

SOME REMARKS ABOUT THE ABSTRACT FAMILIES OF FUZZY LANGUAGES

Irina BUCURESCU, Manuela MĂGUREANU*

Se demonstrează că familiile abstrakte de limbaje fuzzy sunt închise atât față de aplicația GSM (generalized sequential machines) fuzzy ε – free , cât și față de aplicația GSM fuzzy inversă.

One proves that the abstract families of fuzzy language are closed under both the ε – free fuzzy GSM (generalized sequential machines) application and the inverse fuzzy GSM application , respectively.

Keywords: Fuzzy languages , generalized sequential machines.

AMCS Classification : 94D05 , 03E72

Introduction

The abstract families of fuzzy languages were defined earlier [1], by analogy with the abstract families of languages [2]. A family of fuzzy languages is an abstract family of fuzzy languages (*AFFL*) if and only if it contains a non-empty language and it is closed under the following operations: union, ε – free Kleene closure, ε – free fuzzy homomorphism, inverse fuzzy homomorphism and intersection with regular fuzzy languages. The families of regular fuzzy languages and of the context-free fuzzy languages, respectively, are examples of *AFFL* [1].

In Ref. [3] we introduced the fuzzy generalized sequential machines (*FGSM*) as an extension of the generalized sequential machines , that is , by assigning to each state a certain grade with which it may be initial or final state , respectively , as well as grades of application to the productions . Then, we have studied the property of closure of the families of regular fuzzy languages under the ε – free *FGSM* application.

In this work we investigate the more general question of the closure properties of the *AFFL* under *FGSM* applications.

* Reader, Lecturer, Dept. of Mathematics III , Faculty of Applied Sciences, University “Politehnica” of Bucharest, ROMANIA

Closure properties of the AFFL

Theorem 1: Any *AFFL* is closed under the ε – free *FGSM* application.

Proof. Let *FGSM* be an ε – free fuzzy generalized sequential machine

$$FGSM = (S, V_I, V_0, \mu, \pi, \eta)$$

where

$$\mu : S \times V_I \times V_0^+ \times S \rightarrow [0,1]$$

$$\pi : S \rightarrow [0,1]$$

$$\eta : S \rightarrow [0,1]$$

Let \mathcal{L} be an *AFFL*. To prove the theorem, we choose an arbitrary language L from \mathcal{L} and show that $FGSM(L)$ belongs to \mathcal{L} . We introduce the following auxiliary alphabet :

$$V_1 = \{ [s_i, a, x, s_j] \mid s_i a \rightarrow x s_j, s_i, s_j \in S, a \in V_I, x \in V_0^+ \}$$

and define a binary relation T on V_1 as follows :

$$T([s_i, a, x, s_j], [s'_i, a', x', s'_j]) \text{ holds iff } s_j = s'_i$$

Consider now the fuzzy grammar with type 3 rules (Ref. [4]):

$$FG_3 = (V_N, V_T, P, T, J, \delta) \text{ where}$$

$$V_N = \{T, X_1, X_2, \dots, X_k\}$$

$$V_T = V_1$$

$$P = P_1 \cup P_2 \cup P_3 \cup P_4$$

$$J = J_1 \cup J_2 \cup J_3 \cup J_4$$

The sets P_i, J_i with $i = 1, 2, 3, 4$ are given as :

(1) P_1 is the set of nonterminal initial rules of the form

$$(r) \quad T \rightarrow [s_i, a, x, s_j] X_j \quad \delta(r)$$

for $1 \leq j \leq k$ where $\delta(r) = \min[\pi(s_i), \mu(s_i, a, x, s_j)]$. J_1 is the set of labels corresponding to these rules .

(2) P_2 is the set of nonterminal rules of the form

$$(r) \quad X_i \rightarrow [s'_i, a', x', s'_j] X_j \quad \delta(r)$$

for $1 \leq i, j \leq k$ and $T([s_i, a, x, s_j], [s'_i, a', x', s'_j])$, with $\delta(r) = \mu(s'_i, a', x', s'_j)$. J_2 is the set of labels corresponding to the new rules .

(3) P_3 is the set of terminal rules of the form

$$(r) \quad X_i \rightarrow [s'_i, a', x', s'_j] \quad \delta(r)$$

for $1 \leq i \leq k$ and $\delta(r) = \min[\mu(s'_i, a', x', s'_j), \eta(s'_j)]$. J_3 is the set of labels of these rules .

(4) P_4 is the set of terminal initial rules of the form

$$(r) \quad T \rightarrow [s_i, a, x, s_j] \quad \delta(r)$$

where $\delta(r) = \min [\pi(s_i), \mu(s_i, a, x, s_j), \eta(s_j)]$. J_4 is the set of labels of these rules. We note by $R = L(FG_3)$ the regular fuzzy language generated by the grammar FG_3 defined above. One observes that the words $t_1 t_2 \dots t_n \in R$ are of the form

$$[s_0, a_1, x_1, s_1] [s_1, a_2, x_2, s_2] \dots [s_{n-1}, a_n, x_n, s_n]$$

If s_0 is the initial state with the grade $\pi(s_0) = \pi_0$, s_n is the final state with the grade $\eta(s_n) = \eta_n$ and the productions $s_{i-1} a_i \rightarrow x_i s_i$ apply with the grade $\mu(s_{i-1}, a_i, x_i, s_i) = \mu_i$ for $1 \leq i \leq n$, then the grade of the membership of the word $t_1 t_2 \dots t_n \in V_1^*$ to the set R is given by

$$\delta_R(t_1 t_2 \dots t_n) = \max_D \min [\pi_0, \mu_1, \mu_2, \dots, \mu_n, \eta_n] \quad (1)$$

where the maximum is taken over all the fuzzy derivation chains D from T to $t_1 t_2 \dots t_n$. Next, we introduce two ε -free fuzzy homomorphisms [1] in the following way :

$$h_1 : V_1 \times V_1 \rightarrow [0,1] \text{ and } h_2 : V_1 \times V_0^+ \rightarrow [0,1] \text{ and}$$

$$h_1([s_i, a, x, s_j], b) = \begin{cases} 1 & \text{if } b = a \\ 0 & \text{if } b \neq a \end{cases}$$

$$h_2([s_i, a, x, s_j], y) = \begin{cases} 1 & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

One observes that the homomorphism h_2 is ε -free, since the FGSM application was assumed ε -free. Then the following equality of fuzzy sets has to be proved :

$$FGSM(L) = h_2(h_1^{-1}(L) \cap R) \quad (2)$$

Let $y \in FGSM(L)$ with grade $\gamma(y)$, $y = x_1 x_2 \dots x_n$ and $x_i \in V_0^+$ for $1 \leq i \leq n$. Then, there is $x \in L$ with grade $\alpha(x)$, $x = a_1 a_2 \dots a_n$ and $a_i \in V_1$ for $1 \leq i \leq n$, such that $y \in FGSM(x)$ with the grade $\beta(x, y)$. From here it results that for any s_0 , initial state with grade π_0 , there is s_n , final state with the grade η_n , such that :

$$M : s_0 a_1 a_2 \dots a_n \xrightarrow{\mu_1} x_1 s_1 a_2 \dots a_n \xrightarrow{\mu_2} \dots \xrightarrow{\mu_{n-1}} x_1 x_2 \dots x_{n-1} s_{n-1} a_n \xrightarrow{\mu_n} x_1 x_2 \dots x_n s_n$$

where $\mu_i = \mu(s_{i-1}, a_i, x_i, s_i)$ for $1 \leq i \leq n$. It then results :

$$\beta(x, y) = \max_M \min [\pi_0, \mu_1, \mu_2, \dots, \mu_n, \eta_n]$$

where the maximum is taken over all the chains of moves M which translate x in y .

The grade of the membership of y to $FGSM(L)$ is given by

$$\gamma(y) = \min[\alpha(x), \beta(x, y)] \text{ or}$$

$$\gamma(y) = \min[\alpha(x), \max_M \min[\pi_0, \mu_1, \mu_2, \dots, \mu_n, \eta_n]]$$

Since $x \in L$ with the grade $\alpha(x)$ it results that

$$t_1 t_2 \dots t_n = h_1^{-1}(a_1 a_2 \dots a_n) \in h_1^{-1}(L)$$

with the same grade $\alpha(x)$. Then, the grade of the membership of the word $t_1 t_2 \dots t_n$ to $h_1^{-1}(L) \cap R$ is given as

$$\rho_{h_1^{-1}(L) \cap R}(t_1 t_2 \dots t_n) = \min[\alpha(x), \delta_R(t_1 t_2 \dots t_n)]$$

which, according to eq. (1) can be written as

$$\rho_{h_1^{-1}(L) \cap R}(t_1 t_2 \dots t_n) = \min[\alpha(x), \max_D \min[\pi_0, \mu_1, \dots, \mu_n, \eta_n]]$$

Then, $y = x_1 x_2 \dots x_n = h_2(t_1 t_2 \dots t_n) \in h_2(h_1^{-1}(L) \cap R)$ with the same grade with which $t_1 t_2 \dots t_n \in h_1^{-1}(L) \cap R$, therefore

$$\nu_{h_2(h_1^{-1}(L) \cap R)}(y) = \min[\alpha(x), \max_D \min[\pi_0, \mu_1, \dots, \mu_n, \eta_n]]$$

We have thus shown that $y \in h_2(h_1^{-1}(L) \cap R)$ with the same grade with which $y \in FGSM(L)$, wherefrom it results the inclusion

$$FGSM(L) \subseteq h_2(h_1^{-1}(L) \cap R)$$

The inverse inclusion can be proved in a similar way, therefore the equality (2) is true. Since \mathcal{L} is an *AFFL*, by using its closure under the ε -free fuzzy homomorphism, inverse fuzzy homomorphism and intersection with fuzzy regular languages, it results that $FGSM(L) \in \mathcal{L}$, which proves the theorem.

Next, we investigate the closure property of the *AFFL* with respect to the inverse *FGSM* application.

Theorem 2: Any *AFFL* is closed under the inverse *FGSM* application

Proof. Let *FGSM* be a fuzzy generalized sequential machine:

$$FGSM = (S, V_I, V_0, \mu, \pi, \eta)$$

where

$$\begin{aligned} \mu : S \times V_I \times V_0^* \times S &\rightarrow [0,1] \\ \pi : S &\rightarrow [0,1] \\ \eta : S &\rightarrow [0,1] \end{aligned}$$

and let \mathcal{L} be an *AFFL*. We consider an arbitrary language L from \mathcal{L} and must show that $FGSM^{-1}(L)$ also belongs to \mathcal{L} .

Let us consider a rewriting system RW obtained from the *FGSM* by inverting all the productions [2]. Then, the set of the productions from RW consists of all the productions of the form:

$$xs_j \rightarrow s_i a \quad , \quad s_i, s_j \in S \quad , \quad a \in V_I \quad \text{and} \quad x \in V_0^*$$

such that $s_i a \rightarrow xs_j$ is a production of the *FGSM*.

We introduce an auxiliary alphabet :

$$V_1 = \left\{ [x, s_j, s_i, a] \mid xs_j \rightarrow s_i a \in RW \right\}$$

and define a binary relation T on V_1 :

$$T([x, s_j, s_i, a], [x', s'_j, s'_i, a']) \quad \text{holds iff} \quad s_i = s'_i$$

The regular fuzzy language R over V_1 is defined in the same way as in the previous proof and the words $t_1 t_2 \dots t_n \in R$ will be of the form :

$$[x_n, s_n, s_{n-1}, a_n] [x_{n-1}, s_{n-1}, s_{n-2}, a_{n-1}] \dots [x_1, s_1, s_0, a_1]$$

We introduce two fuzzy homomorphisms :

$$h_1 : V_1 \times V_0^* \rightarrow [0,1] \quad \text{and} \quad h_2 : V_1 \times V_I \rightarrow [0,1]$$

defined as follows

$$h_1([x, s_j, s_i, a], y) = \begin{cases} 1 & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

$$h_2([x, s_j, s_i, a], b) = \begin{cases} 1 & \text{if } b = a \\ 0 & \text{if } b \neq a \end{cases}$$

One observes that h_2 is an ε -free homomorphism. The following equality of fuzzy sets takes place :

$$FGSM^{-1}(L) = h_2(h_1^{-1}(L) \cap R)$$

Since \mathcal{L} is an *AFFL* it results that $FGSM^{-1}(L) \in \mathcal{L}$, and the theorem is proved.

Conclusions

The abstract families of fuzzy languages (*AFFL*) were defined [1] as an extension of the abstract families of languages [2]. In the present work, we have shown that the *AFFL* have additional closure properties, namely, under the ε – free fuzzy generalized sequential machine (*FGSM*) application and under the inverse *FGSM* application.

R E F E R E N C E S

1. *I. Bucurescu , A. Pascu*, “Abstract families of fuzzy languages” , Rev. Roum. Linguistique **33** (1988), 3-9
2. *A. Salomaa*, “Formal languages”, New York and London, Academic Press, 1973
3. *I. Bucurescu, A. Pascu*, “Fuzzy generalized sequential machines “, Bull. Math. Soc. Sci. Math. Roum. **36(84)** nr.2 (1992), 99-102
4. *M. Mizumoto*, “Fuzzy automata and fuzzy grammars”, Ph.D. Thesis, Faculty of Engineering Science, Osaka University, Osaka, Japan, 1971.