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MULTIPLE LOAD CASE TOPOLOGY OPTIMIZATION
BASED ON BONE MECHANICAL ADAPTATION THEORY

Emil NUTU'

This paper presents structural optimum topologies for a 2D reference
structure subjected to single, two and three static load cases. The topologies are
determined using finite element simulations and the theory of adaptive bone
remodeling, with the spatial influence function. The mechanical stimulus is the local
strain energy density. It is demonstrated that, the adaptive bone remodeling theory
is able to generate structural optimum topologies for multiple static load cases.
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1. Introduction

Topology optimization (TO) methods [1-3] are used in structural design in
order to determine optimal material distributions within given domains, under
certain objectives, such as minimum compliance. Using the finite element method
(FEM), the solutions are fictitious density distributions, i.e. relative density values
between 0 and 1, where 1 corresponds to the finite elements where material
should be placed and 0 to the ones where material should be removed.
Graphically, the solutions are presented using density distributions plots, usually
black and white representations (black for the areas with material having the unit
density).

As living structures, bones are able to auto-optimize in the sense the
engineering problem of TO is thought, through a process generally known as
adaptive bone remodeling or bone mechanical adaptation (BMA). The literature
offers several mathematical theories, e.g. [4-6], developed to model the BMA
which were successfully applied to mechanical analysis, design and optimization
of prosthetic implants [7-9], in conjunction with FEM. The solutions are
expressed in terms of density distributions, as in TO problems.

Recently, the similarity between the BMA theory and TO was investigated
[10] and the applicability of BMA to the optimization of mechanical structures
was discussed [11]. Also, an interpretation of the parameters in the strain energy
density (SED) based equation of BMA was given [12], under the purpose of
applying it to TO problems.

In the field of TO, an important issue is to determine optimum structural
solutions that should satisfy multiple loading cases. Nowak [11] emphasized that
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the BMA simulations can be used to model multiple load case TO, but did not
presented an associated methodology. In this paper, a method which is applied in
BMA simulations for static modeling the dynamic loading of bones is adopted for
TO of inert structures. A numerical example is studied in order to test the
applicability of this method.

2. Bone adaptation theory

For the objective of this paper, it is applied the SED theory of BMA with a
spatial influence function (SIF) developed by Mulender et al. [4]. The parameters
involved within the simulations are based on the interpretation given in [12] for
application to TO. The basic equation is [4]:

LoD = Bp(x,t) (1)
where dp(x,t)/dt quantifies the variation in time of the apparent density at the
location x, B is a constant which controls the speed of the adaptation process and ¢
is the mechanical stimulus which guides the bone cells to form or to resorb bone.
It is assumed that in each spatial location, the stimulus is determined by several
sensor cells which are found in a certain vicinity. In the original model of
Mulender et al. [4], the analysis domain was discretized with equally spaced
points, to play the role of sensor cells. For each spatial location, the stimulus was
calculated taking into account the contribution of all the sensors within the model.
In order to reduce the computational cost, Nutu [12] introduced a parameter to
control the number of sensors which contribute to the mechanical signal
calculation. In this paper, this parameter, named radius of influence (RIF), is also
adopted. In the following, it will be denoted with R.
At the spatial location x, the mechanical stimulus is calculated as [4]:

¢ (x, 1) = EiLy fi(0) [Si(®) = So], 2

with N being the number of the sensors within the vicinity defined by RIF, S;(?) is
the strain energy per unit of mass (SEM) determined by the sensor i and S, is the
equilibrium value of the mechanical stimulus. The SEM is evaluated based on the
the SED, Uji(?), and the apparent density p;(?), at the location of the sensor i,
according to [4]:

_ v
5,() =29 3)

The SIF, fi(x), quantifies the influence upon the mechanical signal of each
sensor, i, found within the vicinity of x. Its expression is:
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fi(x) = e~ ldi(x)/D] 4)

According to Mulender et al. [4], the parameter D in equation (4) is defined as the
distance to which the mechanical signal influence reduces with 36,8%, i.e. the SIF
takes the value ¢”’. For the TO of inert structures, this parameter, together with
RIF can be used to reduce the number of finite elements that contribute to the
mechanical signal while keeping the same topological solution [12].

The change in density according to equation (1) determines a change in the
material Young modulus via empirical correlating functions [13]. In this paper,
the relative density is used based on the argumentations given in [12]. Therefore,
the Young modulus is updated according to:

E=E,p™, with 0 <p <1, (5)

where E, is the elasticity modulus of bulk material, i.e. the one with unit relative
density.

In the above description, the calculation of SED corresponds to a single
load case. In order to account for a more detailed loading configuration, which
better models the dynamics of bones, Carter et al. [14] proposed the use of a strain
energy functional for the calculation of the mechanical signal. In this way, they
assumed that the mechanical stimulus sensed by bone cells is a cumulative
information which comes from all the relevant loading configurations. Following
Carter et al., Petterman et al. [15] used a similar approach imposing three relevant
load cases taken from a gait cycle in the simulation of BMA in a plane model of
the proximal femur. Quantitatively, the mechanical signal, S, was calculated based
on:

1
S(x,t) = [ My ) ©6)

=1 Zfzv=Ll Nq

where NL is the number of loading cases, n; and n, designate the number of cycles
corresponding to load cases / and ¢, Ur,(x,1) is the SED at the tissue level (no
pores included) determined at location x during iteration counted by ¢, and u a
weighting parameter measuring the degree of influence of the loading
configuration described throughout the NL loading cases. For a single loading
configuration, u was taken as unity [14]. The conversion of Ur to the apparent
level was done based on a relation similar to (3).
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3. Methods

The theory presented above was implemented in a code based on
MATLAB 7 and ANSYS 15 capabilities, following the procedure described in
paper [16]. The values of the parameters involved within the simulation are
presented in the Table 1 and are based on the interpretations given in [12]. The
adaptation equation is integrated using forward Euler scheme. Thus, the density
update is given by:

Pn+1 = Pn + hB Zlivzlfi(x) [Si(n) - So] ) (7

where 4 is the integration step and # is the iteration index.

Table 1
The values of the BR theory parameters considered within the simulation
B D R So E,
1 h Do m
[MPa™ ] [mm] | [mm] | [MPa] [MPa]
1 0.01 1 3 0.43 1 10000 3

In order to combine different load cases, the method described by
expression (6) is adapted for the inert structure optimization under static loads.
First, notice that the correlation of load case participation with some biological
aspect of cell sensing has no meaning. Second, from the mechanical design
perspective, the number of loading cycles corresponding to each load case is
rather a fatigue issue, which is not implied herein. In this respect, the significance
of weighting parameters is not correlated with the number of cycles per load case.
Based on the above mentioned observations and taking u=1, the mechanical
signal calculation at the location x becomes:

TN pU(xt)
S(x, t) = %, (8)

where p; is the weighting parameter of the / load case, which replaces the ratio

ZNfln from expression (6).
q=1"q

In order to account for the contribution of N sensors to the mechanical
signal calculation, one can adapt the formula (8) as follows:

_ S pu®
Si(t) = oD )

where S;(2) becomes the signal determined at the location of the sensor i, as a
cumulative participation of each load case. Then, the total mechanical signal at the
location x is determined based on relation (2).
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Note that, the definition (8) does not restrict the sum of p; (/=1..NL) to
unity. These parameters become arbitrary numbers that can be used to determine
potential different topological solutions for the same load cases, but for different
participation of each. This aspect is verified within the paper as follows: for two
combinations of loading, each load case weighting parameter is varied between
0.1 and 0.9, keeping the sum equal to 1. Then, the sum is allowed to vary while
the ratio is kept constant.

4. Numerical example

The simulation is performed on a plane structure, by considering three
different load cases. The first one corresponds to a reference Mitchel type
structure, as depicted in Figure 1, a. The other two load cases are defined
according to Figure 1, b and c. First, each load case is applied independently.
Then, combinations of two and all three are considered.
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Fig. 1The test structure with the three applied load cases

The plate dimensions are H = 20 mm and L = 50 mm. Based on the Nutu
rationale [12], the value of reference SEM, S, = 0.43 MPa, corresponds to a von
Mises stress of 100 MPa, produced in the material with the unit relative density.
Therefore, one can expect a final stress distribution around this value, defined
formally as an admissible limit, o,. Note, however, that this value is only a
guiding reference. It is unlikely to achieve such a limit in all the finite elements
describing the final topology, due to the many constraints the problem of
optimization has to fulfill. More, substantial deviations from this value are
expected, depending on structure configuration, load values, local stress
concentrations and non-smoothness of obtained topological solution. But, as
discussed in [12], the interval of von Mises stresses can be constrained to contain
the admissible limit by modifying the threshold S,. On the other hand, the solution
given by the topology optimization problem is not final. During the structural
design process, a stress analysis is further needed, usually followed by shape
and/or size optimization.
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The applied forces and the supports, in each case, are distributed on sets of
nodes rather than a single node, in order to diminish the local stress
concentrations. A length of 2 mm for each boundary condition distribution was
imposed. The value of the force, F' =400 A, is selected as in Nutu [12], because it
produces von Mises stresses within the initial structures (constant density over the
entire domain) under g,, in the areas far enough from the boundaries where
conditions are imposed (forces and supports).

5. Results and discussions

In Figure 2 the final density distributions determined independently for the
three load cases are presented. The black and white areas correspond to elements
of density equal to 1 and 0.01, respectively. The resemblance between the first
load case solution and the ones from other published results [17, 18] for the same
structure is verified, validating thus the correctness of the implemented algorithm.

1 3

Fig. 2 Density plots determined for the three load cases independently

In order to test the capacity of the theory and the associated algorithm to
produce different topologies if multiple load cases are applied, several simulations
are performed based on combinations of two and all the three loading
configurations. Fig. 3 shows the final density distributions obtained with such
combinations.

In all plots shown in Figure 3, the contributions of each load case were
equally defined, i.e. the weighting coefficients are equal. Their sum is unity. It is
evident that the solutions presented are different from each of the loading cases
taken independently. One can also notice, by comparison with the results from
Fig. 2, that the final solution tends to adapt towards a shape that satisfies all the
applied load cases.

Fig. 4 depicts density plots for different values of the weighting
parameters selected such that their sum to be equal to 1. For a given load case
combination, although some similarity exists, the solutions are defined by
different material layouts. Thus, the combination of the weighting parameters can
lead to structural solutions with different shapes.
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Fig. 3 Density plots determined for combinations of the three load cases with equal participation;
the numbers showing the load case combination and the weighting parameter of each load case are

indicated above the pictures
12

p1=01,p2=09 p1=01,p3=09 pgzol,p3:09

LA

p1:O3,p2:07 p1:03,p3:07 p2:O3,p;:07

13 23

_ pr=p:=0.5 - pr=p3=0.5 p2=p;=05

p1=0.7;p,=03 p:1=07,p;=0.3 p2=0.7;p;=0.3

"J

p]:0.9;p2:0.1 p1:07,p3:03 p2:0.9;p3:0.1

Fig. 4 Density plots determined for combinations of the three load cases with different weighting
parameters; the numbers showing the load case combination are indicated above the columns and
the weighting parameters are indicated below each picture

For further analysis, it is selected the ratio pi/pr = 3/7 to be kept constant,
where / and k are indexes of load cases. The sum, p; + py, is varied between 0.5
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and 2. Such an approach allows to verify whether the shape of the solution is
maintained under a constant participation ratio. Indeed, the results presented in
Fig. 5 demonstrate this assumption. The solutions from Fig. 4 corresponding to
pi=0.3 and p; = 0.7 are redrawn for completeness. One can notice that, for all the
variants presented, the shape is kept while the struts thickness is increased.
Therefore, if the weighting parameters are varied proportionally, a size
optimization can be performed. Note, however, that size optimization does not
necessarily involves the modification of the whole structure dimensions. Only the
dimensions of certain parts of the structure can be allowed to vary. Such an
approach, however, cannot be performed by the algorithm presented herein. This
is rather an issue that should be addressed by means of the next steps in the design
process, which are not considered in this paper.
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Fig. 5 Density plots determined for combinations of the three load cases with constant ratio of the
weighting parameters; the numbers showing the load case combination are indicated above the
columns and the weighting parameters are indicated below each picture

6. Conclusions

The results presented in this paper demonstrate that the BMA theory is
able to produce optimum structural topologies for multiple load cases. Different
material layouts are obtained for the same load cases combination by using
weighting coefficients, which account for load case participation. Although no
dynamical effect is considered, i.e. fatigue effects, the load case participation is
relevant because different topological solutions can be achieved.

A global size optimization can be performed by proportionally rescaling
the weighting coefficients.
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In practical applications, each topological solution could serve as a start
configuration for designing structures which should withstand several static load
cases. By applying subsequent local size optimization, one can chose, between
several variants, the one which better accomplishes a certain objective, such as
minimization of structural compliance or minimization of total mass. Another
practical utility of the results presented in this work could relate to the
technological implications of achieving the final design. In this regard, some
solutions may involve lower development costs. However, in order to be fully
applicable in the industry, the theory and the associated algorithm presented in
this paper should be further developed. In this respect, important directions of
research include fatigue effects, stress raisers and diminishing computational time.
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