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SIMILARITIES BETWEEN GUIDED LONGITUDINAL
ULTRASONIC WAVES IN TUBES AND PLATES

Mihai Valentin PREDOI!, Andreea-Denisa GRIGUTA?, Cristian Citilin PETRE?

Guided waves in hollow cylinders have been theoretically investigated for
more than fifty years. The dispersion equations for the longitudinal waves L(0,n) have
been numerically solved by many authors and even commercial software exist to
provide numerical solutions for a given practical case. A numerical coincidence of
the dispersion curves of the longitudinal waves propagating along a hollow cylinder
and those of the Lamb waves propagating in plates has been remarked by many
authors. However this coincidence is valid only in the high frequency range, whereas
for very low frequencies, only L(0,1) mode is propagating and L(0,2) mode has a cut-
off frequency. These properties of the longitudinal guided waves in tubes are
analytically investigated in this paper, analytically proving the asymptotic
convergence of the dispersion curves at high frequencies towards those of Lamb
guided waves in plates. Then, the cut-off frequency of L(0,2) mode in pipes is
determined using a simple analytical formula and an investigation of the imaginary
and complex branches below this cut-off concludes the paper.
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1. Introduction

Guided waves in plates for stress free boundary conditions have been
investigated by Lamb [1] who deduced the dispersion equations of the nowadays
called, symmetrical (S) and anti-symmetrical (A) Lamb waves. The complex or
imaginary parts of the dispersion curves and their cut-off frequencies are presented
in many textbooks on ultrasonic waves (see e.g., ref. [2], [3]).

A first theoretical investigation of propagating waves along pipes, including
numerical solutions of the dispersion curves was done by Gazis [4], [5]. Waves
propagating in circumferential direction were investigated among others by
Heimann and Kolsky [6], but these waves are not in the scope of the present paper.

Measurements of the group velocities for the first four longitudinal modes
in a tube were done by Fitch [7]. He mistakenly considers that the first two
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longitudinal modes are propagating at all frequencies, but remarks the measured
coincidence of the group velocities of the first symmetric mode So in a plate and the
L(0,2) mode in the pipe.

Li and Rose [8], confronted with the more complicated dispersion equations
for pipes, have used instead the dispersion equations of the Lamb waves for plates.
They remark the existence of a “low frequency” domain in which plate and tube
dispersion curves are totally different, but at higher frequencies an almost perfect
coincidence of phase velocities of plates and pipes is presented. Velichko and
Wilcox approximate the guided waves in thin walled pipes by shell theories, their
results having applicability only for wavelengths considerably less than the pipe
circumference [9]. A much more accurate numerical investigation of the phase
velocity of the L(0,1) mode in the low frequency range, for several wall thicknesses
to radius ratios is shown by Ratassepp et al. in [10]. The complex branches of the
dispersion curves are also presented, but they are missing the imaginary branches.
The numerical convergence of the tube dispersion curves towards those of plates
has been presented also by Predoi et al. [11].

The present work begins with an analytical approach, proving the
asymptotic convergence of the L(0,n) dispersion in tubes, towards the Lamb waves
dispersion curves in plates, for increasing frequencies. The convergence is more
rapid for smaller thickness to radius ratios. The cut-off frequency for the L(0,2)
mode, overlooked by many authors, is analytically deduced as a simple to use
formula. Dispersion curves are plotted also in the complex plane with emphasis to
the low frequency range, in which the imaginary branches are separated among the
modes, a fact which is missing in many other researches.

2. Theoretical aspects
2.1. Dispersion equation for the plate in vacuum

The geometry for the plate and pipe is presented on Fig. 1. The material is
isotropic and homogeneous for both the plate and the pipe, defined by Lamé
constants (A, i) and the mass density p. Thus, the velocities of the bulk longitudinal

and transversal waves are given by ¢; = (/1 + ,u) / p and respectively by c; = u/ p.
The corresponding bulk wavenumbers are k, = @/ c,and respectively k, =w/c;,
in which o is the angular frequency w =27 f for a given frequency f. Consequently
the Lamé constants (parameters) can be expressed as:

= pcy; A=p(c; —2c;) (1)

The plate has a thickness 24 and ultrasonic wave propagation is along the
Oz axis, which is placed in the middle/symmetry plane of the plate. The tube has a
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mean radius R, from which the outer and inner cylindrical surfaces are distanced by
h, for a better analogy.
R

Fig. 1 Geometry of the plate (a) and of the tube (b)

On the two parallel free surfaces of the plate, the normal and shear stresses
for a plate in vacuum must cancel for any position z. Following the notations used
by Viktorov [1], these boundary conditions lead to a homogeneous linear system of

four equations and four unknowns. Using the notations p°=k; —k’> and
g’ =k} -k’ in which k is the wavenumber of the guided waves, the associated
determinant must cancel for a non-trivial solution, that is [1]:

(k2 —qz)cos(ph) 2ikgcos(qh) 0 0
2ikpsin( ph) (kz —qz)sin(qh) 0 0 B
0 0 (k2 -q )sin(qh) 2ikgsin(qh) |~ o @
0 0 2ikpcos ( ph) (kz —qz)cos(qh)

The two minor determinants on the upper left and lower right, cancel for the
wavenumbers of the symmetrical (S) and respectively anti-symmetrical (A) modes
of a homogeneous isotropic plate. For more detail, see references [2], [3], [12].

2.2 Dispersion equation for the cylindrical pipe in vacuum. Convergence
towards the plate dispersion equation.

The axially symmetric EY] =0 longitudinal waves in a pipe are defined in

cylindrical coordinates (7,6,z). The scalar potential is go(r,&, z,t)and from the
vector potential ‘T’(r, 0, z,t) is selected only the non-zero component

Y, (r,¢9, z,t), which are both verifying the corresponding wave equations in

cylindrical coordinates:
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The general solutions can be expressed using Bessel functions of first kind
Jy(2),J,(z) and of second kind ¥, (z),¥,(z), using the same notations for p and

q as for the plate [4]:

go(r, z,t) = [AIJO (pr) +A4,Y, (pr)] exp[i(kz - a)t)]

: (4)
¥, (r.z,t)=| BJ,(qr)+B,Y, (qr) Jexp|i(kz— ) |
The radial and axial displacements can be obtained from their definitions:
or 0z 0z oOr r

Using the strain expressions in cylindrical coordinates and the linear elasticity
constitutive law, the radial stress and the radial-axial shear stresses can be written:

0’ 10p 0’¢ o’y
o, =(A+2u)—2+A| ——+—- |- 2u—=2
" ( #) or? (r or 0z H oroz
2 2 2
2\ oroz or r or r 0z

(6)

Injecting the potentials (4) in the previous expressions and leaving aside the
common propagating factor exp[i (hz— a)t)], one gets from (6):

e 4[5y 22, o) [ (= 1 222 (o)

+Bl2ik{qjo(qr)—%J1 (qr)}+B22ik[qY0(qr)—%Yl(qr)}

2% = —2ikpAJ, (pr) —2ikpA,Y, (pr) + B, (q2 — K )J1 (qr) + B, (qz -k )Y1 (qr)
(7

The dispersion equation is obtained by imposing stress free boundary
conditions at 7, = Rt i, for stresses defined by eq. (7). A homogeneous algebraic
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system of four equations is thus obtained [4],..., [10] and by adequate numerical
methods, the dispersion curves (k,w) can be obtained for a cylindrical tube.

In order to prove that for large radius R and high frequency, these equations
coincide with equations (1), the first step is to take to the limit all terms containing

the factor 1/ (R + h) in the radial stress equation, for R — oo. The Bessel functions

from (7), can be approximated for large arguments (|Z| — ) by the following

analytical functions (see ref. [12]):

o) (o5 1= Zon(-5)

Developing the trigonometric functions, and grouping the functions with identical
arguments, one gets, using the following coefficients,

A=4 -4, A, =4 +4,, B =B -B, B,=B +B,:

\/;o;,, —q’ A si
- zk\/pTZ {4 cos[ p(Rxh)]+ A, sin[ p(R+ 1) ]|

(8)

Jrﬂ{ﬁ1 cos[q(R + h)] +B, sin[q(R + h)]} =0

JoR

R 0l )] e

©)

2

k2_q2

+ N {él sin[q(R ih)] - B, cos[q(R + h)]} =0

The determinant of the homogeneous algebraic system (9) can be multiplied by
\ PR # 0 along the first two columns and by /¢gR # 0 along the last two columns,
obtaining thus:

(k2 —(]2)(01)11 -5x,) (k2 —(]2)(clx1 +57)) 2ikq(cyy, - 5,x,) 2ikg(cyx, +5,9,)

(K=" )(cp+s2) -(F-")(cx -s3)  2ikg(cy+s,x,) ~2ikg (e, =s5,9,) | , (10)
dibplex +sy)  2ikp(ey-sx) (B )exmtan) ~(F-a)(em-sx)
~2ikp (¢, x, = 5,1,) =2ikp(c,y, +s,x,) —(k2 —qz)(czx2 -5,,) —(k2 —qz)(czy2 +5,1,)

The following notations have been used, for briefness:

s, =sin pR; ¢, =cos pR; s, =singR; ¢, = cosqR

11
X, =sin ph; y, = cos ph; x, =sinqh; y, = cosqh b
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After several transformations of the determinant (10), as presented in the
Annex, it is proven the analytical convergence of the dispersion equations for a
plate (2) and a cylindrical tube (10), having the same wall thickness, as long as the
asymptotic formulas (8) hold, that is for large R/h ratios:

(k2 —qz)cosph 2ikq cosgh 0 0
2ikpsin ph k* —q*)singh 0 0
( ) =0 (12)
0 0 2ikp cos ph —(k2 - qz)cos qh
0 0 (K —q*)sinph  —2ikgsingh

3. Numerical examples

As a first numerical example, is taken a standard 25.4mm (1 inch) diameter
pipe, Re=16.7 mm, Ri=13.3 mm, R;/R.~=0.8, h=1.7mm, the half wall thickness, or
h/R=0.111 (the mean radius is R=15mm) and comparison is made with a plate of
the same 4#=1.7 mm as half plate thickness. The material for both structures is steel:
p=7850 kg/m?, c;= 6089 m/s, c=3195 m/s. Using formulas (1) : A=130.8 GPa and
u=80.133 GPa.

For a wider applicability, instead of the frequency f or angular frequency
w=2rf, in the following figures are used the non-dimensional frequency

Q = wh/c, and the non-dimensional wavenumber k# (Fig. 2a).

— —a—L(0,1)

i) —o— A0 —=—S0|| —8—L(0.2)
—o—A1||—=—S51|| —&—L(0,3) - —=—1(0,1)
—i—A2||—4—82|| —y—L(0,4) p - -A0|[- = -S0| ——1L(0,2)

—=— A3||—=—53|| —4—L(0.5)

-5 A1)= > 81| ——1(0,3)

o0& =
T T T 1 T T T T 1
0 1 2 3 4 5 0 1 2 3 4 5

a kh b) kh
Fig. 2 Non-dimensional frequency vs. wavenumbers for a 1-inch pipe and a 3.4mm thick plate,
both made of steel Ri/Re=0.8 (a), Ri/Re=0.5 (b). Markers are ‘full’ for pipe, ‘hollow’ for
antisymmetric modes and ‘half-full’ for symmetric plate modes. (Color online)

All curves are numerical solutions of dispersion equations (2) and (10) using
numerical methods developed by the authors using an algorithm described in ref.
[14] and the eigenvalue solver of COMSOL [15].
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The axially symmetric L(0,2) mode (red dots) converges at frequencies
above its cut-off frequency, towards the symmetrical So mode (black half squares)
of the plate. The L(0,1) mode (black full squares) at very low frequencies is close
to the So mode (black half squares) but is separating from this mode, as the
frequency increases and tends towards the plate fundamental anti-symmetric mode
Ao (black squares) as the frequency is € > 0.3. All the higher order modes of the
cylindrical tube, coincide with those of the plate beginning from their respective
cut-off frequencies (Fig. 2a). Even in the low frequency range (Q2<1), the L(0,3)
mode is practically superposed onto the A plate mode. This remark can be extended
for higher order modes: L(0,4) tends to Si, L(0,5) tends to S, etc. Replacement of
pipe dispersion curves by Lamb dispersion curves as it is shown on Fig. 2a looks as
a very good approximation. In order to see the limits of such approximation, a
second example is given.

In this second example (Fig. 2b) is considered a pipe made of the same
material, with geometrical parameters: R.~16.7 mm, R=8.35 mm, R; /R.~=0.5,
h=4.175 mm, the half wall thickness, or #/R=0.333 (the mean radius R= 12.525
mm). In this case, there is a noticeable discrepancy between the curves representing
the mode L(0,1) and L(0,2) and their corresponding Lamb modes in plates,
especially for thicker pipes, as shown on Fig. 2b, and this aspect is discussed in the
following section.

4. Accuracy of the L(0,1) and L(0,2) tube modes replacement by Lamb
plate modes at low frequencies

Many authors indicate that dispersion curves of plates can replace those for
L(0,n) modes in thin tubes. However, it is interesting to quantitatively estimate this
statement, since there is no systematic investigation to date of the error made by
replacing the first two modes of the pipe with those of the plate. The first two modes
are investigated in the low Q frequency range for three Ri/R. ratios, namely 0.5, 0.7

and 0.9, or /R €{0.333 0.176 0.053!.

As expected, thinner tubes have faster converging dispersion curves towards
the corresponding plate dispersion curves (Fig. 3). A 5% error in k4 non-
dimensional wavenumber of the L(0,2) mode, is obtained for Q> 0.15 if Ri/R.=0.9,
but only for Q >2.2 if Ri/R.~=0.5. The L(0,1) mode has higher approximation errors,
as the frequency increases, than those of the L(0,2) convergence towards the So
mode. In fact, the L(0,2) mode approximation by the So mode can only be
considered after its cut-off frequency because at the cut-off frequency there is a
vertical asymptote in these approximations. This aspect motivates the study of the
L(0,2) mode cut-off in the next section.
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Fig. 3 Error (%) in the non-dimensional k4 wavenumber caused by replacing the L(0,1) (squares)
and L(0,2) (circles) dispersion curves, by the A0 and SO dispersion curves respectively as function
of 2 = wh/cy, for Ri/Re=0.5 (full markers), Ri/Re=0.7 (half-full markers)

5. Analytical formula for the cut-off frequency of the L(0,2) mode

For very low frequencies, the L(0,2) becomes propagative at frequencies
above a specific cut-off frequency, which was not investigated before, to our
knowledge. The cut-off equation is obtained by setting k=0 in the equations
cancelling mechanical stresses (7), for w=0 in which case p=ki, g=kr: The
determinant reduces in this case to a product of the following two determinants.

2
¢ R, ¢
2
c cb \ ¢
Cr Cr
Cr

The outer radius R, = R+ h and the inner radius R, = R—h, are used for

shorter formulas (as defined on Fig. 1). Obviously the first root, coming from eq.
(12) is w=0, which means there is no cut-off for the L.(0,1) mode.

(13)
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The second cut-off frequency is obtained also from the first equation (12),
then the next one from the second determinant of (12) and so on. These cut-offs are
plotted on Fig. 4.

It is useful to determine the first cut-off frequency, preferably by an
analytical formula. Indeed, for small arguments (z<<l) the following
approximations hold [13]:

2
Jo(z) =L J (2)=

2
Y, ()~ Zinz; Y (2) -
O(Z) . nz 1(2) 2 (14)

NN

Q,
;

L
L]
g N
[ﬂ)

h/R

Fig. 4 Non-dimensional cut-off frequencies vs. relative thickness h/Re for tubes made of steel and
approximate analytical formula (L(0,2) app, with no marker), (Color online).

The first determinant of (12) can be asymptotically transformed, based on
these approximations and the following formula is thus obtained:
Q:£(2+l£j, (15)
R 8 R
in which the same notations as in Fig. 1 were used. The results from the application
of this simple formula are plotted on the same Fig. 4 and agree well with the exact
values (obtained by numerical methods) up to h/R=0.3, which is the upper limit of
almost all thick pipes commonly used in practice. As the relative thickness tends to
zero, the plate case is obtained (Q=0), for which the So mode has no cut-off
frequency.

6. Detail on the dispersion curves of pipes below the first cut-off
frequency

Most papers considering longitudinal modes L(0,n) propagation, are more
or less vague about the dispersion curves below the first cut-off frequency. The
explanation comes from the numerical difficulties in accurately solving the
dispersion equation (10).
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Fig. 5 Dispersion curves of the first three modes as Q vs real(kh) and imag(kh). Real branches
(blue circles), imaginary branch (red dots), complex branches (solid line). (Color online).

The numerical results are obtained using the algorithm described in ref. [14],
and the eigenvalue solver of COMSOL [15]. The dispersion curves presented on
Fig. 5, are for a tube of Ri/R.~0.7, made of the same steel material. The first three
modes are plotted as Q vs. the real and imaginary parts of k4. The L(0,1) mode has
only real wavenumbers. L(0,2) begins as a complex valued wavenumber (blue line)
and becomes purely imaginary (red dots) before its cut-off frequency. The L(0,3)
mode begins with L(0,2) values mirrored by the zero real-wavenumber plane,
having the same imaginary part, but negative real part. L(0,3) and L(0,2) mode
change to imaginary wavenumbers at the same frequency. From this frequency
upwards, the L(0,3) mode has increasing imaginary values (red dots) for the
wavenumber, which correspond to high wave attenuation, before becoming
propagative for a higher cut-off frequency (see Fig.2b). This topological structure
has been found for all investigated thicknesses, representing an important result of
the present work.

5. Conclusions

Dispersion curves of tubes in vacuum have been investigated and the asymptotical
convergence of the dispersion equations towards the dispersion equations of plates
in vacuum has been analytically proven. The relative errors in non-dimensional
wave numbers, due the use of plate equations instead of tube equations are also
computed, with recommendations on accuracy, depending on pipe wall thickness.
The cut-off frequency of the L(0,2) mode is then determined by an asymptotically
deduced analytical formula, which is compared against the accurate numerical
values. The imaginary and complex branches of the L.(0,2) mode below the cut-off
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frequency are numerically determined. The specific real, imaginary or complex
branches of the first three guided modes in this frequency range are labelled for
each mode. All computations are done for steel pipes and for a wide technical range
of wall thickness vs. mean radius.
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ANNEX

Detailed transformations of the determinant (10) with notations (11) representing
the dispersion equation for a tube, towards the determinant (2) corresponding to
plates, are given in the following.
Linear combinations like half the sum and difference of the first two and
respectively last two rows lead to:

(K= )ey, (K -4")sy  2ikqge,y, 2ikgs, y,

(K -q*)sx, —(K =q*)ex,  2ikgs,x, ~2ikger, | 0
2ikps,y, Sdikpey, (K -q")sy, —(K -q")e,,
2ikpe,x, 2ikpsx, (K —q")ex, (K =¢7)sx,

Permuting second and third columns and the second and fourth rows, one gets:

(K =q*)ey,  2ikge,y, (K =4')sy  2ikgs,y,
2ikpc, x, (k2 -q )02x2 2ikps,x, (k2 -q’ )S2x2 0 @
2ikp51yl (kz —q2)52y2 _2ikpc1y1 _(k2 —q2)02y2 .

(k2 -q’ )slx1 2ikgs,x, —(k2 -q’ )clx1 —2ikgc,x,

An equivalent determinant is obtained by adding to the first two columns multiplied
by c¢; and respectively ¢, the third column multiplied by s; and respectively the last
one multiplied by s>. The last two columns of multiplied —c; and respectively —c:
are summed with the first two rows of the above formula multiplied by s; and
respectively s2. The determinant with initial notations becomes:

(K*—¢*)cosph  2ikqcosgh 0 0
dikpsinph  (k*—g* )singh 0 0 .
0 0 2ikp cos ph —(k2 —~ qz)cos qh
0 0 (k*—¢*)sinph  -2ikgsingh

This form of the determinant is obviously equivalent to (2), proving thus the
coincidence of the dispersion curves of the plate and cylindrical tube having the
same wall thickness, for large values of |pR| < |qR|; |pR| = o meaning large
mean radius of the tube and/or high frequencies.



