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APPROXIMATE OPTIMAL SOLUTIONS AND GENERALIZED

CONTRACTIONS IN THE SENSE OF CHATTERJEA

Moosa Gabeleh1, Naseer Shahzad 2

In the current paper, we introduce a new class of non-self mappings, called
proximal generalized contractions. We provide different existence, uniqueness and
convergence results of an optimal solution for a nonlinear programming problem.
In this way, we obtain a new best proximity point theorem and hence we conclude
a real extension of Chatterjea’s fixed point theorem as a result.
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1. Introduction

The Banach contraction principle plays a very important role in nonlinear
analysis and has many generalizations; see [18, 32] and references therein. Recently,
Suzuki [34] established the following fixed point theorem, which is a new type of
extension of the Banach contraction principle and does characterize the metric com-
pleteness.

Theorem 1.1. ([34]) Define a nondecreasing function θ : [0, 1) → (12 , 1] by

θ(r) =


1 if 0 ≤ r ≤ 1

2(
√
5− 1),

1−r
r2

if 1
2(
√
5− 1) ≤ r ≤ 1√

2
,

1
1+r if 1√

2
≤ r < 1.

(1.1)

Then for a metric space (X, d), the following are equivalent:
(i) X is complete.
(ii) Every mapping T on X satisfying the following has a fixed point:

• There exists r ∈ [0, 1) such that θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤
rd(x, y) for all x, y ∈ X.
(iii) There exists r ∈ (0, 1) such that every mapping T on X satisfying the following
has a fixed point:

• 1
10000d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X.

Remark 1.1. Note that for every r ∈ [0, 1), θ(r) is the best constant.

In 1972, Chatterjea [8] introduced the following notion of contractive type
condition for self-mappings.
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Definition 1.1. Let (X, d) be a metric space. A self-mapping T : X −→ X is called
Chatterjea contraction if there exists α ∈ [0, 12) such that

d(Tx, Ty) ≤ α[d(x, Ty) + d(y, Tx)],

for all x, y ∈ X.

We know that if X is complete metric space, every Chatterjea contraction
self-mapping defined on X has a unique fixed point ([8]). Note that, the Chatterjea
contraction self-mappings may not be continuous. In this regarding, several fixed
point results have been given in the literature (see for instance [7, 19]).

2. Preliminaries

Consider the non-self mapping T : A → X, in which A is a nonempty subset
of a metric space (X, d). Clearly, the fixed point equation Tx = x may not have
solution. Hence, it is contemplated to find an element x ∈ A such that the error
d(x, Tx) is minimum. Indeed, best approximation theory has been derived from this
idea. Here, we state the following well-known best approximation theorem due to
Ky Fan.

Theorem 2.1. ([13]) Let A be a nonempty compact convex subset of a normed linear
space X and T : A → X be a continuous function. Then there exists x ∈ A such
that

∥x− Tx∥ = dist(Tx,A) := inf{∥Tx− a∥ : a ∈ A}.

Let A and B be nonempty subsets of a metric space (X, d) and T : A → B be
a non-self mapping. A point x⋆ ∈ A is called a best proximity point of T if

d(x⋆, Tx⋆) = dist(A,B) := {d(x, y) : (x, y) ∈ A×B}.

In fact, best proximity point theorems have been studied to find necessary conditions
such that the minimization problem

min
x∈A

d(x, Tx), (2.1)

has at least one solution.
Best proximity point theory is an interesting subject of optimization theory

which recently attracted the attention of many authors (see for instance [2, 3, 9, 10,
11, 12, 15, 17, 16, 20, 21, 22, 24, 25, 26, 27, 31, 28, 33, 35]). For other related results,
we refer to [4, 5].

Let A,B be two nonempty subsets of a metric space (X, d). Let us fix the
following notation which will be needed throughout this article:

A0 := {x ∈ A : d(x, y) = dist(A,B) for some y ∈ B},

B0 := {y ∈ B : d(x, y) = dist(A,B) for some x ∈ A},

d∗(a, b) := d(a, b)− dist(A,B) for each (a, b) ∈ A×B.

It is easy to see that if (A,B) is a nonempty and weakly compact pair of subsets of
a Banach space X, then A0 and B0 are nonempty subsets of X.

The notion of proximal contractions was defined by Sadiq Basha, as follows.
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Definition 2.1. ([23]) Let (A,B) be a pair of nonempty subsets of a metric space
(X, d). A mapping T : A −→ B is said to be a proximal contraction if there exists
a non-negative real number α < 1 such that, for all u1, u2, x1, x2 ∈ A,{

d(u1, Tx1) = dist(A,B)

d(u2, Tx2) = dist(A,B)
⇒ d(u1, u2) ≤ αd(x1, x2).

To state the main result of [23], we recall the following notion.

Definition 2.2. ([23]) Let A,B be two nonempty subsets of a metric space (X, d).
A is said to be approximatively compact with respect to B if every sequence {xn} of
A satisfying the condition that d(y, xn) −→ D(y,A) for some y ∈ B has a convergent
subsequence.

The next theorem guarantees the existence and uniqueness of a best proximity
point for proximal contractions.

Theorem 2.2. ([23]) Let (A,B) be a pair of nonempty closed subsets of a complete
metric space (X, d) such that A0 is nonempty and B is approximatively compact
with respect to A. Assume that T : A → B is a proximal contraction such that
T (A0) ⊆ B0. Then T has a unique best proximity point.

There have been many subsequent extensions of Theorem 2.4 due to Sadiq
Basha, see [6, 14, 29].

In this article, let us consider a self mapping g : A −→ A and a non-self
mapping T : A −→ B, where (A,B) is a nonempty pair of subsets of a metric space
(X, d). We consider the following nonlinear programming problem: Find

min
x∈A

d(gx, Tx), (2.2)

where T belongs to a new class of non-self mappings. We say that a point x⋆ ∈ A
is a solution of (2.2) provided that d(gx⋆, Tx⋆) = dist(A,B). As a special case,
if g is an identity mapping defined on A, then existence of the solution of (2.2) is
equivalent to the existence of a best proximity point for the non-self mapping T . As
a corollary of our discussion, we present a new fixed point theorem for generalized
Chatterjea contractions with the constant in complete metric spaces.

3. Main result

To establish our main results of this section, we introduce the following new
class of non-self mappings.

Definition 3.1. Define a strictly decreasing function η from [0, 12) onto (12 , 1] by

η(r) := 1− r.

Let A,B be two nonempty subsets of a metric space (X, d). Let α ∈ [0, 12) and put
r := α

1−α . A non-self mapping T : A −→ B is said to be a proximal generalized
Chatterjea contraction if for all u, v, x, y ∈ A with

d(u, Tx) = dist(A,B) and d(v, Ty) = dist(A,B),

we have

η(r)d∗(x, Tx) ≤ d(x, y) implies d(u, v) ≤ α[d∗(x, Ty) + d∗(y, Tx)]. (3.1)
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The notion of a proximal Chatterjea contraction can be defined as follows.

Definition 3.2. Let A,B be two nonempty subsets of a metric space (X, d). A
non-self mapping T : A −→ B is said to be a proximal Chatterjea contraction if
there exists α ∈ [0, 12) such that for all u, v, x, y ∈ A with

d(u, Tx) = dist(A,B) and d(v, Ty) = dist(A,B),

we have

d(u, v) ≤ α[d∗(x, Ty) + d∗(y, Tx)].

Note that the class of proximal generalized Chatterjea contractions contains
the class of proximal Chatterjea contractions as a subclass. Also, it is clear that the
class of proximal Chatterjea contractions contains the class of Chatterjea contraction
non-self mappings.

Here, we establish the main result of this section which ensures the existence
and uniqueness of a solution of the nonlinear programming problem (2.1).

Theorem 3.1. Let (A,B) be a nonempty pair of subsets of a complete metric space
(X, d) such that A0 is nonempty and closed. Assume that T : A → B is a proximal
generalized Chatterjea contraction such that T (A0) ⊆ B0. Then T has a unique best
proximity point. Moreover, if {xn} is a sequence in A such that d(xn+1, Txn) =
dist(A,B) then {xn} converges to the best proximity point of T .

Proof. Assume x0 ∈ A0. Since T (A0) ⊆ B0, there exists x1 ∈ A0 such that
d(x1, Tx0) = dist(A,B). Again, since Tx1 is a member of T (A0) which is a sub-
set of B0, it follows that there exists x2 ∈ A0 such that d(x2, Tx1) = dist(A,B).
Continuing this process, we can find a sequence {xn} in A0 such that

d(xn+1, Txn) = dist(A,B), for all n ∈ N ∪ {0}. (3.2)

By using the relation (3.2), we conclude that

d(x0, Tx0) ≤ d(x0, x1) + d(x1, Tx0) = d(x0, x1) + dist(A,B).

Since for each r ∈ [0, 12), η(r) ≤ 1 we have

η(r)d∗(x0, Tx0) ≤ d∗(x0, Tx0) ≤ d(x0, x1) &

{
d(x1, Tx0) = dist(A,B),

d(x2, Tx1) = dist(A,B).

Since T is a proximal generalized Chatterjea contraction non-self mapping, we de-
duce that

d(x1, x2) ≤ α[d∗(x0, Tx1) + d∗(x1, Tx0)]

= αd∗(x0, Tx1) ≤ α[d(x0, x1) + d(x1, x2) + d∗(x2, Tx1)]

= α[d(x0, x1) + d(x1, x2)].

Hence,

d(x1, x2) ≤
α

1− α
d(x0, x1) = rd(x0, x1).

It follows from the similar argument that

η(r)d∗(x1, Tx1) ≤ d(x1, x2) &

{
d(x2, Tx1) = dist(A,B),

d(x3, Tx2) = dist(A,B).
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Therefore,
d(x2, x3) ≤ α[d∗(x1, Tx2) + d∗(x2, Tx1)]

≤ α[d(x1, x2) + d(x2, x3) + d∗(x3, Tx2)]

= α[d(x1, x2) + d(x2, x3)].

Thus,

d(x2, x3) ≤
α

1− α
d(x1, x2) = rd(x1, x2) ≤ r2d(x0, x1).

By induction, we conclude that

d(xn, xn+1) ≤ rnd(x0, x1).

Therefore,
Σ∞
n=1d(xn, xn+1) ≤ Σ∞

n=1r
nd(x0, x1) < ∞.

So, {xn} is a Cauchy sequence in A0. Since A0 is closed and X is complete metric
space, we deduce that {xn} is a convergent sequence. Let x⋆ ∈ A0 be such that
xn −→ x⋆. We assert that x⋆ is a unique best proximity point of T . We prove that

d∗(x⋆, Tx) ≤ rd(x⋆, x), ∀x ∈ A0 with x ̸= x⋆. (3.3)

Suppose x ∈ A0 and x ̸= x⋆. Since T (A0) ⊆ B0, there exists an element y in A0

such that
d(y, Tx) = dist(A,B).

Since xn −→ x⋆, there exists N1 ∈ N such that d(xn, x
⋆) ≤ 1

3d(x, x
⋆) for all n ≥ N1.

For each n ≥ N1,
η(r)d∗(xn, Txn) ≤ d∗(xn, Txn)

≤ d(xn, x
⋆) + d(x⋆, xn+1) + d∗(xn+1, Txn)

= d(xn, x
⋆) + d(x⋆, xn+1) ≤

2

3
d(x, x⋆)

= d(x, x⋆)− 1

3
d(x, x⋆) ≤ d(x, x⋆)− d(xn, x

⋆) ≤ d(xn, x).

This implies that

η(r)d∗(xn, Txn) ≤ d(xn, x) and

{
d(xn+1, Txn) = dist(A,B),

d(y, Tx) = dist(A,B).

Since T is a proximal generalized Chatterjea contraction, we conclude that

d(xn+1, y) ≤ α[d∗(xn, Tx) + d∗(x, Txn)] ≤ α[d∗(xn, Tx) + d(x, xn+1)].

Thus,
d(x⋆, Tx) = lim

n−→∞
d(xn+1, Tx)

≤ lim
n−→∞

[d(xn+1, y) + d(y, Tx)]

≤ lim
n−→∞

[α(d∗(xn, Tx) + d(x, xn+1)) + dist(A,B)]

= αd∗(x⋆, Tx) + αd(x⋆, x) + dist(A,B).

Therefore,
(1− α)d∗(x⋆, Tx) ≤ αd(x⋆, x),

and so,
d∗(x⋆, Tx) ≤ rd(x⋆, x), ∀x ∈ A0, with x ̸= x⋆,
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that is, (3.3) holds. We now have

d∗(xn, Txn) ≤ d(xn, x
⋆) + d∗(x⋆, Txn)

≤ d(xn, x
⋆) + rd(x⋆, xn),

which deduces that

η(r)d∗(xn, Txn) ≤
1

1 + r
d∗(xn, Txn) ≤ d(x⋆, xn).

Besides, since x⋆ ∈ A0 and T (A0) ⊆ B0, there exists y
⋆ ∈ B0 such that d(y⋆, Tx⋆) =

dist(A,B). Then

η(r)d∗(xn, Txn) ≤ d(x⋆, xn) and

{
d(xn+1, Txn) = dist(A,B),

d(y⋆, Tx⋆) = dist(A,B),

and hence,

d(xn+1, y
⋆) ≤ α[d∗(xn, Tx

⋆) + d∗(x⋆, Txn)]

≤ α[d∗(xn, Tx
⋆) + d∗(x⋆, xn+1)].

Letting n −→ ∞, we obtain

d(y⋆, x⋆) ≤ αd∗(x⋆, Tx⋆)

≤ α[d(x⋆, y⋆) + d∗(y⋆, Tx⋆)] = αd(x⋆, y⋆).

So, we must have d(x⋆, y⋆) = 0 or x⋆ = y⋆. Hence, x⋆ is a best proximity point of
the mapping T . The uniqueness of best proximity point follows from the fact that
T is a proximal generalized Chatterjea contraction. Indeed, if x⋆1, x

⋆
2 are two distinct

points in A0 such that d(x⋆i , Tx
⋆
i ) = dist(A,B), for i = 1, 2. then

η(r)d∗(x⋆1, Tx
⋆
1) ≤ d(x⋆1, x

⋆
2) and

{
d(x⋆1, Tx

⋆
1) = dist(A,B),

d(x⋆2, Tx
⋆
2) = dist(A,B),

Therefore,

0 < d(x⋆1, x
⋆
2) ≤ α[d∗(x⋆1, Tx

⋆
2) + d∗(x⋆2, Tx

⋆
1)]

≤ α[d(x⋆1, x
⋆
2) + d(x⋆2, x

⋆
1)] = 2αd(x⋆1, x

⋆
2)

< d(x⋆1, x
⋆
2),

which is a contradiction. Hence, the best proximity point of T is unique and this
completes the proof.

�

We now conclude the next corollary from Theorem 3.3, immediately.

Corollary 3.1. Let (A,B) be a nonempty pair of a complete metric space (X, d)
such that A0 is nonempty and closed. Assume that T : A → B is a proximal
Chatterjea contraction non-self mapping such that T (A0) ⊆ B0. Then there exists
a unique point x⋆ ∈ A such that d(x⋆, Tx⋆) = dist(A,B). Moreover, if {xn} is a
sequence in A0 such that d(xn+1, Txn) = dist(A,B), then xn −→ x⋆.

As a result of Theorem 3.3, we obtain the following new fixed point theorem,
which is a real extension of Chatterjea’s fixed point theorem.
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Corollary 3.2. Let A be a nonempty and closed subset of a complete metric space
(X, d). Assume that T : A → A is a self mapping such that

η(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ α[d(x, Ty) + d(y, Tx)],

for all x, y ∈ A. Then T has a unique fixed point x⋆ ∈ A. Moreover, if x0 ∈ A and
we define xn+1 := Txn, then xn −→ x⋆.

Corollary 3.3. (Chatterjea fixed point theorem) Let A be a nonempty and closed
subset of a complete metric space (X, d). Assume that T : A → A is a Chatterjea
contraction mapping. Then T has a unique fixed point. Moreover, for each x0 ∈ A,
if we define xn+1 := Txn then the sequence {xn} converges to the fixed point of T .

Example 3.1. Suppose that X := R with the usual metric. Let

A := [−1, 1] ∪ {4} & B := [2, 3].

Then A and B are nonempty closed subsets of X and A0 = {1, 4} and B0 = {2, 3}.
We note that dist(A,B) = 1. Let T : A −→ B be a mapping defined as

T (x) =

{
5
2 if x = 0,

3 if x ̸= 0.

We can see that T is a proximal generalized Chatterjea contraction non-self mapping
for each α ∈ [0, 12). Indeed, it is sufficient to note that if d(u, Tx) = dist(A,B), then
we must have u = 4 and x ∈ A − {0}. Now, Theorem 3.3 guaranties the existence
and uniqueness of a best proximity point for T and this point is x∗ = 4.

4. Additional results

In this section, we establish the existence and uniqueness of solution for the
nonlinear programming problem (2.2) under sufficient conditions. We begin our
main results of this section with the following geometric property in metric spaces.

Definition 4.1. ([15]) Let (A,B) be a pair of nonempty subsets of a metric space
(X, d) with A0 ̸= ∅. The pair (A,B) is said to have WP-property if and only if{

d(x1, y1) = dist(A,B)

d(x2, y2) = dist(A,B)
⇒ d(x1, x2) ≤ d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

Let us illustrate this subject with the next example.

Example 4.1. Consider X := R with the usual metric. Suppose that

A : [1, 2], and B := [−1, 0] ∪ {3}.
It is clear that dist(A,B) = 1 and A0 = {1, 2} and B0 = {0, 3}. If (x1, x2) = (1, 2)
and (y1, y2) = (0, 3), we have

d(x1, y1) = d(x2, y2) = dist(A,B) and d(x1, x2) < d(y1, y2).

Thereby, the pair (A,B) has the WP-property. Note that (B,A) has not WP-
property.

We also recall that every nonempty, closed convex pair of subsets of a Hilbert
space H has the WP-property ([30]). Moreover, in the setting of uniformly convex
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Banach space X, every nonempty, bounded, closed and convex pair of subsets of X
has the WP-property ([1]).

Here, we state the main result of this section.

Theorem 4.1. Let (A,B) be a pair of nonempty, closed subsets of a complete metric
space (X, d) such that A0 is nonempty and (A,B) has the WP-property. Assume
that T : A → B and g : A −→ A satisfy the following conditions:

(i) There exists r ∈ [0, 12) such that

η(r)d∗(gx, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ α[d∗(gx, Ty) + d∗(gy, Tx)], (4.1)

for each x, y ∈ A.
(ii) T (A0) ⊆ B0 and A0 ⊆ g(A0).
(iii) g is an isometry.

Then there exists a unique element x⋆ ∈ A0 such that

d(gx⋆, Tx⋆) = dist(A,B).

Moreover, for any fixed element x0 ∈ A0, the sequence {xn}, defined by d(gxn+1, Txn) =
dist(A,B), converges to the element x⋆.

Proof. Let x0 be a fixed element. Since T (A0) ⊆ B0 and A0 ⊆ g(A0), there exists
an element x1 ∈ A0 such that d(gx1, Tx0) = dist(A,B). Again, since Tx1 is a
member of T (A0) which is a subset of B0 and A0 is a subset of g(A0) it follows that
there exists an element x2 ∈ A0 such that d(gx2, Tx1) = dist(A,B). By the similar
argument, we obtain a sequence {xn} in A0 such that

d(gxn+1, Txn) = dist(A,B), ∀n ∈ N. (4.2)

By the fact that (A,B) has the WP-property and that g is an isometry, we conclude
that

d(xn+1, xn) = d(gxn+1, gxn) ≤ d(Txn, Txn−1), ∀n ∈ N. (4.3)

Now, for all n ∈ N ∪ {0} we have

d(gxn, Txn) ≤ d(gxn, gxn+1) + d(gxn+1, Txn) = d(xn, xn+1) + dist(A,B),

which implies that

η(r)d∗(gxn, Txn) ≤ d(xn, xn+1).

By using (4.1) we conclude that

d(xn+2, xn+1) ≤ d(Txn+1, Txn) ≤ α[d∗(gxn, Txn+1) + d∗(gxn+1, Txn)]

≤ α[d(gxn, gxn+1) + d(gxn+1, gxn+2) + d∗(gxn+2, Txn+1)]

= α[d(xn, xn+1) + d(xn+1, xn+2)].

Now, we obtain

d(xn+1, xn+2) ≤ rd(xn, xn+1), ∀n ∈ N ∪ {0}.

This implies that {xn} is a Cauchy sequence in A. Since X is complete metric space
and A is closed, there exists an element x⋆ ∈ A such that xn −→ x⋆. We now prove
that

d∗(gx⋆, Tx) ≤ rd(x⋆, x), ∀x ∈ A with x ̸= x⋆. (4.4)
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Since xn → x⋆, there exists N1 ∈ N such that

d(xn, x
⋆) ≤ 1

3
d(x, x⋆) for all n ≥ N1.

We have

η(r)d∗(gxn, Txn) ≤ d∗(gxn, Txn) ≤ d(gxn, gxn+1) + d∗(gxn+1, Txn)

≤ d(gxn, gx
⋆) + d(gxn+1, gx

⋆)

= d(xn, x
⋆) + d(x⋆, xn+1)

≤ 2

3
d(x, x⋆) = d(x, x⋆)− 1

3
d(x, x⋆)

≤ d(x, x⋆)− d(xn, x
⋆) ≤ d(xn, x).

Hence,

d(Txn, Tx) ≤ α[d∗(gxn, Tx) + d∗(gx, Txn)], ∀n ≥ N1.

Therefore,

d∗(gx⋆, Tx) = lim
n−→∞

d∗(gxn+1, Tx)

≤ lim
n−→∞

[d∗(gxn+1, Txn) + d(Txn, Tx)]

≤ lim
n−→∞

α[d∗(gxn, Tx) + d∗(gx, Txn)]

≤ lim
n−→∞

α[d∗(gxn, Tx) + d(gx, gxn+1) + d∗(gxn+1, Txn)]

= α[d∗(gx⋆, Tx) + d(x, x⋆)],

which concludes that

d∗(gx⋆, Tx) ≤ rd(x⋆, x), ∀x ∈ A with x ̸= x⋆,

that is, (4.4) holds. So,

d∗(gxn, Txn) ≤ d(gxn, gx
⋆) + d∗(gx⋆, Txn)

≤ d(xn, x
⋆) + rd(x⋆, xn) = (1 + r)d(xn, x

⋆).

Thus,

η(r)d∗(gxn, Txn) ≤
1

1 + r
d∗(gxn, Txn) ≤ d(xn, x

⋆),

which deduces that

d(Txn, Tx
⋆) ≤ α[d∗(gxn, Tx

⋆) + d∗(Txn, gx
⋆)]

≤ α[d∗(gxn, Txn) + d(Txn, Tx
⋆) + d(xn+1, x

⋆)]

≤ α[(1 + r)d(xn, x
⋆) + d(Txn, Tx

∗) + d(xn+1, x
⋆)].

Hence,

d(Txn, Tx
⋆) ≤ r[(1 + r)d(xn, x

⋆) + d(xn+1, x
⋆)].

Letting n −→ ∞ in above relation, we obtain Txn −→ Tx⋆. Then

d(gx⋆, Tx⋆) = lim
n−→∞

d(gxn+1, Txn) = dist(A,B),

that is, x⋆ is a solution of nonlinear programming problem (2.2). If y⋆ ∈ A0 is
another solution of (2.2) then we must have

d(gy⋆, Ty⋆) = dist(A,B).
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Since (A,B) has the WP-property, we obtain

d(x⋆, y⋆) = d(gx⋆, gy⋆) ≤ d(Tx⋆, T y⋆).

We now have

η(r)d∗(gx⋆, Tx⋆) = 0 ≤ d(x⋆, y⋆).

Then,

d(x⋆, y⋆) ≤ d(Tx⋆, T y⋆) ≤ α[d∗(gx⋆, Tx⋆) + d∗(gy⋆, T y⋆)] = 0,

which concludes that x⋆ = y⋆ and this completes the proof.
�

If in Theorem 4.2 g is an identity mapping, we get the following best proximity
point results.

Corollary 4.1. Let (A,B) be a pair of nonempty, closed subsets of a complete metric
space (X, d) such that A0 is nonempty and (A,B) has the WP-property. Assume
that T : A → B is a generalized Chatterjea contraction non-self mapping, that is,
there exists r ∈ [0, 12) such that

η(r)d∗(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ α[d∗(x, Ty) + d∗(y, Tx)], (4.5)

for each x, y ∈ A. If T (A0) ⊆ B0, then there exists a unique point x⋆ ∈ A0 such that

d(x⋆, Tx⋆) = dist(A,B).

Moreover, for any fixed element x0 ∈ A0, the sequence {xn}, defined by d(xn+1, Txn) =
dist(A,B), converges to the element x⋆.

Corollary 4.2. Let (A,B) be a pair of nonempty, bounded, closed and convex sub-
sets of a uniformly convex Banach space X. Assume that T : A → B is a generalized
Chatterjea contraction non-self mapping such that T (A0) ⊆ B0. Then there exists a
unique point x⋆ ∈ A0 such that

∥x⋆ − Tx⋆∥ = dist(A,B).

Moreover, for any fixed element x0 ∈ A0, the sequence {xn}, defined by ∥xn+1 −
Txn∥ = dist(A,B), converges to the element x⋆.

Corollary 4.3. Let (A,B) be a pair of nonempty, closed subsets of a complete metric
space (X, d) such that A0 is nonempty and (A,B) has the WP-property. Assume
that T : A → B is non-self mapping such that T (A0) ⊆ B0. If there exists α ∈ [0, 12)
such that

d(Tx, Ty) ≤ α[d∗(x, Ty) + d∗(y, Tx)],

for each x, y ∈ A, then there exists a unique point x⋆ ∈ A0 such that

d(x⋆, Tx⋆) = dist(A,B).

Moreover, for any fixed element x0 ∈ A0, the sequence {xn}, defined by d(xn+1, Txn) =
dist(A,B), converges to the element x⋆.

Remark 4.1. Since for any nonempty subset A of X, the pair (A,A) has the WP-
property, we can deduce the fixed point results which was stated in the Corollaries
3.5 and 3.6, as fixed point results of Theorem 4.2.
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Here, we state the relationship between proximal generalized Chatterjea con-
tractions and generalized Chatterjea contractions.

Proposition 4.1. Let (A,B) be a pair of nonempty closed subsets of a complete
metric space (X, d) such that A0 is nonempty and (A,B) has the WP-property.
Assume that T : A → B is a mapping such that T (A0) ⊆ B0.
(i) If T is a generalized Chatterjea contraction, then T is a proximal generalized
Chatterjea contraction.
(ii) If T is a proximal generalized Chatterjea contraction and moreover, (B,A) has
the WP- property, then T |A0 is a generalized Chatterjea contraction.

Proof. (i) Let T be a generalized Chatterjea contraction non-self mapping and
u, v, x, y ∈ A be such that{

d(u, Tx) = dist(A,B),

d(v, Ty) = dist(A,B),
and η(r)d∗(x, Tx) ≤ d(x, y).

Since (A,B) has the WP-property and T is generalized Chatterjea contraction,

d(u, v) ≤ d(Tx, Ty) ≤ α[d∗(x, Ty) + d∗(y, Tx)],

which implies that T is a proximal generalized Chatterjea contraction.
(ii) Suppose that T is a proximal generalized Chatterjea contraction and x, y ∈ A0

be such that

η(r)d∗(x, Tx) ≤ d(x, y).

Since T (A0) ⊆ B0, there exist u, v ∈ A0 such that{
d(u, Tx) = dist(A,B)

d(v, Ty) = dist(A,B).

By the fact that T is a proximal generalized Chatterjea contraction and both (A,B)
and (B,A) have the WP-property, we must have

d(Tx, Ty) = d(u, v) ≤ α[d∗(x, Ty) + d∗(y, Tx)],

which deduces that T |A0 is generalized Chatterjea contraction. �
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