =j  

3. Inverse dynamics models 

The dynamics analysis of parallel robots is complicated because the existence 
of a spatial kinematical structure, which possesses a large number of passive 
degrees of freedom, dominance of the inertial forces, frictional and gravitational 
components and by the problem linked to real-time control in the inverse 
dynamics. Considering all gravitational effects and neglecting the frictions forces, 
the relevant objective of the inverse dynamics is to determine the input torques or 
forces, which must be exerted by the actuators in order to produce a given 
trajectory of the end-effector.  

A lot of works have focused on the dynamics of Stewart platform. Dasgupta 
and Mruthyunjaya [12] used the Newton-Euler approach to develop closed-form 
dynamic equations of Stewart platform, considering all dynamic and gravity 
effects as well as viscous friction at joints. Tsai and Stamper [6] presented an 
algorithm to solve the inverse dynamics for a Delta manipulator using Newton-
Euler equations and Lagrange formalism. 
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3.1 Explicit dynamics equations of parallel robot 
 

Three independent pneumatic or hydraulic systems A , B ,C that generate three 
input forces 33232 uff AA = , 33232 uff BB = , 33232 uff CC = , which are oriented along the 
axes AzA 33 , BzB 33 , CzC 33 , control the motion of three moving pistons of the legs. 

The parallel robot can artificially be transformed in a set of three open 
chains ),,( CBAiCi = subject to the constraints. This is possible by imaginary 
cutting each joint for moving platform and taking its effect into account by 
introducing the corresponding constraint conditions.  

The force of inertia and the resulting moment of inertia forces of a rigid 
body A

kT , for example,   
        ( )[ ]CA

k
A

k
A
k

A
k

A
k

A
k

inA
k rmF 00000

~~~ εωωγ ++−= , ]ˆ~ˆ~[ 00000
A
k

A
k

A
k

A
k

A
k

A
k

CA
k

A
k

inA
k JJrmM ωωεγ ++−=    (12) 

are determined with respect to the centre of joint kA . On the other hand, the 
wrench of two vectors A

kF ∗ and A
kM ∗ evaluates the influence of the action of the 

weight gm A
k and of other external and internal forces applied to the same element 

A
kT of the manipulator, for example: 

                               30
* ugamF k

A
k

A
k = , 30

* ~ uargmM k
CA

k
A
k

A
k =   )3,2,1( =k .                (13)  

Pursuing the first leg A , two significant recursive relations generate the 
vectors 
                        A

k
T

kk
A

k
A

k FaFF 1,10 +++= , A
k

T
kk

A
kk

A
k

T
kk

A
k

A
k FarMaMM 1,1,11,10

~
+++++ ++= ,          (14) 

where one denoted 
                                   A

k
inA

k
A

k FFF ∗−−=0 , A
k

inA
k

A
k MMM ∗−−=0 .                             (15) 

As example, starting from (14), we develop a set of recursive relations: 

                          AA FF 303 = , ATAA FaFF 332202 += , ATAA FaFF 221101 +=  

    AA MM 303 = , ATAATAA FarMaMM 33232332202
~++= , ATAATAA FarMaMM 22121221101

~++= . (16) 

Applying the explicit form of the equations of parallel robots dynamics [13], 
[14], a compact matrix relation results for the input force of first prismatic 
actuator, for example 

                         
}.

{

332221110221110

2211102211103332

GG
a

GGv
a

GGv
a

CCv
a

CCv
a

BBv
a

BBv
a

AAv
a

AAv
a

ATA

FvFvFvMM

MMMMFuf

+++++

+++++=

ωω

ωωωω                    (17) 

The relations (14)-(17) represent the inverse dynamics model of the 3-UPU 
parallel robot. The various dynamical effects, including the Coriolis and 
centrifugal forces coupling and the gravitational actions are considered in this 
explicit equation. 
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3.2. Equations of Lagrange  

A solution of the dynamics problem of a 3-UPU parallel robot can be 
developed based on the Lagrange equations of second kind for a mechanical 
system with constraints. The generalized coordinates of the robot are represented 
by 12 parameters 
                          Gxq 01 = , Gyq 02 = , Gzq 03 = , Aq 104 ϕ= , Aq 215 ϕ= , Aq 326 λ= , 
                          Bq 107 ϕ= , Bq 218 ϕ= , Bq 329 λ= , Cq 1010 ϕ= , Cq 2111 ϕ= , Cq 3212 λ= .                  (18) 

The Lagrange’s equations with their nine multipliers 921 ,...,, λλλ will be 
expressed by 12 differential relations                             

                        )12,...,2,1(}{
9
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=+=
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dt
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sk
s

sk
kk

λ ,                       (19) 

which contain following 12 generalized forces  
                             01 =Q , 02 =Q , 03 =Q , 04 =Q , 05 =Q , AfQ 326 = , 
                             07 =Q , 08 =Q , BfQ 329 = , 010 =Q , 011 =Q , CfQ 3212 = ,                    (20) 
for example. A number of nine kinematical conditions of constraint are given by 
the relations (5):  

                                      )9,...,2,1(0
12

1
==∑

=

sqc
k

ksk .                                   (21) 

The components of the general expression of the Lagrange function 
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3

1
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p LLLLL νν

ν
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=

are expressed as analytical functions of the generalized 

coordinates and their first derivatives with respect to time: 
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                                            ),,( CBAi = , ),,( cbap = .                                        (22) 
Angular velocities, joint’s velocities, skew-symmetric matrices associated to 

the angular velocities and first derivatives of orthogonal matrices 1, −kkp are 
expressed as follows: 
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                                            ),,( CBAi = , ),,( cbap = .                                         (23) 
A long calculus of the derivatives with respect to time 

)12,...,2,1(}{ =
∂
∂ k
q
L

dt
d

k

of some above functions leads to a system of 12 relations. 

In the direct or inverse dynamics problem, after elimination of the nine 
multipliers, finally we obtain same expressions (17) for the three input forces. 

As application let us consider same spatial parallel robot 3-UPU analysed in 
[10], which has the following geometrical and mechanical characteristics: 

        mzmymx GGG 15.0,05.0,05.0 *
0

*
0

*
0 ===   

        12 =m kg, 75.03 =m kg, 5=pm kg 

        stmhmlAAmlmlOAmr 3,8.0,6.0,1,6.0,2.0 343201 =Δ=======  
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⎤
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⎣

⎡
=
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Using MATLAB software, a computer program was developed to solve the 
dynamics of the 3-UPU parallel robot. To develop the algorithm, it is assumed 
that the platform starts at rest from a central configuration and moves pursuing 
successively rectilinear translations. Furthermore, at the initial location, the 
moving platform is assumed to be located mh 8.0=  lower the fixed base, 
namely :0=t ,00 =Gx  mzy GG 8.0,0 00 == . 

Two examples are solved to illustrate the algorithm.  
For the first example, the platform moves along the vertical direction 0z with 

variable acceleration while all the other positional parameters are held equal to 
zero. As can be seen from Fig. 2 and Fig. 3 it is proved to be true that all active 
forces and powers of three actuators are permanently equal to one another. 

 
                Fig. 2 Input forces of three actuators                                  Fig. 3 Powers of three actuators 
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For the case when the platform’s centre G  moves along a rectilinear 
horizontal trajectory without any rotation of the platform, the graphs are plotted 
and illustrated in Fig. 4 and Fig. 5. 

 
 
            Fig. 4 Input forces of three actuators                                   Fig. 5 Powers of three actuators  
 

4. Conclusions 

Some exact relations that give in real-time the position, velocity and 
acceleration of each element of the parallel robot have been established in the 
present paper. The dynamics models take into consideration the masses and forces 
of inertia introduced by all component elements of the parallel mechanism. The 
approach based on explicit equations of parallel robots dynamics can eliminate all 
forces of internal joints and establishes a direct determination of the time-history 
evolution of active forces and powers required by the actuators. The analytical 
calculations involved in the Lagrange formalism are very tedious, thus presenting 
an elevated risk of errors. The simulation certifies that one of the major 
advantages of the current matrix recursive formulation is the accuracy and a 
smaller processing time for the numerical computation. 

Choosing the appropriate serial kinematical circuits connecting many moving 
platforms, the present method can be easily applied in forward and inverse 
mechanics of various types of parallel mechanisms, complex manipulators of 
higher degrees of freedom and particularly hybrid structures, with increased 
number of components of the mechanisms. 
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