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PneuML: A NOVEL SEQUENTIAL CONVOLUTIONAL 

NEURAL NETWORK-BASED X-RAY DIAGNOSTIC SYSTEM 

FOR PNEUMONIA IN CONTRAST TO MACHINE 

LEARNING AND PRE-TRAINED NETWORKS 

Sunil KUMAR1,2, Harish KUMAR1 

Pneumonia is a formidable global health challenge, contributing significantly 

to worldwide mortality rates. This research addresses this issue by developing and 

evaluating a sophisticated image classification model, PneuML, to accurately predict 

pneumonia cases using chest X-ray images. Machine learning (ML) techniques, pre-

trained convolutional neural networks (CNNs), and a novel PneuML sequential CNN 

architecture were rigorously examined to achieve this objective. The study's primary 

focus was to assess the effectiveness of the PneuML model in classifying X-rays. The 

results obtained from the PneuML model were highly promising, achieving an 

exceptional accuracy rate of 96.21% and an impressive F1 score of 95.65%. These 

outcomes surpassed the performance of both pre-trained CNNs, with ResNet50 as the 

top-performing model, and traditional ML methods, where XgBoost ML classifiers 

were best performed. This research also facilitated a comparative analysis between 

CNNs and ML, underscoring the superiority of the PneuML CNN architecture in 

pneumonia classification through X-ray imaging. Furthermore, the study explored 

advanced techniques such as class weights to enhance model performance. 

Incorporating these cutting-edge concepts holds promise for further refinement and 

improved results.  
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1. Introduction 

The illness produces discomfort or incapacity due to an internal malfunction 

caused by lung disease. Individuals may be unaware of lung diseases or conditions 

since diagnosis is difficult. This is because most lung diseases initially do not have 

symptoms before they produce discomfort. We can cure lung disease if we diagnose 

it. Traditionally, medical professionals have manually diagnosed lung diseases by 

utilizing procedures grounded in the symptoms of the conditions. It is a common 

belief that the most lethal diseases, such as brain or blood cancer, result in the most 
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significant number of fatalities worldwide. This belief, however, is inappropriate 

because several of these diseases do not rank among the top 10 global causes of 

mortality. Unexpectedly, lung disorders account for the majority of fatal diseases. 

The WHO identified the ten deadliest diseases that claimed the most lives 

worldwide between 2000 and 2019 [1]. 

Lower respiratory infections are the most dangerous contagious illness 

globally and the fourth most common reason for death. Lower respiratory disorders 

encompass a variety of diseases that may affect the lungs, the most well-known of 

which is pneumonitis [2]. When the lungs get infected with pneumonia, it can lead 

to swelling and fluid accumulation. Many different kinds of microorganisms are 

capable of causing it, including bacteria, viruses, and fungi. The seriousness of 

pneumonia may range from mild to potentially fatal, and treatment depends on the 

infection's source and severity. There are several types of pneumonia, each with 

different causes and treatment options. Some common types of pneumonia include: 

• Viral pneumonia: Pneumonia caused by the virus is less common but can 

be severe; one example is COVID-19. 

• Fungal pneumonia: A fungus causes this type of pneumonia. People with 

an impaired immune system are more likely to be affected. 

• Mycoplasma pneumonia: This type of bacteria called Mycoplasma 

pneumonia causes this type of pneumonia, often referred to as 'walking pneumonia,' 

as it can induce mild symptoms resembling a cold or the flu. 

• Community-acquired pneumonia: Bacteria or viruses commonly present 

in the community typically cause this. 

• Hospital-acquired pneumonia: An individual can only catch this particular 

strain if they are a patient in a public hospital. Antibiotic-resistant bacteria typically 

cause it [3]. 

Fig. 1 displays X-ray illustrations of pneumonia and normal, obtained from 

the Large Dataset of Labelled Optical Coherence Tomography and Chest X-Ray 

(LDOCTCXR) dataset available to the public [4]. 

 

 
Normal Pneumonia 

Fig. 1. Instances of chest X-ray from LDOCTCXR dataset [4] 
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X-rays are the imaging modalities that are employed most frequently in the 

process of diagnosing pneumonia. They can show characteristic signs of 

pneumonia, such as inflammation and fluid accumulation in the lungs. 

Interdisciplinary fields are combined in the new era to provide new real-life 

problem solutions. 

ML in medical services is a recent trend that offers novel approaches to real-

world challenges. ML is an artificial intelligence (AI) that can analyze medical data 

and make predictions. In the context of pneumonia diagnosis, ML algorithms can 

analyze X-ray images and predict whether or not a person has pneumonia [5]. ML 

algorithms offer promising solutions for the task. This research presents a 

comprehensive approach to pneumonia diagnosis using ML techniques and feature 

extraction. The first step extracts relevant features using the local binary pattern 

(LBP) method [6]. Subsequently, the supervised learning techniques train the ML 

model, including Support-Vector-Machine (SVM) [7], K-nearest-neighbor (KNN) 

[8], random forest (RF) [9], gradient boost [10], Extreme Gradient Boosting 

(Xgboost) [11], and Adaptive Boosting (AdaBoost) [12]. Successful validation 

could lead to the deployment of the ML model. However, it is essential to note that 

ML models need proof on a large and diverse X-ray dataset before being used in 

the clinical setting [13]. 

One common approach is using deep learning algorithms, such as CNNs, to 

analyze X-ray scans for signs of pneumonia. CNNs are a specific kind of ML 

algorithm that works very well when used for the problem of image analysis. CNNs 

autonomously extract the most salient or intricate features and patterns from the 

given input X-ray images through training. Various architectures, including 

VGG16, VGG19 [14], ResNet50 [15], InceptionV3 [16], and DenseNet121 [17], 

were employed to train the CNN models in the investigation. Utilizing ML and 

CNN algorithms on extensive labeled image datasets to analyze pneumonia 

presence or absence indicators. Once trained, the model can be employed to 

investigate new images to make a diagnosis [18]. 

The motivation of this investigation is to address the considerable global 

health issue of pneumonia, which significantly contributes to mortality rates 

worldwide, and to create and assess an effective image classification model 

specially tailored to effectively forecast instances of pneumonia by using X-ray 

images. The proposed PneuML architecture, meticulously designed and effectively 

demonstrated in the research, employed a 12-layer sequential CNN model. The 

architecture comprises a solitary input layer, three convolutional layers, three 

maximum pooling layers, one flattening layer, two dense layers, and a dropout 

layer. The primary contributions of this research are outlined below:  

• Pneumonia is a substantial worldwide health concern, leading to elevated 

rates of fatalities and addressing a global health challenge. This investigation aims 



122                                                       Sunil Kumar, Harish Kumar 

to tackle this problem by constructing an advanced PneuML image classification 

approach. 

• The investigation suggested that it collected pneumonia and normal 

images by merging two publicly available datasets to create a novel dataset. 

• The PneuML sequential CNN architecture performed better than pre-

trained CNNs and ML classifiers. 

• The investigation investigated sophisticated methodologies, such as the 

utilization of class weights, to augment the performance of the existing and 

recommended PneuML model.  

Furthermore, the following outline depicts the article's organization: Section 

2 presents the literature review. Section 3 addresses the materials and methods 

being used to perform the investigation. Section 4 offers the result and discussion 

section, ML, CNN, and PneuML sequential CNN architecture findings. Section 5 

concludes the research. 

2. Literature Review 

X-rays were the subject of an investigation by researchers who examined 

various diagnostic approaches for pneumonia in published studies. Two distinct 

methods, traditional ML and CNN, were observed when analyzing the articles. 

To train and verify deep CNNs, transfer learning with image augmentation 

was employed [5]. The convolutional network's distinguishing feature was the use 

of dropout. Kaggle's diagnostic imaging competition provided 5856 tagged images 

for training and testing, where the network achieved 97.2 % accuracy, 97.3% recall, 

97.4% precision, and an AUC of 98.20% [19]. Twelve pre-trained CNN models 

were fine-tuned to differentiate healthy X-rays from pneumonia cases using 6,330 

images for training, validation, and testing. Most architectures performed well, with 

a mean f1-score of 84.46% in distinguishing the four classes [20]. A multi-branch 

fusion auxiliary learning (MBFAL) technique achieved a classification 

performance of 95.61% for pneumonia detection using lung X-rays. MBFAL 

demonstrated a standard accuracy of 98.70%, 99.10%, 96.60%, and 96.80% for 

multi-classification, with recalls of 97.20%, 98.60%, 96.10%, and 89.20% [21]. 

The paper presented a "CJT-based ensemble of classifiers," demonstrating the 

superiority of Condorcet's jury theorem-based ensembles of learners regarding 

accuracy. The ensemble approach combined CNN model findings to enhance 

COVID-19 pneumonia detection in CXR images [22]. Researchers employed novel 

imaging techniques for pneumonia identification and tracking using thermography 

[23]. The appropriate CXR image features were chosen using a hybrid social group 

optimization algorithm, and support vector classifiers achieved good classification 

results [24]. The presented method, Multi-Scale Attention Network (MSANet), 

utilized deep learning for classifying COVID-19 and other pneumonia forms with 
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improved accuracy through automated consideration of discriminatory data and 

multi-scale features [25,26]. The approach presented as SVD-CLAHE Boosting, 

ResNet-50, and BWCCE showcased remarkable results, achieving an accuracy of 

94.00% and an F1 score of 95.00%. This approach uniquely combined techniques 

such as Singular Value Decomposition (SVD) and Contrast Limited Adaptive 

Histogram Equalization (CLAHE) in conjunction with a deep learning architecture, 

ResNet-50, and Balanced Weighted Cross-Entropy (BWCCE) loss functions. The 

success of this approach underscored the potential of combining multiple 

techniques for robust and precise results [27]. In the context of transfer learning, 

the Transfer Learning with Inception V3 approach displayed strong performance, 

having achieved an accuracy of 92.80%. Transfer learning, specifically through the 

Inception V3 model, highlighted the value of leveraging pre-trained models to 

achieve accurate predictions [28]. Furthermore, the "Mobile Freeze-Net" method 

showcased an accuracy of 93.00% and an F1 score of 94.00%, illustrating the 

efficacy of mobile-oriented architectures [29]. Additionally, adopting more 

traditional methodologies, such as utilizing a CNN, resulted in an accuracy of 

93.75% and an F1 score of 94.00% [30]. The exploration confirmed the reliability 

of the established machine and deep-learning techniques in tasks. Exploring these 

various approaches enhanced our understanding of the strategies employed in the 

job. 

3. Material and Methods 

The presentation of the fundamental architecture of our PneuML intended 

systematic perspective in contrast to ML and pre-trained CNN (Fig. 2). The system 

consists of multiple processes, including the collection of lung X-ray image 

datasets, the preprocessing and extracting of the necessary features, the construction 

of classification models based on ML and CNN and training them, and their 

evaluation based on specific performance metrics. 

3.1 X-Ray Image Dataset 

The investigation involved pneumonia and normal images from a generated 

dataset by combining two source datasets. The first dataset, LDOCTCXR, 

encompassed the acquisition of anterior-posterior X-ray images specifically 

targeting pediatric children aged one to five [4]. 

In contrast, the second dataset was called the Balanced Augmented COVID 

CXR dataset [31]. The Balanced Augmented COVID CXR dataset had four 

classifications: COVID, Normal, Lung Opacity, and Pneumonia. In our 

investigation, we selected only pneumonia images and normal classes. The 

methodologies used in the second dataset included the utilization of under-

sampling, over-sampling, and image-processing methods for data augmentation. 

The study employed a distinct approach known as SVD to generate images that 
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exhibited nuanced differences in brightness and contrast. CLAHE was applied to 

enhance the features of the images [27]. 
 

 

Fig. 2. Framework of PneuML systemic approach in contrast to ML and pre-trained CNN 

The investigation revealed the benefits of adding more images and 

explained the reasoning behind the image selection. The created dataset is designed 

to enhance diversity and comprehensiveness by integrating two source datasets. 

These choices contributed to a more extensive and detailed dataset, which aided in 

detailing and improving the effectiveness of the investigation. Table 1 provided a 

comprehensive summary of the datasets, where the created dataset consisted of 

19,435 samples. The generated dataset comprised 9,638 samples of pneumonia and 

9,797 samples of normal lung conditions, resulting in a balanced dataset. 
 

Table 1 

Generated Dataset  

Dataset 
Pneumonia 

Samples 

Normal 

Samples 
Total 

LDOCTCXR [4] 4,273 1,583 5,856 

Balanced Augmented Covid CXR [31] 5,365 8,214 13,579 

Generated  9,638 9,797 19,435 

 

The investigation employed 80 percent to train and 20 percent to test the 

generated dataset. To eliminate biases from the dataset was randomized in 

preparation. It is important to note that the eminence of the image dataset is crucial 
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for the model's effectiveness. The dataset was balanced, meaning it should have a 

similar number of images for normal and pneumonia cases.  

3.2 Image Pre-processing 

The preprocessing tasks encompassed primary operations, including image 

resizing and dimension reduction. These techniques were deemed necessary due to 

discrepancies found in the dimensions of the data. It's worth highlighting that 

resizing and dimension reduction emerged as the two pivotal approaches for 

achieving effective preprocessing. 

Some significant concerns came to light as we delved into the initial 

datasets. The first crucial step involved resizing images to a standardized dimension 

of 224 by 224 pixels. This decision was prompted by varied image sizes within the 

raw dataset. Ensuring uniformity across the training of the ML, CNN, and PneuML 

models hinged on maintaining consistent image dimensions. As a result, we 

immediately implemented a scaling procedure to align the dimensions. The samples 

initially were two-dimensional representations derived from three-dimensional 

source data [32]. 

3.3 ML Training 

One potential use of ML was building a model using a dataset of X-ray 

images that included both pneumonia-positive and pneumonia-negative cases. 

Once the model was trained, it could analyze new X-ray images and predict whether 

a person had pneumonia. A stepwise ML approach to pneumonia detection typically 

involves the following steps: 

• Step-1: Feature extraction and selection: The ML model was employed 

to extract relevant features that could be used to distinguish between healthy and 

infected lungs. The LBP, which by default contained 256 bins, was utilized in 

feature extraction. LBP considers an image's local texture information by 

comparing a pixel's intensity with its neighboring pixels. The Equation 1 of LBP 

was given as follows: 

𝐿𝐵𝑃(𝑥𝑐, 𝑦𝑐) =  ∑ 2𝑛 ∗  𝑔(𝐼(𝑥𝑛, 𝑦𝑛) −  𝐼(𝑥𝑐 , 𝑦𝑐))

7

𝑛=0

                                                 (1) 

 

Where 𝑥𝑐 , 𝑦𝑐 is the coordinates of the center pixel, 𝑥𝑛, 𝑦𝑛 are the coordinates 

of the neighboring pixels, I(x,y) is the intensity of the pixel at axes (x,y), and g(x) is 

a function defined as: 

g(x) = 1, if x >= 0 

= 0, if x < 0 
 

The equation computed the LBP for a pixel in an image, where each bit 

represented the comparison of the intensity of the center pixel with that of its 
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neighbors. It showed that the LBP encoded the local texture around the pixel. Due 

to its effectiveness, the LBP operator was widely used in computer vision 

applications, such as texture classification [6]. 

• Step-2: Model training: After extracting and selecting the features, we 

provide the labelled dataset to the ML model for training. The ML model then learns 

the correlation between the features and the presence or absence of pneumonia. This 

process usually involves using classification algorithms within ML. 

• Step-3: Conventional ML Algorithms: Our research used conventional 

ML algorithms, including SVM, KNN, RF, gradient boost, Xgboost, and AdaBoost. 

Each of these algorithms is described briefly below: 

- SVM is a supervised learning method for classification and regression 

analysis. It determines optimal boundaries to separate data into different classes. 

- KNN performs classification or regression using an instantiation-based, 

non-parametric learning strategy, which makes decisions based on most of its k-

nearest neighbors' input. 

- Random Forest executes both classification and prediction tasks. It 

generates multiple decision trees and aggregates their predictions to produce an 

outcome. 

- Ensemble learning methods like gradient boosting leverage multiple weak 

learners to construct a single robust learner. This approach enables subsequent 

models to build upon the successes of their predecessors. 

- XGBoost represents an advanced gradient-boosting technique. It 

efficiently handles large-scale and high-dimensional datasets. 

- AdaBoost, an ensemble technique, addresses prior model errors by 

assigning greater weight to misclassified instances. It combines multiple weak 

learners to form a powerful learner [33].  

• Step-4: Model evaluation: The trained model is then evaluated on a 

separate X-ray test dataset to assess its effectiveness. Typically, research 

accomplished this by using metrics accuracy and F1 score. 

This stepwise approach is employed to train the ML models. However, it is 

imperative to highlight that the model's success will depend on the quality of the 

image used to teach it and the choice of ML algorithms. 

3.4 CNN Training 

CNNs are reliable, efficient, and highly effective ML techniques used for 

image analysis operations, like analyzing X-rays for diagnosing pneumonia [13]. 

Employing a CNN for the task includes the following steps, while other steps are 

the same as ML training: 

• Feature extraction, selection and CNNs Model training: The explicitly 

selected and retrieved features are the foundation for implementing conventional 

ML techniques. Conversely, CNNs autonomously learn to extract the most 
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significant or intricate features and patterns from X-ray images. The CNN learns to 

identify patterns in images indicative of pneumonia presence [18]. After training 

the CNN with the designated X-ray dataset, it can analyze X-ray images and predict 

pneumonia in patients. Different architectures, such as VGG16, VGG19, ResNet50, 

InceptionV3, and DenseNet121, were employed to train the models. These models 

were all pre-trained using the ImageNet database [19]. 

Traditionally, Convolutional layers gathered detailed characteristics from 

input data in the experiment, allowing the network to discover patterns and 

correlations. Subsequent max-pooling techniques downscaled feature maps, 

keeping relevant information while lowering computing costs. The ReLU activation 

function introduced non-linearity, promoting complex representations necessary for 

the network's successful generalization. 

•  Convolution Operation: 

The convolution process entails the movement of a filter, also known as a 

kernel, through an input data matrix. This movement comprises element-wise 

multiplication and subsequent summation of the overlapping sections, resulting in 

the extraction of features. Capturing spatial patterns within the data allows the 

neural network to identify and discern edges, textures, and other local features from 

the X-ray image. The Equation 2 of the convolution operation in a CNN is as 

follows: 
(𝑓 ∗  𝑔)(𝑥, 𝑦) =  ∑ ∑ 𝑓(𝑖, 𝑗) ∗  𝑔(𝑥 −  𝑖, 𝑦 −  𝑗)                                                    (2) 

This equation calculates the dot product between the kernel and the 

corresponding region of the input feature map, summed over all positions (i, j) 

within the kernel. Where: 

- (f * g) (x, y) represents the output value at axes (x, y) in the resulting feature 

map. 

- f(i, j) represents the input value at position (i, j) in the input feature map. 

- g(x - i, y - j) represents the kernel value at position (x – i, y - j) in the 

filter/kernel [34]. 

•  Max Pooling Operation: 

The process of max pooling involves the reduction of spatial dimensions in 

data by picking the maximum value from a collection of surrounding items within 

each area. The Equation 3 of the maximum pooling operation in a CNN is as 

follows: 
 

max_𝑝𝑜𝑜𝑙(𝑥, 𝑦)  =  max (𝑓(𝑥, 𝑦), 𝑓(𝑥 + 1, 𝑦), 𝑓(𝑥, 𝑦 + 1), 𝑓(𝑥 + 1, 𝑦 + 1))                 (3) 
 

Where: 

- max_pool(x, y) represents the output value at axes (x, y) in the resulting 

pooled feature map. 
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- f(x, y) represents the input value at axes (x, y) in the input feature map 

[35]. 

•  ReLu Activation Function: 

An activation function that may prevent vanishing gradients is the ReLU. 

This interpretation focuses on the argument's positive axes [18]. 

 
𝑓(𝑥)𝑅𝑒𝑙𝑢= Max(0, x)                                                                                                                      (4)  

3.5 Proposed PneuML Sequential CNN Model 

The crafted PneuML architecture employed a 12-layer sequential CNN 

model, as depicted in Fig. 3. The PneuML architecture comprises a lone input layer 

featuring an image size of 224x224, three convolutional layers (Conv2D) utilizing 

a Rectified Linear Unit (ReLU) activation function, three maximum pooling layers 

(Maxpool2D), a flattening layer, two dense layers with ReLu activation, an 

incorporated dropout layer, and an output layer implementing a SoftMax function. 
 

 
Fig. 3. PneuML Sequential CNN Model Architecture 

• Conv2D: The convolutional layer is where the model's learning begins, 

and the convolution process occurs. It includes the kernel and filtering components. 

In convolutional layers, we filter abstract features and construct a feature map. For 

the first, second, and third convolutional layers, in our PneuML technique, we used 

64 filtrations, 128 filtrations, and 256 filtrations, with kernel sizes of 11x11, 5x5, 

and 3x3, respectively. Deep learning neural networks frequently employ the ReLu 

activation function. It is a piecewise linear function that replaces all negative values 

with 0 while leaving positive values unchanged [34]. 

Input Shape (224*224)

Conv2D 64 filters (11, 11) kernel size ReLU activation

MaxPool2D

Conv2D 128 filters (5, 5) kernel size ReLU activation

MaxPool2D

Conv2D 256 filters (3, 3) kernel size ReLU activation

MaxPool2D

Flatten

Dense 1024 Units ReLU activation

Dropout Rate 0.5

Dense 512 Units ReLU activation

Output Dense 2 Units SoftMax activation
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• Maxpool2D: It is a down-sampling method used to lessen the spatial 

dimensions of the feature maps obtained in Conv2D. The idea behind maximum 

pooling is to preserve the most important features while reducing the features and 

computations. Max pooling takes the maximum value from each miniature, non-

overlapping section of the input feature map. The primary use of max pooling is to 

decrease overfitting and computational complexity. PneuML utilized one 

Maxpool2D layer for each Conv2D layer in its representation [13, 35].  

• Flatten layer: The flattened layer converts a multi-dimensional tensor into 

a single flat vector. A single row preserves the shape of the input. 

• Dense layer: Dense layers, sometimes called "fully connected layers," are 

employed in deep learning neural networks. An example of a dense layer is one in 

which each neuron connects with all of the neurons in the layer below it. This layer 

performs a dot product between its inputs and a set of weights. PneuML used a 

highly linked layer with 1024 neuron units for dense layer 1 and 512 neuron units 

for dense layer 2 [18]. 

• Dropout layer: While each network forward passes, the Dropout layer 

randomly sets a fraction of the input neurons to zero. It forces the network to rely 

on multiple neurons to make predictions, reducing the reliance on any particular 

neuron and preventing overfitting. At each training iteration, the network drops a 

different set of neurons, resulting in training on various combinations of neurons. 

Our research uncovered that the dropout rate equals 0.5 [19]. 

The PneuML training involved using an Adam optimizer with a learning 

rate of 0.002 and a mean squared logarithmic error loss for 20 epochs, with a batch 

size of 64. Table 2 outlines the hyper-parameters defined, including the optimizer, 

the learning rate, the loss function, the batch size, and the epochs. 
 

Table 2.  

Hyper-parameters for PneuML and Pre-trained CNNs 

Hyper-Parameter Instance 

Optimizer Adam 

Learning Rate 0.002 

Loss Function Mean Squared Logarithmic Error Loss 

Batch Size 64 

Epochs 20 

3.6 Performance Metrics 

Metrics employed to assess the effectiveness of an ML or CNN model are 

known as performance metrics. Classification models primarily use these metrics 

for evaluation [32]. Examples include accuracy, precision, sensitivity, specificity, 

recall, and F1 scores. The investigation prioritized the accuracy and F1 scores above 

the others since they are the most often used and dependable. 
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4. Results and Discussion 

The ML classifiers used for research were SVM, RF, Xgboost, KNN, 

Gradient Boost, and Adaboost. Fig. 4 displays the accuracy and F1 score achieved 

by each ML classifier. 
 

 

Fig. 4. ML clasifiers outcomes 

 

Using ML algorithms such as SVM, Random Forest, Xgboost, KNN, 

Gradient Boost, and Adaboost on X-rays for diagnosing pneumonia is a well-

established approach in the medical field. The findings suggest that Xgboost 

demonstrated the best level of accuracy, with a rate of 95.42%. It was closely 

followed by Random Forest, which achieved an accuracy rate of 94.98%. The 

XGBoost algorithm exhibited superior performance by attaining the highest F1 

score of 88.17%, showcasing its powerful prediction capabilities. Gradient Boost 

and Adaboost achieved significant results, with F1 scores of 83.11% and 84.43%, 

respectively. The SVM using the Radial Basis Function (RBF) kernel exhibited a 

commendable accuracy of 92.89%. However, its F1 score was comparatively lower, 

measuring at 84.65%. The KNN algorithm showed a modest lag in both accuracy 

and F1 score, achieving 92.12% and 81.23%, respectively. The results underscore 

the diverse capabilities of distinct ML algorithms when assessed against the 

specified measures. This research encompassed a comparative analysis of various 

classifiers, revealing XgBoost's exceptional performance in pneumonia 

identification.  

These findings underscore the superiority of XgBoost over RF and other 

ML classifiers. A plausible explanation lies in XgBoost's intricate nature, enabling 

it to capture subtle dataset patterns. The outcomes suggest XgBoost as the preferred 

option over Random Forest, potentially attributed to its adeptness in mitigating 

challenges like noisy data and overfitting common in classification tasks. However, 

a cautious interpretation of these findings is warranted due to dataset limitations. 

The research initially established the suitability of CNNs as the optimal 

choice for classifying medical images. The investigation delved into the 
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development of PneuML, a custom CNN architecture, in comparison to established 

models, including VGG16, VGG19, InceptionV3, DenseNet121, and ResNet50, 

each configured with the specified hyperparameters. The outcomes, presented in 

Fig. 5, unveiled compelling insights into the effectiveness of these CNN algorithms 

in terms of accuracy and F1 score. 
  

 
Fig. 5. PneuML Sequential CNN and Pre-trained CNN algorithms outcomes 

Among the models under consideration, VGG16 and ResNet50 had notable 

accuracy rates of 96.02% and 96.08%, respectively. Moreover, as mentioned 

earlier, the models exhibited noteworthy F1 scores of 93.23% and 94.26%, 

indicating their efficacy in the assigned undertaking. The InceptionV3 and 

DenseNet121 models demonstrated strong performance, achieving accuracy scores 

of 94.42% and 95.76%, respectively. Additionally, these models exhibited 

equivalent F1 values of 92.34% and 93.42%. Significantly, the PneuML algorithm, 

as recommended, demonstrated better performance in the given task, surpassing all 

other algorithms.  

PneuML CNN emerged with an impressive accuracy of 96.21% and an F1 

score of 95.65%, reflecting its proficiency in accurately identifying instances of 

pneumonia. Particularly noteworthy, PneuML CNN surpassed ResNet50 with 

slightly superior accuracy and F1 score, achieving heightened effectiveness and 

efficiency. ResNet50, on the other hand, exhibited commendable results with a 

higher accuracy rate and an F1 score. Collectively, the results underscored the 

exceptional performance of both ResNet50 and PneuML CNN, positioning them as 

superior choices in accuracy and efficiency compared to other pre-trained CNN 

models examined. The proposed PneuML sequential CNN was subjected to 

rigorous validation through a two-class classification task on a generated dataset. 

Notably, the number of epochs utilized in the PneuML CNN model significantly 

impacted its accuracy. Incrementing the number of epochs from one to twenty 

yielded a commensurate increase in accuracy, a trend evident in the accuracy curve 

shown in Fig. 6. The findings suggest that the model's performance stabilized, 

demonstrating satisfactory effectiveness. Moreover, the investigation into loss 

dynamics revealed a reciprocal relationship with the number of epochs. As 
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portrayed in Fig. 6, the loss magnitude progressively diminished as the epoch count 

escalated from one to twenty, further underscoring the model's refinement and 

convergence with extended training. 

 

 
Fig. 6. Accuracy and Loss of the Proposed PneuML Sequetical CNN 

The confusion matrix of the PneuML is presented in Fig. 7. The confusion 

matrix exhibits a robust classification performance, indicating the model's efficacy 

in accurately detecting both normal and positive class pictures. 

 

TN (1887) FP(74) 

FN(84) TP(1845) 

Fig. 7. Confusion matrix of the Proposed PneuML Sequetical CNN 

 

Table 3 compares the proposed PneuML CNN approach to specific 

alternatives. Researchers preferred accuracy as their primary performance metric, 

so the comparison is based on accuracy.  
 

Table 3  

Comparison of the Proposed PneuML Sequential CNN 

Method  
Accuracy 

(%) 

F1 Score 

(%) 
References 

SVD-CLAHE Boosting + ResNet-50 + BWCCE 94.00 95.00 [27]  

Transfer Learning + Inception V3  92.80 - [28] 

Mobile Freeze-Net 93.00 94.00 [29] 

CNN 93.75 94.00 [30] 

PneuML - Sequential CNN Architecture (Ours) 96.21 95.65  

 

The comparison table entailed a comprehensive assessment of various 

techniques for categorizing X-ray images sourced from the LDOCTCXR and 

Balanced Augmented COVID-CXR datasets, primarily focusing on pneumonia 

diagnosis. The investigation highlighted the importance of approaches such as 
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SVD-CLAHE, ResNet-50, and BWCCE in producing robust findings. The 

effectiveness of the Inception V3 transfer learning technique was notable, 

demonstrating the need to leverage pre-trained models for accurate predictions. The 

Mobile Freeze-Net method showed the efficacy of mobile-focused architectures. 

The use of CNN improved the dependability of proven deep learning algorithms. 

The PneuML sequential CNN Architecture approach achieved 96.21% accuracy 

and a 95.11% F1 score. These outcomes underscore the potential advantages of 

employing tailored architectures designed to analyze pneumonia X-ray images. 

Overall, the investigation showcased the impact of various methodologies and 

highlighted the diverse range of approaches adopted by researchers. 

This research uses ML techniques based on X-ray images to diagnose 

pneumonia, including pre-trained CNNs and a novel PneuML sequential model. 

The study places particular emphasis on doing a comparative analysis of different 

classifiers. The main aim of the research was to ascertain the strategy that had the 

most efficacy in detecting pneumonia. The investigated ML methods included 

SVM, Random Forest, XgBoost, KNN, Gradient Boost, and Adaboost. This 

research revealed that the XgBoost algorithm exhibited superior performance to 

other algorithms, resulting in a notable increase in classification accuracy. 

In contrast, the Random Forest model ranked second with a somewhat 

reduced efficacy. These findings highlight XgBoost's dominance over RF and other 

ML classifiers. XgBoost's excellent success might be due to its intricate approach, 

which enables it to identify small patterns within the dataset efficiently. This 

capacity is advantageous in dealing with issues like noisy data and overfitting, 

typical in classification work. However, owing to possible limitations in the dataset, 

it is critical to take care when interpreting these findings. 

The research subsequently turned its attention to the usefulness of CNNs for 

classifying generated dataset images. Pre-trained CNNs such as VGG16, VGG19, 

InceptionV3, DenseNet121, and ResNet50 were employed, each with its own set of 

hyperparameters. ResNet50 performed well in comparison to the other CNNs. The 

findings revealed that the ResNet50 performed excellently over other CNN models, 

establishing him as the better alternative. 

The results revealed that PneuML CNN achieved outstanding effectiveness, 

showcasing its proficiency in accurately identifying instances of pneumonia. 

Notably, PneuML CNN outperformed ResNet50 and XgBoost, indicating 

heightened efficacy and efficiency. The generated dataset validated the PneuML 

sequential CNN in a two-class classification test. Significantly, the number of 

epochs in the PneuML CNN model affected its accuracy. The increase in epochs 

from one to twenty resulted in a corresponding increase in accuracy. PneuML 

shows that extensive training stabilized model performance, proving its efficacy. 

Loss dynamics also showed a reciprocal correlation with epochs. As the number of 
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epochs increased, the magnitude of loss decreased, highlighting the model's 

improvement and convergent convergence during training. 

5. Conclusion  

Pneumonia is still a significant global health issue, increasing mortality 

rates. This research aims to address it through the development of ML and refined 

PneuML image classification methodology. The study endeavored to develop an 

image classification model that predicted X-ray images within two primary classes, 

pneumonia and normal, achieving its intended goal. The outcomes obtained from 

the developed PneuML model were promising, displaying the robust effectiveness 

of the PneuML CNN, which reached an accuracy rate of 96.21% and an impressive 

F1 score of 95.65% and presented its potential as a valuable asset. The PneuML 

sequential CNN performed better than both pre-trained CNNs, with ResNet50 

being best served, and ML, where XgBoost ML classifiers were best suited, 

providing a comparative analysis of CNNs and ML. The experiment involved the 

amalgamation of two publically accessible datasets to generate a unique pneumonia 

and normal images dataset. While successful for the task at hand, sequential CNNs 

have limits in acquiring entire contextual information, identifying complicated 

patterns, handling long-range associations, and interpreting. Furthermore, their 

effectiveness is often dependent on precise hyper-parameter adjustment. Integrating 

cutting-edge techniques, including concepts such as class weights, holds promise 

for further performance enhancements. Despite the favorable findings, future 

research on a vast dataset remains essential to establish a more robust assessment 

of performance metrics. 
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