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SOME REMARKS ABOUT THE ABSTRACT FAMILIES OF
FUZZY LANGUAGES

Irina BUCURESCU, Manuela MAGUREANU"

Se demonstreaza ca familiile abstracte de limbaje fuzzy sunt inchise atdt fata
de aplicatia GSM ( generalized sequential machines) fuzzy ¢ — free , cdt si fata de
aplicatia GSM fuzzy inversad.

One proves that the abstract families of fuzzy language are closed under both
the ¢ — free fuzzy GSM (generalized sequential machines) application and the
inverse fuzzy GSM application , respectively.
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Introduction

The abstract families of fuzzy languages were defined earlier [1], by
analogy with the abstract families of languages [2]. A family of fuzzy languages is
an abstract family of fuzzy languages ( AFFL ) if and only if it contains a non-
empty language and it is closed under the following operations: union, & — free
Kleene closure, ¢— free fuzzy homomorphism, inverse fuzzy homomorphism and
intersection with regular fuzzy languages. The families of regular fuzzy languages
and of the context-free fuzzy languages, respectively, are examples of AFFL [1].

In Ref. [3] we introduced the fuzzy generalized sequential machines
(FGSM) as an extension of the generalized sequential machines , that is , by
assigning to each state a certain grade with which it may be initial or final state ,
respectively , as well as grades of application to the productions . Then, we have
studied the property of closure of the families of regular fuzzy languages under
the ¢ — free FGSM application.

In this work we investigate the more general question of the closure
properties of the AFFL under FGSM applications.
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Closure properties of the AFFL

Theorem 1: Any AFFL is closed under the € — free FGSM application.
Proof. Let FGSM be an ¢ — free fuzzy generalized sequential machine
FGSM =(S,V,.Vy, t,7.17)
where
w:SxV, xVy xS —[0,1]
7:8—[0,1]
n:S— [0,1]
Let £ be an AFFL . To prove the theorem , we choose an arbitrary language L
from £ and show that FGSM(L) belongs to £ . We introduce the following
auxiliary alphabet :
v, = [si,a,x,sj]‘ 5,4 —> XS, ,S;,8; € S,aeV, ,xe V(;}
and define a binary relation T on V] as follows :
T([si,a,x,sjj, [s!,a',x',s}]) holds iff 5; =]
Consider now the fuzzy grammar with type 3 rules (Ref. [4]):
FG,=(V,,V,,P,T,J,5) where
Ve ={T,X, X, ., X, }
Vi="W
P=BUPUPUP
J=J,uJ,uJ,UJ,
The sets P,J, with i=1,2,3,4 are given as :
(1) B, is the set of nonterminal initial rules of the form
rn T-—> lsi,a,x,stXj 5(r)
for 1< j<k where 5(r): minl;r(si),y(sl.,a,x,sj”. J, is the set of labels
corresponding to these rules .
(2) P, is the set of nonterminal rules of the form
®Hn X, - lsl.',a',x',s;.JXj 5(r)
for 1<i,j<k and T([si,a,x,sjj, lsi',a',x',s‘;.J) , with 5(r)=,u(s;,a',x',s;.). J, is
the set of labels corresponding to the new rules .
(3) B, is the set of terminal rules of the form
r X - [sf,a',x',s}] 5(r)
for 1<i<k and 5(r)= min[u(si',a',x',s_’i),n(s_;. )J J, is the set of labels of these

rules .
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(4) P, is the set of terminal initial rules of the form
ry T-— [si,a,x,st 5(r)
where 5(r) =min |_7Z(Si ), y(si,a,x,sj),n(sj )J J, 1is the set of labels of these rules .
We note by R = L(F G3) the regular fuzzy language generated by the grammar
FG, defined above. One observes that the words #,¢,...t, € R are of the form
[SO’al’xUSl] [Slaapxz,sz]---[Sn—laanaxnasn]

If s, is the initial state with the grade 7z(s,)=7,, s, is the final state with the
grade 7(s,)=7n, and the productions s, a, — x;s, apply with the grade
u(s, ,a,,x,,s,)= g, for 1<i<n, then the grade of the membership of the word
tt,...t, €V, * totheset R is given by

5R(t1t2"'tn): mDaXI’nin [770:%:/42 r--a/unaﬂn] (1

where the maximum is taken over all the fuzzy derivation chains D from T to
tt,..t,. Next , we introduce two ¢&-free fuzzy homomorphisms [1] in the
following way :

h,:V,xV, >[0,1] and h, :¥;x¥V;” —>[0,1] and

hl([Siaa,X,sj],b)z{l ifb=a

0 Vbia
1 if v=
ollspaxs,].y)= {0 lf/:i/ ;:;

One observes that the homomorphism 4, is ¢-free , since the FGSM application
was assumed ¢ -free. Then the following equality of fuzzy sets has to be proved :

FGSM (L)=h, (n' (L) R) @)

Let ye FGSM(L) with grade y(y), y=xx,..x,

1

and x, eV, for
1<i<n. Then, there is xeL with grade a(x), x=aa,..a, and a, eV, for
1<i<n, such that y e FGSM (x) with the grade S (x, y). From here it results
that for any s,, initial state with grade 7z, there is s,, final state with the grade
n, , such that :

M : s,a a,..a, ? X,8,a,..4, ? ?xlxz...xn_lsn_lanf)x, Xy...X, S,
1 2 n-1 n

where 1, = u(s, ,,a,,x,s,) for 1<i<n. It then results :

ﬁ(x:y): mA?X min [72'0,#1,/12 ""’:uwnn]
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where the maximum is taken over all the chains of moves M which translate x
iny.

The grade of the membership of y to FGSM (L) is given by

7(y)=min[a(x), B (x,)] or
7 ()= min | (x). max min [, 44, ty s ,7, ]
Since x € L with the grade ¢ (x) it results that
tity.t,=h'(a a,..a,)eh'(L)
with the same grade «(x). Then, the grade of the membership of the word #¢,...z,
to h;'(L)NR is given as
Py (it ) = minfa (x). 6 (18500, )]
which, according to eq. (1) can be written as
Pt (t,t,..£,)= min I_a (x),mgxmin (720 1ty senn 2,17, ]J
Then, y=xx,.x, =h, (t1 tz...tn) €h, (hl_l (L)r\ R) with the same grade with which
Lt,..t, € h]l(L)mR , therefore
Vi (0R) (y)=min I_a (x),mgx min [z, g, 12,17, ]J
We have thus shown that yeh, (hl_l (L)m R) with the same grade with which
y € FGSM (L), wherefrom it results the inclusion
FGSM (L)< hy(h; (L) R)

The inverse inclusion can be proved in a similar way , therefore the
equality (2) is true. Since £ is an AFFL, by using its closure under the ¢-free
fuzzy homomorphism , inverse fuzzy homomorphism and intersection with fuzzy

regular languages , it results that FGSM (L) € L, which proves the theorem.

Next, we investigate the closure property of the AFFL with respect to the
inverse FGSM application.

Theorem 2: Any AFFL is closed under the inverse FGSM application
Proof. Let FGSM be a fuzzy generalized sequential machine:
FGSM =(S,V,.Vy, ut:w.1)
where
w:SxV,xVy xS —[0]]
7:8 —[0,1]
n:S—[01]
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and let £ be an AFFL . We consider an arbitrary language L from £ and must
show that FGSM (L) also belongs to L.

Let us consider a rewriting system RW obtained from the FGSM by
inverting all the productions [2]. Then, the set of the productions from RW
consists of all the productions of the form:

xs,>sa , S,5,€S,aeV, and xeV,

such that s;,a — xs; is a production of the FGSM .

We introduce an auxiliary alphabet :

V= {[x,sj,si,a]| XS; —>8,a € RW}
and define a binary relation T on V}:
T([x,sj,si,aJ, lx',s;,si',a'J) holds iff s, =
The regular fuzzy language R over V| is defined in the same way as in the
previous proof and the words ¢, ¢,...¢, € R will be of the form :
[xn’sn’sn—l’an] [xn—l’sn—l’sn—Z’an—l] [xl’sl’SO’al]
We introduce two fuzzy homomorphisms :
h,:V,xVy —[0,1] and A, :¥,xV, = [0,1]

1 ify=
hl([x’sf’swa]ay)z{o i‘yy;;

1 if b=
hz([x,sj,si,a],b):{o lj;bic;

One observes that 4, is an &-free homomorphism. The following equality of
fuzzy sets takes place :

defined as follows

FGSM ™ (L)=hy (' (L)~ R)
Since £ is an AFFL it results that FGSM ™' (L)e L, and the theorem is proved.

Conclusions

The abstract families of fuzzy languages (4FFL) were defined
[1] as an extension of the abstract families of languages [2]. In the
present work, we have shown that the AFFL have additional closure
properties, namely, under the ¢ — free fuzzy generalized sequential
machine (FGSM) application and under the inverse FGSM
application.
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