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ON-CHIP INTERCONNECTS: NEW ACCURATE NOMINAL 
AND PARAMETRIZED MODELS 

Alexandra ŞTEFĂNESCU1, Sebastian KULA2 

Această lucrare descrie tehnici specializate de extragere a modelelor nominale 
şi parametrice pentru interconexiunile lungi descompuse în linii drepte, modelate ca 
linii de transmisie şi în componente de joncţiune, modelate ca dispozitive pasive. Un 
pas important în modelare este extragerea parametrilor lineici pentru linia de 
transmisie. Este prezentată o nouă abordare pentru calculul conductanţei şi 
capacităţii lineice. Noutatea studiului este parametrizarea atât în funcţie de 
dimensiunile geometrice cât şi de frecvenţă. Parametrizarea în funcţie de geometrie 
este bazată pe calculul sensitivităţilor de ordinul întâi din modele de câmp 
electromagnetic, în timp ce influenţa frecvenţei este aproximată prin polinoame 
raţionale obţinute prin fitting. Abordarea propusă este validată prin comparaţie cu 
experimentele. 

This paper describes specialized techniques to extract nominal and parametric 
models for long interconnects decomposed in straight parts, modeled as transmission 
lines and in junction components, modeled as passive components. An important step 
in modeling is the extraction of the per unit length parameters for the transmission 
line. A new approach to compute line conductance and capacitance is presented. The 
novelty of the study is the parameterization with respect both to the geometric 
parameters and the frequency. The parameterization with respect to the geometry is 
based on the computation of first order sensitivities from electromagnetic field models, 
whereas the influence of the frequency is approximated by rational polynomials 
obtained by fitting. The approach proposed is validated by comparing with 
experiments. 
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1. Introduction 

Much research is focusing on interconnects as their performances impact 
has become important due to the fact that million closely spaced interconnections in 
one or more levels connect various components on the integrated circuit [1]. In 
general, if on-chip interconnects are sorted with respect to their electric length, they 
may be categorized in three classes: short, medium and long. While the short 
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interconnects have simple circuit models with lumped parameters, the extracted 
model of the interconnects longer than the wave length has to consider also the 
effect of the distributed parameters. Fortunately, the long interconnects have usually 
the same cross-sectional geometry along their extension. If not, they may be 
decomposed in straight parts connected by junction components (Fig.1). The former 
are represented as transmission lines (TLs) whereas the latter are modeled as 
common passive 3D components. For relatively low frequencies, adverse side-
effects, such as parasitic effects, are neglectable. But at high frequencies, these 
effects must be included. So, standard computational modeling methods as FIT 
(Finite Integral Technique) or FEM (Finite Element Method) used to simulate 
electromagnetic field, are not sufficient. In order to cope with the new challenges 
approaches, very often extensions or modifications of classical methods are used.  

 

Fig.1 Decomposition of the interconnect net in 2D TLs and 3D junctions 

Manufacturing variability in the fabrication process of the ICs is gaining more 
attention as technology dimensions become smaller and the operation frequencies 
continue to go up. Such variations, which are hard to predict and to control, may 
have an important effect on the functionality of the design or on the accuracy of the 
resulting device. The parameter variability can no longer be disregarded during 
modeling, simulation and verification of the device. Parasitic capacitances, 
resistances and inductances of the interconnects have become major factors in the 
evolution of very high speed IC technology. The subject of this paper is how 
nominal and parametric models for interconnects modeled at high frequencies can 
be extracted in a fast and robust manner. First, the extraction of the per unit length 
parameters for transmission lines is presented, then a new Modified Analytical-
Numerical Two Fields Approach for admittance computation is discussed. In the 
third part we present how sensitivities are extracted and then the parametric models 
based on these sensitivities are considered. The authors investigate promising 
alternatives beside the classic models of first-order truncations of Taylor 
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expansions. Two types of parametric models are developed: one for geometrical 
dimensions variations and the other for variations w.r.t frequency. The results 
presented validate all these approaches and conclusions are drawn at the end. 

2. Extraction of line parameters 

Models with various degrees of fineness can be established for TLs. The coarsest 
ones are circuit models with lumped parameters, such as the Π equivalent circuit for 
a single TL shown in Fig. 2. The values of the parameters can be roughly estimated 
either starting from the geometry data by field solution, or from measurements, if 
available. As expected, the characteristic of such a circuit is appropriate only at low 
frequencies, over a limited range, and for short lines.  

 
Fig. 2. The coarsest model for a single 

transmission line: a pi equivalent circuit 
Fig. 3. The pi equivalent circuit for a 

simulated short line segment. Parameters are 
evaluated from field simulations. 

At high frequencies, the distributed effects have to be considered as an 
important component of the model. Proper values for the line parameters can be 
obtained only by simulating the electromagnetic (EM) field. The extraction of line 
parameters is the main step in TLs modeling since the behavior of a line of a given 
length can be computed from them. For instance, for a multiconductor transmission 
line, from the line parameters matrices R , L ,C and G the transfer matrix can be 
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From them, other parameters (impedance, admittance or scattering) can be 
computed as shown for instance in [2]. When considering geometric data, the 
simplest model may consider uniform fields in steady-state electric conduction 
(EC), electrostatics (ES) and magnetostatics (MS) to asses the line resistance, 
capacitance and inductance, respectively. Empirical formulas may also be found in 
the literature, such as the ones given in [3, 4] for the line capacitance. None of them 
take the frequency dependence into account. A first attempt to take into 
consideration the frequency effect is to compute the skin depth in the conductor and 
to use a better approximation for the resistance. In [5] we proposed a much more 
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accurate estimation based on the numerical modeling of the EM field. Two 
complementary problems are solved, one which describes the transversal behavior 
of the line from which the line admittance ( ) ( ) ( )ωωωω CGY j+=  is extracted and 
a second one which describes the longitudinal behavior of the line and from which 
the line impedance ( ) ( ) ( )ωωωω LRZ j+=  is extracted. The first problem is 
dedicated to the computation of the transversal parameters and it uses a 2D 
transversal electro-quasi-static (EQS) field in dielectrics, considering the line wires 
as perfect conductor with given voltage. The second problem focuses on the 
longitudinal electric and the generated transversal magnetic field. Consequently, a 
short line-segment of length l  is considered in which a full-wave (FW) but 
transversal magnetic (TM) field approximation is used. The transversal component 
is finally subtracted from the FW-TM simulation to obtain an accurate 
approximation of the line impedance, as given by 
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This subtraction is carried out according to a pi-like equivalent net for the 
simulated short segment (Fig. 3). Finally, the line parameters are: 

( ) ( )YG Re=ω , ( ) ( ) ωω /Im YC = ,  ( ) ( )ZR Re=ω  
   ( ) ( ) ωω /Im ZL =     (2) 

where 
,/ lEQSYY =      lMQS /ZZ =   (3) 

The obtained values of the line parameters are frequency dependent. 
If measurements are available, an estimation of the line parameters at low 

frequencies can be done by considering the simplest Π equivalent lumped circuit 
(Fig.2) and extrapolating experimental data towards zero frequency. A more 
accurate estimation can be done if TL theory is used. In the case of single TL, it can 
be easily derived that for every frequency the line parameters can be computed as 

( )cZrealR γ= , ( )cZrealG /γ= , ( ) ωγ /cZimagL = , ( ) ωγ // cZimagC = , where 
the complex propagation constant can be computed from the components of the 
impedance matrix as ( ) lZZ //cosharg 1211=γ  and the complex characteristic 
impedance can be computed as ( )lZZc γsinh12= . There are difficulties related to 
the fact that the cosharg  function is multi-valued, but these can be overcome in a 
correction step, as described in [5]. The obtained values of the line parameters are 
frequency dependent as well.  
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3. Modified Analytical-Numerical Two Fields Approach 

The starting point of this method is the standard two field problems 
approach presented above. Based on the results obtained, we have observed that the 
line capacitance is approximately constant w.r.t. frequency. Only at high 
frequencies, close to 60GHz its value slightly decreases. Analyzing the p.u.l. 
conductance graphs we have observed that its value is constant up to 10 GHz but 
then it grows rapidly. The entire course of the curve is a standard second degree 
curve. The modified analytical-numerical two field problems approach is based on 
these two observations. The main difference, comparing to the previous, standard 
method is that the admittance: 

( ) ( ) ( )ωωωω NlANlANlA j −−− += CGY     (4) 
is computed not from 2D EQS simulations, but from analytical expressions, 
whereas the impedance is calculated as in the previous method. To designate the 
p.u.l. C value empirical expressions were used. Afterwards, the results from these 
formulas were compared with simulation data. For further applications, expression 
that fits the best the simulation data was used. In order to designate the p.u.l. 
conductance G, three methods were used and compared with the simulation results. 
The first method is based on the fact that the relation between frequency and p.u.l. 
G can be described as a second order polynomial. The quadratic polynomial 
coefficients are obtained through a fitting procedure. The polynomial has the 
following form: 

32
2

1)( afafafG NlA −+=−      (5) 
The second method uses the transfer function H(s) obtained from the Vector 

Fitting procedure. The real part of the obtained transfer function is p.u.l. 
conductance.  

The third method requires as in the first case the calculation of the 
coefficients of the second order polynomial. They were obtained with Matlab cftool 
procedure.  

The three methods were compared and the best results are obtained for the 
third method. So far, the p.u.l. G analysis was limited to constant values of 
geometric dimensions. The purpose is to develop a method with universal character 
and to include also the variations of the geometric dimensions. So, the line 
conductance will be then computed w.r.t. frequency and geometric variations: 
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The coefficients have been computed using cftool from Matlab.  
As an alternative to this analytical parametric formulation, we developed a 

method based on Taylor series expansion for the quantity that varies.  



210                                                Alexandra Ştefănescu, Sebastian Kula 

4. Computation of sensitivities for per unit length parameters 

The process uncertainty usually directly affects the geometrical or electrical 
properties of the layout, and therefore, most of these variations can be represented 
as modifications of the values of the system matrices inside a state space descriptor:  

( ) ( ) BuxGxC =+ )()( αααα
dt

d      (7) 

( ) ( )αα Lxy =         (8) 
Parametric models are often obtained by truncating the Taylor series 

expansion for the quantity of interest. This requires the computation of the 
derivatives of the device characteristics with respect to the design parameters [6]. 
Let us assume that )(),,,( 21 αααα yy n =…  is the device characteristic which 
depends on the design parameters ],,,[ 21 nαααα …= . The quantity y may be, for 
instance the real or the imaginary part of the device admittance at a given 
frequency. In our case this quantity is any of the p.u.l. parameters. The parameter 
variability is thus completely described by the real function, y, defined over the 
design space S, a subset of nℜ  The nominal design parameters correspond to the 
particular choice ],,,[ 002010 nαααα …= . First order truncation of the Taylor 
series is the affine function: 

)()(),,,(),,,( 001110020121 nnnnn SSFF αααααααααα αα −++−+= ………  
         (9) 

where kk FS αα ∂∂= /  are the first order sensitivities defined as partial derivatives 
of the device characteristic w.r.t. design parameters, computed for the nominal 
values of the parameters. This definition is available not only for the real part of the 
characteristic, but also when F is a complex number, a vector or a matrix. 

The next level of the approximation in the modeling process is the 
computation of the first order sensitivities of the output quantity from the 
sensitivities of the state space matrices: 

αα ∂
∂

=
∂
∂ xLy         (10) 

where 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+−=
∂
∂ − xGCGCx

αα
ωω

α
jj 1)(     (11) 

( ) uj BGCx 1−+= ω        (12) 
Sensitivities of the p.u.l. parameters can be expressed as follows: 
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5. Geometrical and frequency dependent parametric models 

In this section we discuss the alternative models developed for geometrical 
variations and then we insert the frequency dependence in the parametric models. 
The advantage of these models is that they don’t require additional iterations. We 
define two types of parametric models: additive (A) and rational (R) [7]. 
The additive model is a simply first order normalized standard version of the 
truncated Taylor expansion 
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parameters. The rational model is the additive model for the reverse quantity y/1 . It 
is obtained from the first order truncation of the Taylor Series expansion for the 
function y/1 . In the general case, the rational model is: 
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where it can be easily shown that yy SS αα −=/1 . 
The first idea to include the frequency dependence in these models is to 

consider the variation with respect to the frequency of the nominal values and of the 
sensitivities: 
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The implementation of formulas (19) in a computer code is straightforward. 
However, this approach is not appropriate if the final goal is to obtain a synthesized 
small circuit with parameterized values of components.  
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The alternative we propose to obtain a frequency dependent parametric model is to 
use a rational approximation in the frequency domain. We have shown in [8] that 
the most efficient method for the class of problems we address is the vector fitting 
method proposed in [9] and improved in [10,11], which finds the transfer function 
matching a given frequency characteristic. The resulting approximation has 
guaranteed stable poles and the passivity can be enforced in a post-processing step 
[11]. Thus, in the frequency domain, for the output quantity y(s), this procedure 
finds the poles pm (real or complex conjugate pairs), the residuals km and the 
constant terms ∞k  and 0k of a rational approximation ( )sŷ  of the admittance: 
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To keep the explanations simple, we assume that there is only one parameter that 
varies, i.e. the quantity α  is a scalar. Assuming that keeping the order q  is 
satisfactory for the whole range of the variation of this parameter, this means that 
(20) can be parameterized as: 
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Without loss of generality, we can assume that the additive model is more accurate 
than the rational one. If not, the reverse quantity is used, which is equivalent, for 
our class of problems, to change the excitation of terminals from voltage excited to 
current excited, and use an additive model for the impedance 1−= yz . The additive 
model (17) can be written as 
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where here y  is a matrix function (e.g. for a single TL, it is a 2x2 matrix). 
By combining (21) and (22) we obtain an approximate additive model based on 
VFIT: 
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From (21) it follows that the sensitivity of the VFIT approximation needed in (23) 
is 
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The sensitivity α∂∂ /y  are computed as described in section 4 for as many 
frequencies as required and thus the sensitivities of poles and residues in (24) can 
be computed solving the linear system (24) by least square approximation. Finally, 
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by substituting (24) and (21) in (23), the final parameterized and frequency 
dependent model is obtained: 
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         (25) 
Expression (25) has the advantage that it has an explicit dependence with respect 
both to the frequency ωjs = and parameter α , is easy to implement and feasible to 
be synthesized as a second order net-list having components with dependent 
parameters. 

6. Results 

6.1. Results obtained for the nominal models 
Two class of problems have been tested. First, a transmission line having 

the configuration shown in Fig. 4. The geometrical and electrical characteristics of 
the problem are h1= 1µm, h2 = 0.69 µm, h3 = 10 µm, a = 130.5 µm, p3 = 3 µm, p1 
= 0, p2 = h2, xmax = 264 µm.  

Fig. 4. Test problem . Fig.5 – 2D grid used in the modelling 
procedure 

For this problem the p.u.l. parameters have been extracted first with the two 
field problems approach and then with the modified method. These methods have 
been implemented in Chamy tool developed in Matlab in the frame of the European 
Project Chameleon-RF [12]. The grid used has nx=261, ny=178, nz=2 nodes (Fig. 
5). The number of degrees of freedom is 92030 for the 2D-EQS problem and 
230132 for FW-TM problem. Fig. 6 shows the comparison of the line parameters 
extracted from measurements (blue) and those extracted from simulations (red). As 
expected, the longitudinal parameters depend on frequency. 



214                                                Alexandra Ştefănescu, Sebastian Kula 

 
a) Line capacitance b) Line conductance 

 
c) Line resistance d) Line inductance 

Fig. 6. Comparison of line parameters extracted from measurements and simulations 
Line conductance and line capacitance have also been extracted using the 

Modified Analytical-Numerical Two Fields Approach. Fig. 7 shows the comparison 
between different analytical approaches for p.u.l. capacitance extraction and the 
simulation results (obtained from the 2D-EQS field). The best analytical result is 
the one obtained for Meijs and Fokkema formula [3]. 

Fig. 7 – Comparison between different analytical 
approaches and the simulation for p.u.l. capacitance 

Fig. 8 – Comparison between the three 
approximation formulas for p.u.l. conductance 

calculation with simulation data 
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Fig. 8 presents the comparison between the three methods of computation 
the p.u.l. conductance and the results obtained for the simulations of the EQS field. 
Best results are obtained for the third method. The values of the coefficients 
obtained with Matlab cftool are: 20

1 10083,1 −⋅=a , 12
2 10314,2 −⋅=a , 

01064.03 =a . 
Comparison results for the scattering parameters between measurements 

(blue) and simulations (red) are shown in Fig. 9. The error between the 
measurements and the simulations is 17.92%. These results validate our procedure 
of extracting line parameters from two field problems. 

Re S11 Im S11 

Re S12 Im S12 
Fig. 9 – S11 and S12 parameters 

 

6.2. Results obtained for parametric models 

For the transmission line (Fig. 4), both geometrical and frequency dependent 
parametric models have been developed.  The first sets considered one parameter 
that varies, namely the height of the line, 2h . The nominal value chosen was 

mh μ67.02 =  and samples in the interval mμ]79.0,59.0[  were considered. The 
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reference result of the p.u.l. resistance was obtained by doing “exact” simulation for 
the samples. These were compared with the approximate values obtained from 
models A and R (Fig. 10). In order to evaluate the appropriateness of these models 
for the analysis of technology variability we considered the parameter variations 
less than 15%, which is a typical limit for nowadays technologies. The errors of 
both additive and rational first order models are shown in Fig. 11.  

 

Fig. 10 Reconstruction of the p.u.l. C from 
Taylor Series first order expansion 

Fig. 11 Relative error w.r.t. the relative variation 
of parameter 2α . 

 
The sensitivity of the admittance with respect to this parameter has been 

calculated according to section 4, using EM field solution. By applying Vector 
Fitting, a transfer function with 8 poles has been obtained. This conduced to an over 
determined system of size (236,26) which has been solved with an accuracy 
(relative residual) of 3.7 % (Fig. 12). Finally,  the relative error of the A-VFIT 
model is 1.09 % compared to the relative error of the A model which is 0.95 % for a 
relative variation of the parameter of 10 % (in Fig. 13 the three curves are on top of 
each other). 

 

Fig. 12. Variation of the admittance sensitivity 
with respect to the frequency.

Fig. 13. Reference simulation vs. answer 
obtained from the frequency dependent 
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parametric model (13). 
The second class of problems addresses the junction components of the 

interconnections modeled as 3D passive components, more precisely we analyze 
the parameterized T-shape conductor with the configuration shown in Fig 14. The 
aim is to model different relative positioning of contact shapes in the substrate. The 
sensitivities are computed and the reconstruction of the Taylor series expansion is 
shown. The geometrical parameter that varies is p1 (Fig. 16). The aim is to model 
different relative positioning of contact shapes in the substrate. The relative 
position, p1 is varying in a set of samples from 40µm to 60µm. Fig. 17 represents 
an accurate TS approximation for a relative variation of parameter of 20%. 

 

  

Fig. 16 Parameterised conductor Fig.17 Reconstruction of the answer at 1GHz, 
from TS first order expansion 

7. Conclusions 

This paper proposed new approaches to model on-chip interconnects. These 
can be decomposed as transmission lines and as junction components. A method to 
compute the p.u.l. parameters from two field problems is presented. A new 
approach used to compute p.u.l. capacitance and conductance is described. A new 
method to obtain parametric models for transmission lines is proposed. It relies on 
field computations to extract line parameters and their sensitivities with respect to 
the parameters that vary. Next, a rational approximation in the frequency domain, 
obtained with Vector Fitting is combined with a first order Taylor Series 
approximation. The main advantage of this approach is that the final result is 
amenable to be synthesized with a small parameterized circuit. 
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