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MULTIPLE LOAD CASE TOPOLOGY OPTIMIZATION 
BASED ON BONE MECHANICAL ADAPTATION THEORY 

 
Emil NUŢU1 

This paper presents structural optimum topologies for a 2D reference 
structure subjected to single, two and three static load cases. The topologies are 
determined using finite element simulations and the theory of adaptive bone 
remodeling, with the spatial influence function. The mechanical stimulus is the local 
strain energy density. It is demonstrated that, the adaptive bone remodeling theory 
is able to generate structural optimum topologies for multiple static load cases. 
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1. Introduction 

Topology optimization (TO) methods [1-3] are used in structural design in 
order to determine optimal material distributions within given domains, under 
certain objectives, such as minimum compliance. Using the finite element method 
(FEM), the solutions are fictitious density distributions, i.e. relative density values 
between 0 and 1, where 1 corresponds to the finite elements where material 
should be placed and 0 to the ones where material should be removed. 
Graphically, the solutions are presented using density distributions plots, usually 
black and white representations (black for the areas with material having the unit 
density). 

As living structures, bones are able to auto-optimize in the sense the 
engineering problem of TO is thought, through a process generally known as 
adaptive bone remodeling or bone mechanical adaptation (BMA). The literature 
offers several mathematical theories, e.g. [4-6], developed to model the BMA 
which were successfully applied to mechanical analysis, design and optimization 
of prosthetic implants [7-9], in conjunction with FEM. The solutions are 
expressed in terms of density distributions, as in TO problems.   

Recently, the similarity between the BMA theory and TO was investigated 
[10] and the applicability of BMA to the optimization of mechanical structures 
was discussed [11]. Also, an interpretation of the parameters in the strain energy 
density (SED) based equation of BMA was given [12], under the purpose of 
applying it to TO problems.  

In the field of TO, an important issue is to determine optimum structural 
solutions that should satisfy multiple loading cases. Nowak [11] emphasized that 
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the BMA simulations can be used to model multiple load case TO, but did not 
presented an associated methodology. In this paper, a method which is applied in 
BMA simulations for static modeling the dynamic loading of bones is adopted for 
TO of inert structures. A numerical example is studied in order to test the 
applicability of this method.  

 
2. Bone adaptation theory 
 
For the objective of this paper, it is applied the SED theory of BMA with a 

spatial influence function (SIF) developed by Mulender et al. [4]. The parameters 
involved within the simulations are based on the interpretation given in [12] for 
application to TO. The basic equation is [4]: 

 
ௗఘሺ௫,௧ሻ
ௗ௧

ൌ ,ݔሺ߶ܤ  ሻݐ             (1) 
 

where dρ(x,t)/dt quantifies the variation in time of the apparent density at the 
location x, B is a constant which controls the speed of the adaptation process and φ 
is the mechanical stimulus which guides the bone cells to form or to resorb bone. 
It is assumed that in each spatial location, the stimulus is determined by several 
sensor cells which are found in a certain vicinity. In the original model of 
Mulender et al. [4], the analysis domain was discretized with equally spaced 
points, to play the role of sensor cells. For each spatial location, the stimulus was 
calculated taking into account the contribution of all the sensors within the model. 
In order to reduce the computational cost, Nutu [12] introduced a parameter to 
control the number of sensors which contribute to the mechanical signal 
calculation. In this paper, this parameter, named radius of influence (RIF), is also 
adopted. In the following, it will be denoted with R.  

At the spatial location x, the mechanical stimulus is calculated as [4]: 
 

߶ሺݔ, ሻݐ ൌ ∑ ௜݂ሺݔሻே
௜ୀଵ ሾ ௜ܵሺݐሻ െ ܵ௢ሿ,            (2) 

 
with N being the number of the sensors within the vicinity defined by RIF, Si(t) is 
the strain energy per unit of mass (SEM) determined by the sensor i and So is the 
equilibrium value of the mechanical stimulus. The SEM is evaluated based on the 
the SED, Ui(t),   and the apparent density ρi(t), at the location of the sensor i, 
according to [4]: 
 

௜ܵሺݐሻ ൌ
௎೔ሺ௧ሻ
ఘ೔ሺ௧ሻ

 .               (3) 

 
The SIF, fi(x), quantifies the influence upon the mechanical signal of each 

sensor, i, found within the vicinity of x. Its expression is: 
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௜݂ሺݔሻ ൌ ݁ିሾௗ೔ሺ௫ሻ/஽ሿ.             (4) 
 
According to Mulender et al. [4], the parameter D in equation (4) is defined as the 
distance to which the mechanical signal influence reduces with 36,8%, i.e. the SIF 
takes the value e-1. For the TO of inert structures, this parameter, together with 
RIF can be used to reduce the number of finite elements that contribute to the 
mechanical signal while keeping the same topological solution [12]. 

The change in density according to equation (1) determines a change in the 
material Young modulus via empirical correlating functions [13]. In this paper, 
the relative density is used based on the argumentations given in [12]. Therefore, 
the Young modulus is updated according to: 
 

ܧ ൌ ௠, with  0ߩ௢ܧ ൏ ߩ ൑ 1,            (5) 
 
where Eo is the elasticity modulus of bulk material, i.e. the one with unit relative 
density.  

In the above description, the calculation of SED corresponds to a single 
load case. In order to account for a more detailed loading configuration, which 
better models the dynamics of bones, Carter et al. [14] proposed the use of a strain 
energy functional for the calculation of the mechanical signal. In this way, they 
assumed that the mechanical stimulus sensed by bone cells is a cumulative 
information which comes from all the relevant loading configurations. Following 
Carter et al., Petterman et al. [15] used a similar approach imposing three relevant 
load cases taken from a gait cycle in the simulation of BMA in a plane model of 
the proximal femur. Quantitatively, the mechanical signal, S, was calculated based 
on: 

ܵሺݔ, ሻݐ ൌ ൤∑ ௡೗
∑ ௡೜ಿಽ
೜సభ

்ܷ௟
௨ሺݔ, ሻே௅ݐ

௟ୀଵ ൨
భ
ೠ
,            (6) 

 
where NL is the number of loading cases, nl and nq designate the number of cycles 
corresponding to load cases l and q, ்ܷ೗ሺݔ, ݈ሻ is the SED at the tissue level (no 
pores included) determined at location x during iteration counted by t, and u a 
weighting parameter measuring the degree of influence of the loading 
configuration described throughout the NL loading cases. For a single loading 
configuration, u was taken as unity [14]. The conversion of UT to the apparent 
level was done based on a relation similar to (3). 
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3. Methods 

The theory presented above was implemented in a code based on 
MATLAB 7 and ANSYS 15 capabilities, following the procedure described in 
paper [16]. The values of the parameters involved within the simulation are 
presented in the Table 1 and are based on the interpretations given in [12]. The 
adaptation equation is integrated using forward Euler scheme. Thus, the density 
update is given by: 

௡ାଵߩ ൌ ௡ߩ ൅ ∑ܤ݄ ௜݂ሺݔሻே
௜ୀଵ ሾ ௜ܵሺ݊ሻ െ ܵ௢ሿ ,           (7) 

 
where h is the integration step and n is the iteration index. 

 
Table 1  

The values of the BR theory parameters considered within the simulation 
B 

[MPa-1 ] h D 
[mm]

R 
[mm]

So 
[MPa] ρo 

Eo 
[MPa] m 

1 0.01 1 3 0.43 1 10000 3 
 
In order to combine different load cases, the method described by 

expression (6) is adapted for the inert structure optimization under static loads. 
First, notice that the correlation of load case participation with some biological 
aspect of cell sensing has no meaning. Second, from the mechanical design 
perspective, the number of loading cycles corresponding to each load case is 
rather a fatigue issue, which is not implied herein. In this respect, the significance 
of weighting parameters is not correlated with the number of cycles per load case. 
Based on the above mentioned observations and taking u=1, the mechanical 
signal calculation at the location x becomes: 

 

ܵሺݔ, ሻݐ ൌ ∑ ௣೗௎೗ሺ௫,௧ሻಿಽ
೗సభ
ఘሺ௫,௧ሻ

 ,            (8) 
 

where pl is the weighting parameter of the l load case, which replaces the ratio 
௡೗

∑ ௡೜ಿಽ
೜సభ

 from expression (6).  
 In order to account for the contribution of N sensors to the mechanical 
signal calculation, one can adapt the formula (8) as follows: 

௜ܵሺݐሻ ൌ
∑ ௣೗௎೗ሺ௧ሻಿಽ
೗సభ
ఘሺ௫,௧ሻ

 ,             (9) 
 
where Si(t) becomes the signal determined at the location of the sensor i, as a 
cumulative participation of each load case. Then, the total mechanical signal at the 
location x is determined based on relation (2). 



Multiple load case topology optimization based on bone mechanical adaptation theory     135 

Note that, the definition (8) does not restrict the sum of pl (l=1..NL) to 
unity. These parameters become arbitrary numbers that can be used to determine 
potential different topological solutions for the same load cases, but for different 
participation of each. This aspect is verified within the paper as follows: for two 
combinations of loading, each load case weighting parameter is varied between 
0.1 and 0.9, keeping the sum equal to 1. Then, the sum is allowed to vary while 
the ratio is kept constant. 
 

4. Numerical example 
 
The simulation is performed on a plane structure, by considering three 

different load cases. The first one corresponds to a reference Mitchel type 
structure, as depicted in Figure 1, a. The other two load cases are defined 
according to Figure 1, b and c. First, each load case is applied independently. 
Then, combinations of two and all three are considered.  

 

 
 

Fig. 1The test structure with the three applied load cases  
 

The plate dimensions are H = 20 mm and L = 50 mm. Based on the Nutu 
rationale [12], the value of reference SEM, So = 0.43 MPa, corresponds to a von 
Mises stress of 100 MPa, produced in the material with the unit relative density. 
Therefore, one can expect a final stress distribution around this value, defined 
formally as an admissible limit, σa. Note, however, that this value is only a 
guiding reference. It is unlikely to achieve such a limit in all the finite elements 
describing the final topology, due to the many constraints the problem of 
optimization has to fulfill. More, substantial deviations from this value are 
expected, depending on structure configuration, load values, local stress 
concentrations and non-smoothness of obtained topological solution. But, as 
discussed in [12], the interval of von Mises stresses can be constrained to contain 
the admissible limit by modifying the threshold So. On the other hand, the solution 
given by the topology optimization problem is not final. During the structural 
design process, a stress analysis is further needed, usually followed by shape 
and/or size optimization.  
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The applied forces and the supports, in each case, are distributed on sets of 
nodes rather than a single node, in order to diminish the local stress 
concentrations. A length of 2 mm for each boundary condition distribution was 
imposed. The value of the force, F = 400 N, is selected as in Nutu [12], because it 
produces von Mises stresses within the initial structures (constant density over the 
entire domain) under σa, in the areas far enough from the boundaries where 
conditions are imposed (forces and supports). 

 5. Results and discussions 

In Figure 2 the final density distributions determined independently for the 
three load cases are presented. The black and white areas correspond to elements 
of density equal to 1 and 0.01, respectively. The resemblance between the first 
load case solution and the ones from other published results [17, 18] for the same 
structure is verified, validating thus the correctness of the implemented algorithm.  

1 2 3 

 
Fig. 2 Density plots determined for the three load cases independently 

In order to test the capacity of the theory and the associated algorithm to 
produce different topologies if multiple load cases are applied, several simulations 
are performed based on combinations of two and all the three loading 
configurations. Fig. 3 shows the final density distributions obtained with such 
combinations.  

In all plots shown in Figure 3, the contributions of each load case were 
equally defined, i.e. the weighting coefficients are equal. Their sum is unity. It is 
evident that the solutions presented are different from each of the loading cases 
taken independently. One can also notice, by comparison with the results from 
Fig. 2, that the final solution tends to adapt towards a shape that satisfies all the 
applied load cases.  

Fig. 4 depicts density plots for different values of the weighting 
parameters selected such that their sum to be equal to 1. For a given load case 
combination, although some similarity exists, the solutions are defined by 
different material layouts. Thus, the combination of the weighting parameters can 
lead to structural solutions with different shapes. 
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12: p1 = p2 = 0.5 13: p1 = p3 = 0.5

23: p2 = p3 = 0.5 123: p1 = p2 = p3 = 0.33 

Fig. 3 Density plots determined for combinations of the three load cases with equal participation; 
the numbers showing the load case combination and the weighting parameter of each load case are 

indicated above the pictures 

12 13 23 

p1 = 0.1; p2 = 0.9 p1 = 0.1; p3 = 0.9 
 

p2 = 0.1; p3 = 0.9 

p1 = 0.3; p2 = 0.7 p1 = 0.3; p3 = 0.7 
 

p2 = 0.3; p3 = 0.7 

p1 = p2 = 0.5 p1 = p3 = 0.5 
 

p2 = p3 = 0.5 

p1 = 0.7; p2 = 0.3 p1 = 0.7; p3 = 0.3 
 

p2 = 0.7; p3 = 0.3 

p1 = 0.9; p2 = 0.1 p1 = 0.7; p3 = 0.3 
 

p2 = 0.9; p3 = 0.1 

Fig. 4 Density plots determined for combinations of the three load cases with different weighting 
parameters; the numbers showing the load case combination are indicated above the columns and 

the weighting parameters are indicated below each picture 

For further analysis, it is selected the ratio pl/pk = 3/7 to be kept constant, 
where l and k are indexes of load cases. The sum, pl + pk, is varied between 0.5 
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and 2. Such an approach allows to verify whether the shape of the solution is 
maintained under a constant participation ratio. Indeed, the results presented in 
Fig. 5 demonstrate this assumption. The solutions from Fig. 4 corresponding to   
pl = 0.3 and pk = 0.7 are redrawn for completeness. One can notice that, for all the 
variants presented, the shape is kept while the struts thickness is increased. 
Therefore, if the weighting parameters are varied proportionally, a size 
optimization can be performed. Note, however, that size optimization does not 
necessarily involves the modification of the whole structure dimensions. Only the 
dimensions of certain parts of the structure can be allowed to vary. Such an 
approach, however, cannot be performed by the algorithm presented herein. This 
is rather an issue that should be addressed by means of the next steps in the design 
process, which are not considered in this paper. 

12 13 23 

 
p1 = 0.15; p2 = 0.35 p1 = 0.15; p3 = 0.35 

 
p2 = 0.15; p3 = 0.35 

 
p1 = 0.3; p2 = 0.7 p1 = 0.3; p2 = 0.7 

 
p1 = 0.3; p2 = 0.7 

 
p1 = 0.6; p2 = 1.4 p1 = 0.6; p2 = 1.4 

 
p1 = 0.6; p2 = 1.4 

Fig. 5 Density plots determined for combinations of the three load cases with constant ratio of the 
weighting parameters; the numbers showing the load case combination are indicated above the 

columns and the weighting parameters are indicated below each picture 

6. Conclusions  

The results presented in this paper demonstrate that the BMA theory is 
able to produce optimum structural topologies for multiple load cases. Different 
material layouts are obtained for the same load cases combination by using 
weighting coefficients, which account for load case participation. Although no 
dynamical effect is considered, i.e. fatigue effects, the load case participation is 
relevant because different topological solutions can be achieved.  

A global size optimization can be performed by proportionally rescaling 
the weighting coefficients.  
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In practical applications, each topological solution could serve as a start 
configuration for designing structures which should withstand several static load 
cases. By applying subsequent local size optimization, one can chose, between 
several variants, the one which better accomplishes a certain objective, such as 
minimization of structural compliance or minimization of total mass. Another 
practical utility of the results presented in this work could relate to the 
technological implications of achieving the final design. In this regard, some 
solutions may involve lower development costs. However, in order to be fully 
applicable in the industry, the theory and the associated algorithm presented in 
this paper should be further developed. In this respect, important directions of 
research include fatigue effects, stress raisers and diminishing computational time. 
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