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PneuML: A NOVEL SEQUENTIAL CONVOLUTIONAL
NEURAL NETWORK-BASED X-RAY DIAGNOSTIC SYSTEM
FOR PNEUMONIA IN CONTRAST TO MACHINE
LEARNING AND PRE-TRAINED NETWORKS

Sunil KUMAR'?, Harish KUMAR!

Pneumonia is a formidable global health challenge, contributing significantly
to worldwide mortality rates. This research addresses this issue by developing and
evaluating a sophisticated image classification model, PneuML, to accurately predict
pneumonia cases using chest X-ray images. Machine learning (ML) techniques, pre-
trained convolutional neural networks (CNNs), and a novel PneuML sequential CNN
architecture were rigorously examined to achieve this objective. The study's primary
focus was to assess the effectiveness of the PneuML model in classifying X-rays. The
results obtained from the PneuML model were highly promising, achieving an
exceptional accuracy rate of 96.21% and an impressive F1 score of 95.65%. These
outcomes surpassed the performance of both pre-trained CNNs, with ResNet50 as the
top-performing model, and traditional ML methods, where XgBoost ML classifiers
were best performed. This research also facilitated a comparative analysis between
CNNs and ML, underscoring the superiority of the PneuML CNN architecture in
pneumonia classification through X-ray imaging. Furthermore, the study explored
advanced techniques such as class weights to enhance model performance.
Incorporating these cutting-edge concepts holds promise for further refinement and
improved results.
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1. Introduction

The illness produces discomfort or incapacity due to an internal malfunction
caused by lung disease. Individuals may be unaware of lung diseases or conditions
since diagnosis is difficult. This is because most lung diseases initially do not have
symptoms before they produce discomfort. We can cure lung disease if we diagnose
it. Traditionally, medical professionals have manually diagnosed lung diseases by
utilizing procedures grounded in the symptoms of the conditions. It is a common
belief that the most lethal diseases, such as brain or blood cancer, result in the most
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significant number of fatalities worldwide. This belief, however, is inappropriate
because several of these diseases do not rank among the top 10 global causes of
mortality. Unexpectedly, lung disorders account for the majority of fatal diseases.
The WHO identified the ten deadliest diseases that claimed the most lives
worldwide between 2000 and 2019 [1].

Lower respiratory infections are the most dangerous contagious illness
globally and the fourth most common reason for death. Lower respiratory disorders
encompass a variety of diseases that may affect the lungs, the most well-known of
which is pneumonitis [2]. When the lungs get infected with pneumonia, it can lead
to swelling and fluid accumulation. Many different kinds of microorganisms are
capable of causing it, including bacteria, viruses, and fungi. The seriousness of
pneumonia may range from mild to potentially fatal, and treatment depends on the
infection's source and severity. There are several types of pneumonia, each with
different causes and treatment options. Some common types of pneumonia include:

* Viral pneumonia: Pneumonia caused by the virus is less common but can
be severe; one example is COVID-19.

* Fungal pneumonia: A fungus causes this type of pneumonia. People with
an impaired immune system are more likely to be affected.

* Mycoplasma pneumonia: This type of bacteria called Mycoplasma
pneumonia causes this type of pneumonia, often referred to as ‘walking pneumonia,’
as it can induce mild symptoms resembling a cold or the flu.

« Community-acquired pneumonia: Bacteria or viruses commonly present
in the community typically cause this.

* Hospital-acquired pneumonia: An individual can only catch this particular
strain if they are a patient in a public hospital. Antibiotic-resistant bacteria typically
cause it [3].

Fig. 1 displays X-ray illustrations of pneumonia and normal, obtained from
the Large Dataset of Labelled Optical Coherence Tomography and Chest X-Ray
(LDOCTCXR) dataset available to the public [4].
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Fig. 1. Instances of chest X-ray from LDOCTCXR dataset [4]
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X-rays are the imaging modalities that are employed most frequently in the
process of diagnosing pneumonia. They can show characteristic signs of
pneumonia, such as inflammation and fluid accumulation in the lungs.
Interdisciplinary fields are combined in the new era to provide new real-life
problem solutions.

ML in medical services is a recent trend that offers novel approaches to real-
world challenges. ML is an artificial intelligence (Al) that can analyze medical data
and make predictions. In the context of pneumonia diagnosis, ML algorithms can
analyze X-ray images and predict whether or not a person has pneumonia [5]. ML
algorithms offer promising solutions for the task. This research presents a
comprehensive approach to pneumonia diagnosis using ML techniques and feature
extraction. The first step extracts relevant features using the local binary pattern
(LBP) method [6]. Subsequently, the supervised learning techniques train the ML
model, including Support-Vector-Machine (SVM) [7], K-nearest-neighbor (KNN)
[8], random forest (RF) [9], gradient boost [10], Extreme Gradient Boosting
(Xgboost) [11], and Adaptive Boosting (AdaBoost) [12]. Successful validation
could lead to the deployment of the ML model. However, it is essential to note that
ML models need proof on a large and diverse X-ray dataset before being used in
the clinical setting [13].

One common approach is using deep learning algorithms, such as CNNs, to
analyze X-ray scans for signs of pneumonia. CNNs are a specific kind of ML
algorithm that works very well when used for the problem of image analysis. CNNs
autonomously extract the most salient or intricate features and patterns from the
given input X-ray images through training. Various architectures, including
VGG16, VGG19 [14], ResNet50 [15], InceptionV3 [16], and DenseNet121 [17],
were employed to train the CNN models in the investigation. Utilizing ML and
CNN algorithms on extensive labeled image datasets to analyze pneumonia
presence or absence indicators. Once trained, the model can be employed to
investigate new images to make a diagnosis [18].

The motivation of this investigation is to address the considerable global
health issue of pneumonia, which significantly contributes to mortality rates
worldwide, and to create and assess an effective image classification model
specially tailored to effectively forecast instances of pneumonia by using X-ray
images. The proposed PneuML architecture, meticulously designed and effectively
demonstrated in the research, employed a 12-layer sequential CNN model. The
architecture comprises a solitary input layer, three convolutional layers, three
maximum pooling layers, one flattening layer, two dense layers, and a dropout
layer. The primary contributions of this research are outlined below:

* Pneumonia is a substantial worldwide health concern, leading to elevated
rates of fatalities and addressing a global health challenge. This investigation aims
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to tackle this problem by constructing an advanced PneuML image classification
approach.

» The investigation suggested that it collected pneumonia and normal
images by merging two publicly available datasets to create a novel dataset.

* The PneuML sequential CNN architecture performed better than pre-
trained CNNs and ML classifiers.

» The investigation investigated sophisticated methodologies, such as the
utilization of class weights, to augment the performance of the existing and
recommended PneuML model.

Furthermore, the following outline depicts the article's organization: Section
2 presents the literature review. Section 3 addresses the materials and methods
being used to perform the investigation. Section 4 offers the result and discussion
section, ML, CNN, and PneuML sequential CNN architecture findings. Section 5
concludes the research.

2. Literature Review

X-rays were the subject of an investigation by researchers who examined
various diagnostic approaches for pneumonia in published studies. Two distinct
methods, traditional ML and CNN, were observed when analyzing the articles.

To train and verify deep CNNs, transfer learning with image augmentation
was employed [5]. The convolutional network's distinguishing feature was the use
of dropout. Kaggle's diagnostic imaging competition provided 5856 tagged images
for training and testing, where the network achieved 97.2 % accuracy, 97.3% recall,
97.4% precision, and an AUC of 98.20% [19]. Twelve pre-trained CNN models
were fine-tuned to differentiate healthy X-rays from pneumonia cases using 6,330
images for training, validation, and testing. Most architectures performed well, with
a mean f1-score of 84.46% in distinguishing the four classes [20]. A multi-branch
fusion auxiliary learning (MBFAL) technique achieved a classification
performance of 95.61% for pneumonia detection using lung X-rays. MBFAL
demonstrated a standard accuracy of 98.70%, 99.10%, 96.60%, and 96.80% for
multi-classification, with recalls of 97.20%, 98.60%, 96.10%, and 89.20% [21].
The paper presented a "CJT-based ensemble of classifiers,” demonstrating the
superiority of Condorcet's jury theorem-based ensembles of learners regarding
accuracy. The ensemble approach combined CNN model findings to enhance
COVID-19 pneumonia detection in CXR images [22]. Researchers employed novel
imaging techniques for pneumonia identification and tracking using thermography
[23]. The appropriate CXR image features were chosen using a hybrid social group
optimization algorithm, and support vector classifiers achieved good classification
results [24]. The presented method, Multi-Scale Attention Network (MSANet),
utilized deep learning for classifying COVID-19 and other pneumonia forms with
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improved accuracy through automated consideration of discriminatory data and
multi-scale features [25,26]. The approach presented as SVD-CLAHE Boosting,
ResNet-50, and BWCCE showcased remarkable results, achieving an accuracy of
94.00% and an F1 score of 95.00%. This approach uniquely combined techniques
such as Singular Value Decomposition (SVD) and Contrast Limited Adaptive
Histogram Equalization (CLAHE) in conjunction with a deep learning architecture,
ResNet-50, and Balanced Weighted Cross-Entropy (BWCCE) loss functions. The
success of this approach underscored the potential of combining multiple
techniques for robust and precise results [27]. In the context of transfer learning,
the Transfer Learning with Inception V3 approach displayed strong performance,
having achieved an accuracy of 92.80%. Transfer learning, specifically through the
Inception V3 model, highlighted the value of leveraging pre-trained models to
achieve accurate predictions [28]. Furthermore, the "Mobile Freeze-Net" method
showcased an accuracy of 93.00% and an F1 score of 94.00%, illustrating the
efficacy of mobile-oriented architectures [29]. Additionally, adopting more
traditional methodologies, such as utilizing a CNN, resulted in an accuracy of
93.75% and an F1 score of 94.00% [30]. The exploration confirmed the reliability
of the established machine and deep-learning techniques in tasks. Exploring these
various approaches enhanced our understanding of the strategies employed in the
job.

3. Material and Methods

The presentation of the fundamental architecture of our PneuML intended
systematic perspective in contrast to ML and pre-trained CNN (Fig. 2). The system
consists of multiple processes, including the collection of lung X-ray image
datasets, the preprocessing and extracting of the necessary features, the construction
of classification models based on ML and CNN and training them, and their
evaluation based on specific performance metrics.

3.1 X-Ray Image Dataset

The investigation involved pneumonia and normal images from a generated
dataset by combining two source datasets. The first dataset, LDOCTCXR,
encompassed the acquisition of anterior-posterior X-ray images specifically
targeting pediatric children aged one to five [4].

In contrast, the second dataset was called the Balanced Augmented COVID
CXR dataset [31]. The Balanced Augmented COVID CXR dataset had four
classifications: COVID, Normal, Lung Opacity, and Pneumonia. In our
investigation, we selected only pneumonia images and normal classes. The
methodologies used in the second dataset included the utilization of under-
sampling, over-sampling, and image-processing methods for data augmentation.
The study employed a distinct approach known as SVD to generate images that
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exhibited nuanced differences in brightness and contrast. CLAHE was applied to
enhance the features of the images [27].
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Fig. 2. Framework of PneuML systemic approach in contrast to ML and pre-trained CNN

The investigation revealed the benefits of adding more images and
explained the reasoning behind the image selection. The created dataset is designed
to enhance diversity and comprehensiveness by integrating two source datasets.
These choices contributed to a more extensive and detailed dataset, which aided in
detailing and improving the effectiveness of the investigation. Table 1 provided a
comprehensive summary of the datasets, where the created dataset consisted of
19,435 samples. The generated dataset comprised 9,638 samples of pneumonia and
9,797 samples of normal lung conditions, resulting in a balanced dataset.

Table 1
Generated Dataset
Dataset Pneumonia Normal Total
Samples Samples
LDOCTCXR [4] 4,273 1,583 5,856
Balanced Augmented Covid CXR [31] 5,365 8,214 13,579
Generated 9,638 9,797 19,435

The investigation employed 80 percent to train and 20 percent to test the
generated dataset. To eliminate biases from the dataset was randomized in
preparation. It is important to note that the eminence of the image dataset is crucial
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for the model's effectiveness. The dataset was balanced, meaning it should have a
similar number of images for normal and pneumonia cases.

3.2 Image Pre-processing

The preprocessing tasks encompassed primary operations, including image
resizing and dimension reduction. These techniques were deemed necessary due to
discrepancies found in the dimensions of the data. It's worth highlighting that
resizing and dimension reduction emerged as the two pivotal approaches for
achieving effective preprocessing.

Some significant concerns came to light as we delved into the initial
datasets. The first crucial step involved resizing images to a standardized dimension
of 224 by 224 pixels. This decision was prompted by varied image sizes within the
raw dataset. Ensuring uniformity across the training of the ML, CNN, and PneuML
models hinged on maintaining consistent image dimensions. As a result, we
immediately implemented a scaling procedure to align the dimensions. The samples
initially were two-dimensional representations derived from three-dimensional
source data [32].

3.3 ML Training

One potential use of ML was building a model using a dataset of X-ray
images that included both pneumonia-positive and pneumonia-negative cases.
Once the model was trained, it could analyze new X-ray images and predict whether
a person had pneumonia. A stepwise ML approach to pneumonia detection typically
involves the following steps:

« Step-1: Feature extraction and selection: The ML model was employed
to extract relevant features that could be used to distinguish between healthy and
infected lungs. The LBP, which by default contained 256 bins, was utilized in
feature extraction. LBP considers an image's local texture information by
comparing a pixel's intensity with its neighboring pixels. The Equation 1 of LBP
was given as follows:

7
LBP(xCJ yc) =

n

2" % g(1(n, yn) — 1(xc,¥e)) 1)
0

Where x., y, Is the coordinates of the center pixel, x,,, y,, are the coordinates
of the neighboring pixels, I(x,y) is the intensity of the pixel at axes (x,y), and g(x) is
a function defined as:

gx)=1,ifx>=0
=0,ifx<0

The equation computed the LBP for a pixel in an image, where each bit
represented the comparison of the intensity of the center pixel with that of its
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neighbors. It showed that the LBP encoded the local texture around the pixel. Due
to its effectiveness, the LBP operator was widely used in computer vision
applications, such as texture classification [6].

« Step-2: Model training: After extracting and selecting the features, we
provide the labelled dataset to the ML model for training. The ML model then learns
the correlation between the features and the presence or absence of pneumonia. This
process usually involves using classification algorithms within ML.

» Step-3: Conventional ML Algorithms: Our research used conventional
ML algorithms, including SVM, KNN, RF, gradient boost, Xgboost, and AdaBoost.
Each of these algorithms is described briefly below:

- SVM is a supervised learning method for classification and regression
analysis. It determines optimal boundaries to separate data into different classes.

- KNN performs classification or regression using an instantiation-based,
non-parametric learning strategy, which makes decisions based on most of its k-
nearest neighbors' input.

- Random Forest executes both classification and prediction tasks. It
generates multiple decision trees and aggregates their predictions to produce an
outcome.

- Ensemble learning methods like gradient boosting leverage multiple weak
learners to construct a single robust learner. This approach enables subsequent
models to build upon the successes of their predecessors.

- XGBoost represents an advanced gradient-boosting technique. It
efficiently handles large-scale and high-dimensional datasets.

- AdaBoost, an ensemble technique, addresses prior model errors by
assigning greater weight to misclassified instances. It combines multiple weak
learners to form a powerful learner [33].

« Step-4: Model evaluation: The trained model is then evaluated on a
separate X-ray test dataset to assess its effectiveness. Typically, research
accomplished this by using metrics accuracy and F1 score.

This stepwise approach is employed to train the ML models. However, it is
imperative to highlight that the model's success will depend on the quality of the
image used to teach it and the choice of ML algorithms.

3.4 CNN Training

CNNs s are reliable, efficient, and highly effective ML techniques used for
image analysis operations, like analyzing X-rays for diagnosing pneumonia [13].
Employing a CNN for the task includes the following steps, while other steps are
the same as ML training:

* Feature extraction, selection and CNNs Model training: The explicitly
selected and retrieved features are the foundation for implementing conventional
ML techniques. Conversely, CNNs autonomously learn to extract the most
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significant or intricate features and patterns from X-ray images. The CNN learns to
identify patterns in images indicative of pneumonia presence [18]. After training
the CNN with the designated X-ray dataset, it can analyze X-ray images and predict
pneumonia in patients. Different architectures, such as VGG16, VGG19, ResNet50,
InceptionV3, and DenseNet121, were employed to train the models. These models
were all pre-trained using the ImageNet database [19].

Traditionally, Convolutional layers gathered detailed characteristics from
input data in the experiment, allowing the network to discover patterns and
correlations. Subsequent max-pooling techniques downscaled feature maps,
keeping relevant information while lowering computing costs. The ReL U activation
function introduced non-linearity, promoting complex representations necessary for
the network’s successful generalization.

* Convolution Operation:

The convolution process entails the movement of a filter, also known as a
kernel, through an input data matrix. This movement comprises element-wise
multiplication and subsequent summation of the overlapping sections, resulting in
the extraction of features. Capturing spatial patterns within the data allows the
neural network to identify and discern edges, textures, and other local features from
the X-ray image. The Equation 2 of the convolution operation in a CNN is as
follows:

f = Py)=2Xf0)D*glx — i,y — j) 2

This equation calculates the dot product between the kernel and the
corresponding region of the input feature map, summed over all positions (i, j)
within the kernel. Where:

- (f* g) (x, y) represents the output value at axes (x, y) in the resulting feature
map.

- f(i, j) represents the input value at position (i, j) in the input feature map.

- g(x - i,y - ) represents the kernel value at position (x — i, y - j) in the
filter/kernel [34].

* Max Pooling Operation:

The process of max pooling involves the reduction of spatial dimensions in
data by picking the maximum value from a collection of surrounding items within
each area. The Equation 3 of the maximum pooling operation in a CNN is as
follows:

max_pool(x,y) = max (f(x,y),f(x +Ly), f(x,y + 1), f(x + L,y + 1)) (3)

Where:
- max_pool(x, y) represents the output value at axes (x, y) in the resulting
pooled feature map.
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- f(x, y) represents the input value at axes (X, y) in the input feature map
[35].
* ReLu Activation Function:
An activation function that may prevent vanishing gradients is the ReLU.
This interpretation focuses on the argument's positive axes [18].

f () retn = Max (0, x) (4)
3.5 Proposed PneuML Sequential CNN Model

The crafted PneuML architecture employed a 12-layer sequential CNN
model, as depicted in Fig. 3. The PneuML architecture comprises a lone input layer
featuring an image size of 224x224, three convolutional layers (Conv2D) utilizing
a Rectified Linear Unit (ReLU) activation function, three maximum pooling layers
(Maxpool2D), a flattening layer, two dense layers with RelLu activation, an
incorporated dropout layer, and an output layer implementing a SoftMax function.

Input Shape (224*224)
Conv2D 64 filters (11, 11) kernel size ReLU activation
MaxPool2D
Conv2D 128 filters (5, 5) kernel size ReLU activation
MaxPool2D
Conv2D 256 filters (3, 3) kernel size ReLU activation
MaxPool2D

Flatten

1024 Units ReLU activation
opou Rate 0.5
512 Units RelLU activation

it

2 Units SoftMax activation

Fig. 3. PneuML Sequential CNN Model Architecture

» Conv2D: The convolutional layer is where the model's learning begins,
and the convolution process occurs. It includes the kernel and filtering components.
In convolutional layers, we filter abstract features and construct a feature map. For
the first, second, and third convolutional layers, in our PneuML technique, we used
64 filtrations, 128 filtrations, and 256 filtrations, with kernel sizes of 11x11, 5x5,
and 3x3, respectively. Deep learning neural networks frequently employ the ReLu
activation function. It is a piecewise linear function that replaces all negative values
with 0 while leaving positive values unchanged [34].
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» Maxpool2D: It is a down-sampling method used to lessen the spatial
dimensions of the feature maps obtained in Conv2D. The idea behind maximum
pooling is to preserve the most important features while reducing the features and
computations. Max pooling takes the maximum value from each miniature, non-
overlapping section of the input feature map. The primary use of max pooling is to
decrease overfitting and computational complexity. PneuML utilized one
Maxpool2D layer for each Conv2D layer in its representation [13, 35].

» Flatten layer: The flattened layer converts a multi-dimensional tensor into
a single flat vector. A single row preserves the shape of the input.

* Dense layer: Dense layers, sometimes called "fully connected layers," are
employed in deep learning neural networks. An example of a dense layer is one in
which each neuron connects with all of the neurons in the layer below it. This layer
performs a dot product between its inputs and a set of weights. PneuML used a
highly linked layer with 1024 neuron units for dense layer 1 and 512 neuron units
for dense layer 2 [18].

» Dropout layer: While each network forward passes, the Dropout layer
randomly sets a fraction of the input neurons to zero. It forces the network to rely
on multiple neurons to make predictions, reducing the reliance on any particular
neuron and preventing overfitting. At each training iteration, the network drops a
different set of neurons, resulting in training on various combinations of neurons.
Our research uncovered that the dropout rate equals 0.5 [19].

The PneuML training involved using an Adam optimizer with a learning
rate of 0.002 and a mean squared logarithmic error loss for 20 epochs, with a batch
size of 64. Table 2 outlines the hyper-parameters defined, including the optimizer,
the learning rate, the loss function, the batch size, and the epochs.

Table 2.
Hyper-parameters for PneuML and Pre-trained CNNs
Hyper-Parameter Instance
Optimizer Adam
Learning Rate 0.002
Loss Function Mean Squared Logarithmic Error Loss
Batch Size 64
Epochs 20

3.6 Performance Metrics

Metrics employed to assess the effectiveness of an ML or CNN model are
known as performance metrics. Classification models primarily use these metrics
for evaluation [32]. Examples include accuracy, precision, sensitivity, specificity,
recall, and F1 scores. The investigation prioritized the accuracy and F1 scores above
the others since they are the most often used and dependable.
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4. Results and Discussion

The ML classifiers used for research were SVM, RF, Xgboost, KNN,
Gradient Boost, and Adaboost. Fig. 4 displays the accuracy and F1 score achieved
by each ML classifier.
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95  92.89 9212237892 43
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o 84,6520+ 63118443
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Accuracy F1 score

m SVM(RBF) mRandom Forest mXgboost = KNN m Gradient Boost ® Adaboost

Fig. 4. ML clasifiers outcomes

Using ML algorithms such as SVM, Random Forest, Xgboost, KNN,
Gradient Boost, and Adaboost on X-rays for diagnosing pneumonia is a well-
established approach in the medical field. The findings suggest that Xgboost
demonstrated the best level of accuracy, with a rate of 95.42%. It was closely
followed by Random Forest, which achieved an accuracy rate of 94.98%. The
XGBoost algorithm exhibited superior performance by attaining the highest F1
score of 88.17%, showcasing its powerful prediction capabilities. Gradient Boost
and Adaboost achieved significant results, with F1 scores of 83.11% and 84.43%,
respectively. The SVM using the Radial Basis Function (RBF) kernel exhibited a
commendable accuracy of 92.89%. However, its F1 score was comparatively lower,
measuring at 84.65%. The KNN algorithm showed a modest lag in both accuracy
and F1 score, achieving 92.12% and 81.23%, respectively. The results underscore
the diverse capabilities of distinct ML algorithms when assessed against the
specified measures. This research encompassed a comparative analysis of various
classifiers, revealing XgBoost's exceptional performance in pneumonia
identification.

These findings underscore the superiority of XgBoost over RF and other
ML classifiers. A plausible explanation lies in XgBoost's intricate nature, enabling
it to capture subtle dataset patterns. The outcomes suggest XgBoost as the preferred
option over Random Forest, potentially attributed to its adeptness in mitigating
challenges like noisy data and overfitting common in classification tasks. However,
a cautious interpretation of these findings is warranted due to dataset limitations.

The research initially established the suitability of CNNs as the optimal
choice for classifying medical images. The investigation delved into the



PneuML: a novel sequential convolutional neural network-based X-ray diagnostic system... 131

development of PneuML, a custom CNN architecture, in comparison to established
models, including VGG16, VGG19, InceptionVV3, DenseNet121, and ResNet50,
each configured with the specified hyperparameters. The outcomes, presented in
Fig. 5, unveiled compelling insights into the effectiveness of these CNN algorithms
in terms of accuracy and F1 score.
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Fig. 5. PneuML Sequential CNN and Pre-trained CNN algorithms outcomes

Among the models under consideration, VGG16 and ResNet50 had notable
accuracy rates of 96.02% and 96.08%, respectively. Moreover, as mentioned
earlier, the models exhibited noteworthy F1 scores of 93.23% and 94.26%,
indicating their efficacy in the assigned undertaking. The InceptionV3 and
DenseNet121 models demonstrated strong performance, achieving accuracy scores
of 94.42% and 95.76%, respectively. Additionally, these models exhibited
equivalent F1 values of 92.34% and 93.42%. Significantly, the PneuML algorithm,
as recommended, demonstrated better performance in the given task, surpassing all
other algorithms.

PneuML CNN emerged with an impressive accuracy of 96.21% and an F1
score of 95.65%, reflecting its proficiency in accurately identifying instances of
pneumonia. Particularly noteworthy, PneuML CNN surpassed ResNet50 with
slightly superior accuracy and F1 score, achieving heightened effectiveness and
efficiency. ResNet50, on the other hand, exhibited commendable results with a
higher accuracy rate and an F1 score. Collectively, the results underscored the
exceptional performance of both ResNet50 and PneuML CNN, positioning them as
superior choices in accuracy and efficiency compared to other pre-trained CNN
models examined. The proposed PneuML sequential CNN was subjected to
rigorous validation through a two-class classification task on a generated dataset.
Notably, the number of epochs utilized in the PneuML CNN model significantly
impacted its accuracy. Incrementing the number of epochs from one to twenty
yielded a commensurate increase in accuracy, a trend evident in the accuracy curve
shown in Fig. 6. The findings suggest that the model's performance stabilized,
demonstrating satisfactory effectiveness. Moreover, the investigation into loss
dynamics revealed a reciprocal relationship with the number of epochs. As
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portrayed in Fig. 6, the loss magnitude progressively diminished as the epoch count
escalated from one to twenty, further underscoring the model's refinement and
convergence with extended training.

Training and Validation Accuracy Training and Validation Loss

0.6 —— Training Loss
—— Validation Loss

—— Training Accurac Y
—— validation Accuracy

o 10 15 20 10 15 20

Fig. 6. Accuracy and Loss of the Proposed PneuML Sequetical CNN

The confusion matrix of the PneuML is presented in Fig. 7. The confusion
matrix exhibits a robust classification performance, indicating the model's efficacy
in accurately detecting both normal and positive class pictures.

FP(74)

FN(84) TP(1845)

Fig. 7. Confusion matrix of the Proposed PneuML Sequetical CNN

Table 3 compares the proposed PneuML CNN approach to specific
alternatives. Researchers preferred accuracy as their primary performance metric,
so the comparison is based on accuracy.

Table 3
Comparison of the Proposed PneuML Sequential CNN
Accurac F1 Score

Method (%) y (%) References
SVD-CLAHE Boosting + ResNet-50 + BWCCE 94.00 95.00 [27]

Transfer Learning + Inception V3 92.80 - [28]

Mobile Freeze-Net 93.00 94.00 [29]

CNN 93.75 94.00 [30]

PneuML - Sequential CNN Architecture (Ours) 96.21 95.65

The comparison table entailed a comprehensive assessment of various
techniques for categorizing X-ray images sourced from the LDOCTCXR and
Balanced Augmented COVID-CXR datasets, primarily focusing on pneumonia
diagnosis. The investigation highlighted the importance of approaches such as



PneuML: a novel sequential convolutional neural network-based X-ray diagnostic system... 133

SVD-CLAHE, ResNet-50, and BWCCE in producing robust findings. The
effectiveness of the Inception V3 transfer learning technique was notable,
demonstrating the need to leverage pre-trained models for accurate predictions. The
Mobile Freeze-Net method showed the efficacy of mobile-focused architectures.
The use of CNN improved the dependability of proven deep learning algorithms.
The PneuML sequential CNN Architecture approach achieved 96.21% accuracy
and a 95.11% F1 score. These outcomes underscore the potential advantages of
employing tailored architectures designed to analyze pneumonia X-ray images.
Overall, the investigation showcased the impact of various methodologies and
highlighted the diverse range of approaches adopted by researchers.

This research uses ML techniques based on X-ray images to diagnose
pneumonia, including pre-trained CNNs and a novel PneuML sequential model.
The study places particular emphasis on doing a comparative analysis of different
classifiers. The main aim of the research was to ascertain the strategy that had the
most efficacy in detecting pneumonia. The investigated ML methods included
SVM, Random Forest, XgBoost, KNN, Gradient Boost, and Adaboost. This
research revealed that the XgBoost algorithm exhibited superior performance to
other algorithms, resulting in a notable increase in classification accuracy.

In contrast, the Random Forest model ranked second with a somewhat
reduced efficacy. These findings highlight XgBoost's dominance over RF and other
ML classifiers. XgBoost's excellent success might be due to its intricate approach,
which enables it to identify small patterns within the dataset efficiently. This
capacity is advantageous in dealing with issues like noisy data and overfitting,
typical in classification work. However, owing to possible limitations in the dataset,
it is critical to take care when interpreting these findings.

The research subsequently turned its attention to the usefulness of CNNs for
classifying generated dataset images. Pre-trained CNNs such as VGG16, VGG19,
InceptionVV3, DenseNet121, and ResNet50 were employed, each with its own set of
hyperparameters. ResNet50 performed well in comparison to the other CNNs. The
findings revealed that the ResNet50 performed excellently over other CNN models,
establishing him as the better alternative.

The results revealed that PneuML CNN achieved outstanding effectiveness,
showecasing its proficiency in accurately identifying instances of pneumonia.
Notably, PneuML CNN outperformed ResNet50 and XgBoost, indicating
heightened efficacy and efficiency. The generated dataset validated the PneuML
sequential CNN in a two-class classification test. Significantly, the number of
epochs in the PneuML CNN model affected its accuracy. The increase in epochs
from one to twenty resulted in a corresponding increase in accuracy. PneuML
shows that extensive training stabilized model performance, proving its efficacy.
Loss dynamics also showed a reciprocal correlation with epochs. As the number of
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epochs increased, the magnitude of loss decreased, highlighting the model's
improvement and convergent convergence during training.

5. Conclusion

Pneumonia is still a significant global health issue, increasing mortality
rates. This research aims to address it through the development of ML and refined
PneuML image classification methodology. The study endeavored to develop an
image classification model that predicted X-ray images within two primary classes,
pneumonia and normal, achieving its intended goal. The outcomes obtained from
the developed PneuML model were promising, displaying the robust effectiveness
of the PneuML CNN, which reached an accuracy rate of 96.21% and an impressive
F1 score of 95.65% and presented its potential as a valuable asset. The PneuML
sequential CNN performed better than both pre-trained CNNs, with ResNet50
being best served, and ML, where XgBoost ML classifiers were best suited,
providing a comparative analysis of CNNs and ML. The experiment involved the
amalgamation of two publically accessible datasets to generate a unique pneumonia
and normal images dataset. While successful for the task at hand, sequential CNNs
have limits in acquiring entire contextual information, identifying complicated
patterns, handling long-range associations, and interpreting. Furthermore, their
effectiveness is often dependent on precise hyper-parameter adjustment. Integrating
cutting-edge techniques, including concepts such as class weights, holds promise
for further performance enhancements. Despite the favorable findings, future
research on a vast dataset remains essential to establish a more robust assessment
of performance metrics.
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