
U.P.B. Sci. Bull., Series A, Vol. 84, Iss. 4, 2022                                                  ISSN 1223-7027 

SIMILARITIES BETWEEN GUIDED LONGITUDINAL 
ULTRASONIC WAVES IN TUBES AND PLATES 

Mihai Valentin PREDOI1, Andreea-Denisa GRIGUȚA2, Cristian Cătălin PETRE3 

Guided waves in hollow cylinders have been theoretically investigated for 
more than fifty years. The dispersion equations for the longitudinal waves L(0,n) have 
been numerically solved by many authors and even commercial software exist to 
provide numerical solutions for a given practical case. A numerical coincidence of 
the dispersion curves of the longitudinal waves propagating along a hollow cylinder 
and those of the Lamb waves propagating in plates has been remarked by many 
authors. However this coincidence is valid only in the high frequency range, whereas 
for very low frequencies, only L(0,1) mode is propagating and L(0,2) mode has a cut-
off frequency. These properties of the longitudinal guided waves in tubes are 
analytically investigated in this paper, analytically proving the asymptotic 
convergence of the dispersion curves at high frequencies towards those of Lamb 
guided waves in plates. Then, the cut-off frequency of L(0,2) mode in pipes is 
determined using a simple analytical formula and an investigation of the imaginary 
and complex branches below this cut-off concludes the paper.  

Keywords: Tube guided waves, Lamb waves   

1. Introduction 

Guided waves in plates for stress free boundary conditions have been 
investigated by Lamb [1] who deduced the dispersion equations of the nowadays 
called, symmetrical (S) and anti-symmetrical (A) Lamb waves. The complex or 
imaginary parts of the dispersion curves and their cut-off frequencies are presented 
in many textbooks on ultrasonic waves (see e.g., ref. [2], [3]).   

A first theoretical investigation of propagating waves along pipes, including 
numerical solutions of the dispersion curves was done by Gazis [4], [5]. Waves 
propagating in circumferential direction were investigated among others by 
Heimann and Kolsky [6], but these waves are not in the scope of the present paper. 

Measurements of the group velocities for the first four longitudinal modes 
in a tube were done by Fitch [7]. He mistakenly considers that the first two 
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longitudinal modes are propagating at all frequencies, but remarks the measured 
coincidence of the group velocities of the first symmetric mode S0 in a plate and the 
L(0,2) mode in the pipe. 

Li and Rose [8], confronted with the more complicated dispersion equations 
for pipes, have used instead the dispersion equations of the Lamb waves for plates. 
They remark the existence of a “low frequency” domain in which plate and tube 
dispersion curves are totally different, but at higher frequencies an almost perfect 
coincidence of phase velocities of plates and pipes is presented. Velichko and 
Wilcox approximate the guided waves in thin walled pipes by shell theories, their 
results having applicability only for wavelengths considerably less than the pipe 
circumference [9]. A much more accurate numerical investigation of the phase 
velocity of the L(0,1) mode in the low frequency range, for several wall thicknesses 
to radius ratios is shown by Ratassepp et al. in [10]. The complex branches of the 
dispersion curves are also presented, but they are missing the imaginary branches. 
The numerical convergence of the tube dispersion curves towards those of plates 
has been presented also by Predoi et al. [11]. 

The present work begins with an analytical approach, proving the 
asymptotic convergence of the L(0,n) dispersion in tubes, towards the Lamb waves 
dispersion curves in plates, for increasing frequencies. The convergence is more 
rapid for smaller thickness to radius ratios. The cut-off frequency for the L(0,2) 
mode, overlooked by many authors, is analytically deduced as a simple to use 
formula. Dispersion curves are plotted also in the complex plane with emphasis to 
the low frequency range, in which the imaginary branches are separated among the 
modes, a fact which is missing in many other researches. 

2. Theoretical aspects 

2.1. Dispersion equation for the plate in vacuum 

The geometry for the plate and pipe is presented on Fig. 1. The material is 
isotropic and homogeneous for both the plate and the pipe, defined by Lamé 
constants (λ, μ) and the mass density ρ. Thus, the velocities of the bulk longitudinal 
and transversal waves are given by ( )2 /Lc λ µ ρ= +  and respectively by 2 / .Tc µ ρ=

The corresponding bulk wavenumbers are /L Lk cω= and respectively /T Tk cω=  
in which ω is the angular frequency 2 fω π=  for a given frequency f. Consequently 
the Lamé constants (parameters) can be expressed as:  

 ( )2 2 2; 2T L Tc c cµ ρ λ ρ= = −   (1) 

  The plate has a thickness 2h and ultrasonic wave propagation is along the 
Oz axis, which is placed in the middle/symmetry plane of the plate. The tube has a 
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mean radius R, from which the outer and inner cylindrical surfaces are distanced by 
h, for a better analogy. 

 
Fig. 1 Geometry of the plate (a) and of the tube (b) 

On the two parallel free surfaces of the plate, the normal and shear stresses 
for a plate in vacuum must cancel for any position z. Following the notations used 
by Viktorov [1], these boundary conditions lead to a homogeneous linear system of 
four equations and four unknowns. Using the notations 2 2 2

Lp k k= −  and 
2 2 2

Tq k k= −  in which k is the wavenumber of the guided waves, the associated 
determinant must cancel for a non-trivial solution, that is [1]: 

( ) ( )
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−

−
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−
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The two minor determinants on the upper left and lower right, cancel for the 
wavenumbers of the symmetrical (S) and respectively anti-symmetrical (A) modes 
of a homogeneous isotropic plate. For more detail, see references [2], [3], [12]. 

2.2 Dispersion equation for the cylindrical pipe in vacuum. Convergence 
towards the plate dispersion equation. 

The axially symmetric 0
θ
∂ ⋅

≡
∂

 longitudinal waves in a pipe are defined in 

cylindrical coordinates (r,θ,z). The scalar potential is ( ), , ,r z tϕ θ and from the 

vector potential ( ), , ,r z tθΨ  is selected only the non-zero component 

( ), , , ,r z tθ θΨ  which are both verifying the corresponding wave equations in 
cylindrical coordinates: 
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2 2 2

2 2 2 2

2 2 2 2
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1 1 ;

1 1
L

L

r r r z c t

r r r r z c t
θ θ θ θ θ
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 (3) 

The general solutions can be expressed using Bessel functions of first kind 
( ) ( )0 1,J z J z  and of second kind ( ) ( )0 1,Y z Y z , using the same notations for p and 

q as for the plate [4]: 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 0 2 0

1 1 2 1

, , exp

, , exp

r z t A J pr A Y pr i kz t

r z t B J qr B Y qr i kz tθ

ϕ ω

ω

= + −      
Ψ = + −      

 (4) 

The radial and axial displacements can be obtained from their definitions: 

 ;r zu u
r z z r r

θ θ θϕ ϕ∂ ∂Ψ ∂ ∂Ψ Ψ
= − = + +
∂ ∂ ∂ ∂

 (5) 

Using the strain expressions in cylindrical coordinates and the linear elasticity 
constitutive law, the radial stress and the radial-axial shear stresses can be written: 
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 (6) 

Injecting the potentials (4) in the previous expressions and leaving aside the 
common propagating factor ( )exp i kz tω−   , one gets from (6): 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2
1 0 1 2 0 1

1 0 1 2 0 1

2 2 2 2
1 1 2 1 1 1 2 1

2 2

1 12 2

2 2 2

rr

rz

p pA k q J pr J pr A k q Y pr Y pr
r r
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r r
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   + − + −      

= − − + − + −

 (7) 
The dispersion equation is obtained by imposing stress free boundary 

conditions at 1,2r R h= ± , for stresses defined by eq. (7). A homogeneous algebraic 
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system of four equations is thus obtained [4],…, [10] and by adequate numerical 
methods, the dispersion curves (k,ω) can be obtained for a cylindrical tube. 

In order to prove that for large radius R and high frequency, these equations 
coincide with equations (1), the first step is to take to the limit all terms containing 
the factor ( )1 R h± in the radial stress equation, for R →∞ . The Bessel functions 

from (7), can be approximated for large arguments ( z →∞ ) by the following 
analytical functions (see ref. [12]): 
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 (8) 

Developing the trigonometric functions, and grouping the functions with identical 
arguments, one gets, using the following coefficients, 

1 1 2 2 1 2 1 1 2 2 1 2
ˆ ˆ ˆ ˆ, , ,A A A A A A B B B B B B= − = + = − = + : 
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 (9) 

The determinant of the homogeneous algebraic system (9) can be multiplied by 
0pR ≠  along the first two columns and by 0qR ≠  along the last two columns, 

obtaining thus: 
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  (10) 

The following notations have been used, for briefness: 

 1 1 2 2

1 1 2 2

sin ; cos ; sin ; cos
sin ; cos ; sin ; cos
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= = = =
= = = =

 (11) 
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After several transformations of the determinant (10), as presented in the 
Annex, it is proven the analytical convergence of the dispersion equations for a 
plate (2) and a cylindrical tube (10), having the same wall thickness, as long as the 
asymptotic formulas (8) hold, that is for large R/h ratios: 
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0

0 0 2 cos cos

0 0 sin 2 sin
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−
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3. Numerical examples 

As a first numerical example, is taken a standard 25.4mm (1 inch) diameter 
pipe, Re=16.7 mm, Ri=13.3 mm, Ri /Re=0.8, h=1.7mm, the half wall thickness, or 
h/R=0.111 (the mean radius is R=15mm) and comparison is made with a plate of 
the same h=1.7 mm as half plate thickness. The material for both structures is steel: 
ρ=7850 kg/m3, cL= 6089 m/s, cT=3195 m/s. Using formulas (1) : λ=130.8 GPa and 
µ=80.133 GPa. 

For a wider applicability, instead of the frequency f or angular frequency 
2 fω π= , in the following figures are used the non-dimensional frequency 

Th cωΩ = and the non-dimensional wavenumber kh (Fig. 2a).  

 
Fig. 2 Non-dimensional frequency vs. wavenumbers for a 1-inch pipe and a 3.4mm thick plate, 

both made of steel Ri/Re=0.8 (a), Ri/Re=0.5 (b). Markers are ‘full’ for pipe, ‘hollow’ for 
antisymmetric modes and ‘half-full’ for symmetric plate modes. (Color online) 

All curves are numerical solutions of dispersion equations (2) and (10) using 
numerical methods developed by the authors using an algorithm described in ref. 
[14] and the eigenvalue solver of COMSOL [15]. 

a) b) 
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The axially symmetric L(0,2) mode (red dots) converges at frequencies 
above its cut-off frequency, towards the symmetrical S0 mode (black half squares) 
of the plate. The L(0,1) mode (black full squares) at very low frequencies is close 
to the S0 mode (black half squares) but is separating from this mode, as the 
frequency increases and tends towards the plate fundamental anti-symmetric mode 
A0 (black squares) as the frequency is Ω > 0.3. All the higher order modes of the 
cylindrical tube, coincide with those of the plate beginning from their respective 
cut-off frequencies (Fig. 2a). Even in the low frequency range (Ω<1), the L(0,3) 
mode is practically superposed onto the A1 plate mode. This remark can be extended 
for higher order modes: L(0,4) tends to S1 , L(0,5) tends to S2, etc. Replacement of 
pipe dispersion curves by Lamb dispersion curves as it is shown on Fig. 2a looks as 
a very good approximation. In order to see the limits of such approximation, a 
second example is given. 

In this second example (Fig. 2b) is considered a pipe made of the same 
material, with geometrical parameters: Re=16.7 mm, Ri=8.35 mm, Ri /Re=0.5, 
h=4.175 mm, the half wall thickness, or h/R=0.333 (the mean radius R= 12.525 
mm). In this case, there is a noticeable discrepancy between the curves representing 
the mode L(0,1) and L(0,2) and their corresponding Lamb modes in plates, 
especially for thicker pipes, as shown on Fig. 2b, and this aspect is discussed in the 
following section. 

4. Accuracy of the L(0,1) and L(0,2) tube modes replacement by Lamb 
plate modes at low frequencies 

Many authors indicate that dispersion curves of plates can replace those for 
L(0,n) modes in thin tubes. However, it is interesting to quantitatively estimate this 
statement, since there is no systematic investigation to date of the error made by 
replacing the first two modes of the pipe with those of the plate. The first two modes 
are investigated in the low Ω frequency range for three Ri/Re ratios, namely 0.5, 0.7 
and 0.9, or { }0.333 0.176 0.053h R∈ . 

As expected, thinner tubes have faster converging dispersion curves towards 
the corresponding plate dispersion curves (Fig. 3). A 5% error in kh non-
dimensional wavenumber of the L(0,2) mode, is obtained for Ω > 0.15 if Ri/Re=0.9, 
but only for Ω >2.2 if Ri/Re=0.5. The L(0,1) mode has higher approximation errors, 
as the frequency increases, than those of the L(0,2) convergence towards the S0 
mode.  In fact, the L(0,2) mode approximation by the S0 mode can only be 
considered after its cut-off frequency because at the cut-off frequency there is a 
vertical asymptote in these approximations. This aspect motivates the study of the 
L(0,2) mode cut-off in the next section. 
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Fig. 3 Error (%) in the non-dimensional kh wavenumber caused by replacing the L(0,1) (squares) 

and L(0,2) (circles) dispersion curves, by the A0 and S0 dispersion curves respectively as function 
of 𝛺𝛺 = 𝜔𝜔ℎ/𝑐𝑐𝑇𝑇, for Ri/Re=0.5 (full markers), Ri/Re=0.7 (half-full markers) 

5. Analytical formula for the cut-off frequency of the L(0,2) mode 

For very low frequencies, the L(0,2) becomes propagative at frequencies 
above a specific cut-off frequency, which was not investigated before, to our 
knowledge. The cut-off equation is obtained by setting k=0 in the equations 
cancelling mechanical stresses (7), for ω=0 in which case p=kL, q=kT: The 
determinant reduces in this case to a product of the following two determinants. 
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 (13) 

The outer radius eR R h= +  and the inner radius iR R h= − , are used for 
shorter formulas (as defined on Fig. 1). Obviously the first root, coming from eq. 
(12) is ω=0, which means there is no cut-off for the L(0,1) mode. 
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The second cut-off frequency is obtained also from the first equation (12), 
then the next one from the second determinant of (12) and so on. These cut-offs are 
plotted on Fig. 4. 

It is useful to determine the first cut-off frequency, preferably by an 
analytical formula. Indeed, for small arguments (z<<1) the following 
approximations hold [13]:  

 
( ) ( ) ( ) ( )0 1 0 1

2 21; ; ln ;
2
zJ z J z Y z z Y z

zπ π
≈ ≈ ≈ ≈ −

 (14) 

 
Fig. 4 Non-dimensional cut-off frequencies vs. relative thickness h/Re for tubes made of steel and 

approximate analytical formula (L(0,2)_app, with no marker), (Color online). 

The first determinant of (12) can be asymptotically transformed, based on 
these approximations and the following formula is thus obtained: 

 12
8

h h
R R
 Ω = + 
 

, (15) 

in which the same notations as in Fig. 1 were used. The results from the application 
of this simple formula are plotted on the same Fig. 4 and agree well with the exact 
values (obtained by numerical methods) up to h/R=0.3, which is the upper limit of 
almost all thick pipes commonly used in practice. As the relative thickness tends to 
zero, the plate case is obtained (Ω=0), for which the S0 mode has no cut-off 
frequency. 

6. Detail on the dispersion curves of pipes below the first cut-off 
frequency 

Most papers considering longitudinal modes L(0,n) propagation, are more 
or less vague about the dispersion curves below the first cut-off frequency. The 
explanation comes from the numerical difficulties in accurately solving the 
dispersion equation (10).   
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Fig. 5 Dispersion curves of the first three modes as Ω vs real(kh) and imag(kh). Real branches 

(blue circles), imaginary branch (red dots), complex branches (solid line).  (Color online). 

The numerical results are obtained using the algorithm described in ref. [14], 
and the eigenvalue solver of COMSOL [15]. The dispersion curves presented on 
Fig. 5, are for a tube of Ri/Re=0.7, made of the same steel material. The first three 
modes are plotted as Ω vs. the real and imaginary parts of kh. The L(0,1) mode has 
only real wavenumbers. L(0,2) begins as a complex valued wavenumber (blue line) 
and becomes purely imaginary (red dots) before its cut-off frequency. The L(0,3) 
mode begins with L(0,2) values mirrored by the zero real-wavenumber plane, 
having the same imaginary part, but negative real part. L(0,3) and L(0,2) mode 
change to imaginary wavenumbers at the same frequency. From this frequency 
upwards, the L(0,3) mode has increasing imaginary values (red dots) for the 
wavenumber, which correspond to high wave attenuation, before becoming 
propagative for a higher cut-off frequency (see Fig.2b). This topological structure 
has been found for all investigated thicknesses, representing an important result of 
the present work. 

5. Conclusions 

Dispersion curves of tubes in vacuum have been investigated and the asymptotical 
convergence of the dispersion equations towards the dispersion equations of plates 
in vacuum has been analytically proven. The relative errors in non-dimensional 
wave numbers, due the use of plate equations instead of tube equations are also 
computed, with recommendations on accuracy, depending on pipe wall thickness. 
The cut-off frequency of the L(0,2) mode is then determined by an asymptotically 
deduced analytical formula, which is compared against the accurate numerical 
values. The imaginary and complex branches of the L(0,2) mode below the cut-off 
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frequency are numerically determined. The specific real, imaginary or complex 
branches of the first three guided modes in this frequency range are labelled for 
each mode. All computations are done for steel pipes and for a wide technical range 
of wall thickness vs. mean radius.    
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ANNEX 

Detailed transformations of the determinant (10) with notations (11) representing 
the dispersion equation for a tube, towards the determinant (2) corresponding to 
plates, are given in the following. 
Linear combinations like half the sum and difference of the first two and 
respectively last two rows lead to: 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2 2 2
1 1 1 1 2 2 2 2

2 2 2 2
1 1 1 1 2 2 2 2

2 2 2 2
1 1 1 1 2 2 2 2

2 2 2 2
1 1 1 1 2 2 2 2

2 2

2 2
0

2 2

2 2

k q c y k q s y ikqc y ikqs y

k q s x k q c x ikqs x ikqc x

ikps y ikpc y k q s y k q c y

ikpc x ikps x k q c x k q s x

− −

− − − −
=

− − − −

− −

 (1) 

Permuting second and third columns and the second and fourth rows, one gets: 

( ) ( )
( ) ( )
( ) ( )

( ) ( )

2 2 2 2
1 1 2 2 1 1 2 2

2 2 2 2
1 1 2 2 1 1 2 2

2 2 2 2
1 1 2 2 1 1 2 2

2 2 2 2
1 1 2 2 1 1 2 2

2 2

2 2
0

2 2

2 2

k q c y ikqc y k q s y ikqs y

ikpc x k q c x ikps x k q s x

ikps y k q s y ikpc y k q c y

k q s x ikqs x k q c x ikqc x

− −

− −
=

− − − −

− − − −

 (2) 

An equivalent determinant is obtained by adding to the first two columns multiplied 
by c1 and respectively c2, the third column multiplied by s1 and respectively the last 
one multiplied by s2. The last two columns of multiplied –c1 and respectively –c2 
are summed with the first two rows of the above formula multiplied by s1 and 
respectively s2. The determinant with initial notations becomes: 

( )
( )

( )
( )

2 2

2 2

2 2

2 2

cos 2 cos 0 0

2 sin sin 0 0
0

0 0 2 cos cos

0 0 sin 2 sin

k q ph ikq qh

ikp ph k q qh

ikp ph k q qh

k q ph ikq qh

−

−
=

− −

− −

 (3) 

This form of the determinant is obviously equivalent to (2), proving thus the 
coincidence of the dispersion curves of the plate and cylindrical tube having the 
same wall thickness, for large values of |𝑝𝑝𝑝𝑝| < |𝑞𝑞𝑞𝑞|; |𝑝𝑝𝑅𝑅| → ∞ meaning large 
mean radius of the tube and/or high frequencies. 


