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AN ALTERNATIVE TO THE THEORY OF EXTREMA

Madalina CONSTANTINESCU!, Oltin DOGARU?

Let T (a) be a family of parametrized curves passing through a € D, where
D is an open subset in RP. In [1]+[4] it was studied the connection between the
local extremum problem and the extremum problem constrained by the family I" (a)
for an arbitrary function f: D — R. In the situation when, for any function f,
the two extremum problems are equivalent, I' (a) is called optimal family. In [8]
we emphasized sufficient conditions of optimality for a family of parametrized
curves I’ (a). In this paper we develop the ideas from [8], getting the necessary
and sufficient optimality conditions for a family of parametrized curves I" (a) .
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1. Introduction and preliminaries

Throughout this article f will refer to a function f: D — R, where D is an
open subset in RP.
Let us consider the extremum problem

min f(x), subject to = € M,

where M is a subset of RP. If M is an open set, then the extremum problem is called
unconstrained. Otherwise, the extremum problem is called constrained.

The usual approach to solve this problem consists in finding sufficient and/or
necessary conditions of local extremum based on some properties of the function f
(e.g. convexities of class C?, class C?).

Another approach of solving the problem is to relate this extremum problem
with a set of extremum problems for functions of type foaq;, where o;: [; CR — D,
1 € Jis a family of parametrized curves passing through a point likely to be an
extremum point. In this case, the properties of the family of parametrized curves
are very important since f could be an arbitrary function ([1]= [4]). This approach
allows the introduction the theory of extrema constrained by a Pfaff system, a
generalization of both constrained and unconstrained extrema ([7], [23]+[29]). Ad-
ditionally, this mixed approach, which takes into consideration both the properties
of function f and the properties of the family of parametrized curves, introduces
new types of convexities for f ([5], [6]).

The purpose of the paper is to complete the results obtained in [8].
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We begin by summarizing some of the concepts already introduced elsewhere
in possibly different forms.

Let D be an open subset of R™. For the purposes of this article, a parametrized
curve o passing though a given point a (a (to) = a) is of class at least C', has a
tangent in a, i.e. ak) (to) # 0, for some k > 1, and its domain is a real interval 1.

Definition 1.1. We say that a € D is a minimum point for f constrained by
parametrized curve a: I — R™ passing through a if, for any ¢ty € I with a(ty) = a,
there exists a neighbourhood I, C I of to such that f (a) < f(a(t)),Vt € I,.

NoOTE.In the following, in order to simplify the presentation, we shall avoid
using the word local in the definitions for various types of extremum points.

Definition 1.2. We say that a € D is a minimum point for f weakly constrained
by parametrized curve a: I — R" passing through a if it is a right-hand minimum
point for f o a, i.e for any tg € I with a(tg) = a there exists ¢ > 0 such that

fla) < fla(t)), vt € [to, to +€) ([7])-

We similarly define the mazimum point constrained by a parametrized curve
and the maximum point weakly constrained by a parametrized curve, getting the
concepts of extremum point constrained by a parametrized curve and of extremum
point weakly constrained extremum by a parametrized curve. Obviously, an ex-
tremum constrained by a parametrized curve is an extremum weakly constrained by
the same parametrized curve.

Let I" (a) be a family of parametrized curves passing through a.

Definition 1.3. We say that a € D is an extremum point for f constrained by
the family T'(a) if a is an extremum point of the same kind (either minimum or
maximum) for f constrained by any parametrized curve a € I'(a) ([1], [7]).

Definition 1.4. Similarly, we say that a € D is an extremum point for f weakly
constrained by the family I'(a) if a is extremum point of the same kind (either
minimum or maximum) for f weakly constrained by any parametrized curve a €
I'(a).

The last definition, which is more general that the one before it, is useful when
considering local extrema constrained by inequalities ([26]). However, in certain
circumstances, the two definitions are equivalent.

Let us consider the following property of a family of parametrized curves I'(a):

If a €T'(a) and B is a parametrized curve equivalent to «, then g € I'(a). (1)

Proposition 1.1. Let I'(a) be a family that satisfies property (1). Then a € D is
an extremum point constrained by the family T'(a) if and only if it is an extremum
point weakly constrained by the family I'(a).

Proof. Let us assume that a is a minimum point weakly constrained by the family
I'(a). Let a € T'(a), a(ty) = a. Since I'(a) satisfies condition (1), then we can
assume, possibly via a change of parameter, that tg = 0. Then there exists an
g1 > 0 such that f(a) < f(a(t)), Vt € [0,e1). Let 8 be the parametrized curve
defined by 5(t) = a(—t). According to property (1), 5 € I'(a). Therefore, there
exists an £9 > 0 such that f(a) < f(a(—t)), Vt € [0,e2), or, in other words, f(a) <
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f(a(t)), Vt € [—e2,0). Finally, we get that f(a) < f(a(t)), Vt € (—e2,€1), ie a is a
minimum point for f constrained by I'(a). O

Example 1.1. We will show that there exist families of parametrized curves for
which the two concepts (constrained and weakly constrained) are not the same. In
R?, for a = (0,0), let the family I'(a) which consists of all the curves a, u € [, 7]
defined by ay,(t) = (tcosu,tsinu), Vt € R. Let f : R? — R defined by

2 + 9% ifz>0o0ry>0
f(z,y) = { — (2 +y?), otherwise. @

Then a is a minimum point for f weakly constrained by I'(a) but is not a minimum
point for f constrained by I'(a).

Definition 1.5. A family I'(a) is optimal if the following statement holds for any
function f: if a is an extremum point for f constrained by I'(a), then a is a local
extremum point for f.

Definition 1.6. A family I'(a) is strongly optimal if the following statement holds
for any function f: if a is an extremum point for f weakly constrained by I'(a), then
a is a local extremum point for f.

Since any extremum point for f constrained by a family I'(a) is an extremum
point for f weakly constrained by I'(a), it follows that any strongly optimal family
is also an optimal family. Furthermore, as a consequence of Proposition 1.1, we get
that:

Proposition 1.2. If the family T'(a) satisfies property (1), then I'(a) is optimal if
and only if it is strongly optimal.

2. Main results

In this section, we establish necessary and sufficient conditions for a family of
parametrized curves to be optimal (strongly optimal).

In the following paragraphs, let S(a) be a family of sequences with distinct
elements converging to some a € D.

Definition 2.1. A family I'(a) of parametrized curves passing through a is S(a)—
subordinate if, for any sequence (z,) € S(a), there exists a parametrized curve
a €T'(a), aty € dom(a), and a sequence of real numbers (t;) converging to g, such
that a(ty) is a subsequence of (z,) ([8]).

Definition 2.2. A family I'(a) of parametrized curves passing through a is strongly
S(a)-subordinate if, for any sequence (z,) € S(a), there exists a parametrized curve
a € I'(a), a ty € dom(a), and a strictly decreasing sequence of real numbers ()
converging to tp, such that a(ty) is a subsequence of (zy,).

The following remark will be useful later:

Remark 2.1. (1) a € D is a local minimum point for f if and only if, for any
sequence (z,) that converges to a, there exists a subsequence (x,, ) such that
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(2) a € D is a minimum point for f weakly constrained by a € I'(a), a(ty) = a if
and only if, for any strictly decreasing real sequence (t,,), t, — to, there exists
a subsequence (tp, ) such that f(a(t,,)) > f(a) Vk € N.

Let C(a) be the family of all sequences of distinct elements converging to a.

Theorem 2.1. A family T'(a) is strongly optimal if and only if it is strongly C(a)—
subordinate.

Proof. Let I'(a) be a strongly optimal family. Let us assume that I'(a) is not strongly
C(a)-subordinate. In that case, there exists a sequence of distinct elements (z,,) €
C'(a) such that for any « € I'(a) (a(tg) = a) and for any strictly decreasing sequence
(tx) € R with ¢, — tp, the sequence («(tg)) is not a subsequence of (x,). Let
f:D—=R,
[ -1, if x € {x1,29,...,2n, ...}
fla) = { |z —al|, otherwise.

Evidently, a is not an extremum point for f. However, under the above assumption,
we can show that a is a minimum point constrained by I'(a), which results in a
contradiction. Indeed, let a@ € I'(a), a(tp) = a. Let ¢, be a strictly decreasing
sequence such that ¢, — to. The sequences (a(t,)) and (z,) cannot have common
subsequences: otherwise the sequence (¢,) would contain some subsequence (t,, ) for
which a(t,, ) would be a subsequence of (x,). Consequently, for a sufficiently large
n, a(ty) € {r1, 2, ..., Ty, ...}. Therefore, (foa)(t,) = ||la(ty,) —al > 0= (foa)(ty).
Since (t,,) is arbitrary, taking into account the above remark, it follows that ¢y is a
local minimum for the function f o a.

Conversely, let us assume that the family I'(a) is strongly C(a)-subordinate.
Let f: D — R be a function with a¢ being a minimum point weakly constrained by
the family I'(a). Let (x,) € C(a). There exists a parametrized curve o € I'(a), a
to € dom(a), a subsequence (z, ), and a strictly decreasing sequence (tx), tx — to,
such that (a(ty) = zp,,Vk € N*. Then f(x,,) = f(a(ty)) > f(a), Vk € N*. Keeping

in mind the previous remark it results that a is a local minimum point for f. O
A similar proof can be given for the following theorem:
Theorem 2.2. A family I'(a) is optimal if and only if it is C(a)-subordinate.

Definition 2.3. Let a: I — D a parametrized curve passing through a. We say that
f: D — R is continuous with respect to v in a if for any ty € I such that a(ty) = a,
f o« is continuous in tg.

Definition 2.4. A family T'(a) of parametrized curves passing though a is called
continuity-ensuring if, for any function f : D — R, the following statement is true:
if [ is continuous with respect to any o € I'(a) in a, then f is continuous in a.

Definition 2.5. Let a: I — D a parametrized curve passing through a. We say
that f : D — R is right continuous with respect to « in a if for any tg € I such that
a(ty) = a, f o« is right continuous in tg.

Definition 2.6. A family T'(a) of parametrized curves passing though a is called
specially continuity-ensuring if, for any function f: D — R, the following state-
ment is true: if f is right-continuous with respect to any « € I'(a) in a, then f is
continuous in a.
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Theorem 2.3. A family I'(a) of parametrized curves is specially continuity-ensuring
if and only if it is strongly C(a)—subordinate.

Proof. Let I'(a) be a specially continuity-ensuring family. Let us assume that I'(a) is
not strongly C'(a)-subordinate. Therefore, there exists a sequence (z,,) € C(a) such
that for any « € I'(a) (a(tp) = a) and for any strictly decreasing sequence (t,) C R
with ¢, — to, the sequence («(t,)) is not a subsequence of (z,). Let f: D — R,

1 itxe{x, o, ., Tp, .}
f(z) = { 0, otherwise.
Obviously, f(a) =0 and f is not continuous in a. However, we can show that f o«
is right continuous in a for any a € I'(a), which contradicts the hypothesis that
I'(a) is specially continuity-ensuring. Let a € I'(a) such that a(ty) = a and (¢,,) a
strictly decreasing real sequence converging to ty. The sequences («a(ty)) and (z,,)
cannot have common subsequences, otherwise a subsequence (t,, ) of (t,) with the
property that (a(ty,)) is a subsequence of (x,) would exist. Consequently, for a
sufficiently large n, a(t,) & {x1,x2, ..., Tp, ...}, or (foa)(t,) = 0, which implies that
limy, 00 (f © @)(t,) = 0. This establishes that f o « is right-continuous in .
Conversely, let I'(a) be a strongly C'(a)-subordinate family. Let f be a function
such that f o « is right continuous in a for any « € I'(a). Let (z,) € C(a). There
exists @ € I'(a), a typ € dom(a), a subsequence (zy,), and a strictly decreasing
sequence (tx), tx, — to such that a(t;) = =, , Vk € N*. The right continuity of f o«
in to implies that f(z,,) — f(a),Vk € N*. Since the sequence (z,) is arbitrarily
chosen, it follows that f is continuous in a. U

A similar proof can be given for the following proposition.

Proposition 2.1. A family T'(a) of parametrized curves is continuity- ensuring if
and only if it is C(a)—subordinate.

We can therefore state this theorem:

Theorem 2.4. Let I'(a) be a family of parametrized curves passing through a. The
following three statements are equivalent:

(1) T'(a) is (strongly) optimal family.

(2) T'(a) is (strongly) C(a)-subordinate family.

(3) T'(a) is (specially) continuity ensuring family.

Examples 2.5. For any m € N*, let [ (a) be the family of all C"™ parametrized
curves passing through the point a and having a tangent in a. It is evident that
'™ (a) satisfies condition (1).

(1) It was shown in [8] that I (a) is an optimal family. Since it also satisfies (1),
and taking into account Proposition 1.1, it follows that I (a) is a strongly
optimal family.

(2) For a = (0,0) € R?, let us consider the family of parametrized curves I'! (a)
consisting in all parametrized curves o € I'}(a), a(tg) = a, for which o/(ty) =
(u,v) with uw > 0 or v > 0; then, I'l (a) is an optimal family but it is not a
strongly optimal family. For this purpose, we first show that I'} (a) is C(a)-
subordinate, which means that it is optimal. According to the previous exam-
ple, I''(a) is a C(a)-optimal family, therefore, for any sequence (x,) € C(a),
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there exist a € I'!(a), tg € dom(a), and a real sequence (t), t, — to such that
(a(tr)) is a subsequence of (z,). By changing the orientation of «, if needed,
we can ensure that a € I'} (a); this proves that I'! (a) is C(a)-subordinate.
Now, let f: R"™ — R defined by (2). Then a is not an extremum point for f,
but it is a minimum point for f weakly constrained by the family I'! (a). This
shows that I'! (a) is not strongly optimal.

(3) For a a € R", let us denote by I'“(a) the family of all analytical parametrized
curves passing through a. Then I'“(a) is not an optimal family ([3]).

Let g = (¢',...,9°) : D — R® be a C'-class function. We set an a € D such
that g(a) > 0. Let Cy(a) be the family of all sequences (z,,) of distinct elements of
D with the property that g(z,) > 0, Vn € N and x,, — a. Also, let I'y(a) be a family
of parametrized curves « passing through a having the property that, if a(ty) = a,
then g(a(t)) > 0, for all ¢t € [to, to + ).

Definition 2.7. We say that the family I'y(a) is g—optimal if the following statement
is true: if a is an extremum point for some f: D — R weakly constrained by the
family I'g(a), then a is an local extremum point for f constrained by g > 0.

Let us remark that, if g(a) > 0, then the family I'g(a) in the above definition
no longer depends on g, and it is strongly optimal, while a is a free local extremum
point.

Definition 2.8. The family I'y(a) is called Cy(a)-subordinate if, for any sequence
(zn) € Cy(a), there exist a € I'y(a), to € dom(c), and a strictly decreasing real
sequence (tx), tr, — to such that («(tx)) is a subsequence of (zy,).

)

If g(a) > 0, the family I'y(a
C'(a)-subordinate family.

= I'(a) in the above definition becomes a strongly

Definition 2.9. We say that the family I'y(a) is g—continuity-ensuring if, for any
function f: D — R right continuous with respect to any a € I'y(a), f|g>0 is contin-
uous in a.

If g(a) > 0, the family I'y(a) = I'(a) in the above definition becomes a family
specially continuity ensuring, and f is continuous in a.
In a similar fashion to Theorem 2.4, we can prove the following:

Theorem 2.6. Let I'y(a) be a family of parametrized curves as defined above. The
following statements are equivalent:

(1) Ty(a) is an optimal family.

(2) Ty(a) is a Cy(a)-subordinate family.

(3) I'y(a) is a continuity-ensuring family.
Example 2.1. We denote by I']*(a) the family of all parametrized curves a € I'"(a),
with «a(tp) = a, such that g(a(t)) > 0, for all t € [ty,tp + £). If rank [%(a)} = s,
then I'f*(a) is an optimal family ([8]).

The following open problems have been proposed in [8]

(1) Do there exist minimal elements with respect to inclusion in the class of all
optimal families or in the class of all C'(a)-subordinate families?
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(2) Do there exist optimal families which are not C(a)-subordinate?

According to Theorem 2.4, the answer to the second question is negative.

The answer to the first question is positive. Indeed, let I'(a) be a C(a)-
subordinate family of parametrized curves. This means that, for any sequence
(xn) € C(a), there exists a parametrized curve a € I'(a) satisfying the proper-
ties of Definition 2.1. This defines a relationship between the sets C'(a) and I'(a).
Using the axiom of choice, we can find a function ® : C(a) — I'(a). Let us consider
®(C(a)) C T'(a). It is obvious that ®(C(a)) is a minimal element with respect to
inclusion in the class of all C'(a)-subordinate families of parametrized curves, or, in
other words, ®(C'(a)) is a minimal element with respect to inclusion in the class of
all optimal families.

3. Conclusions

In this paper we introduced and studied three concepts regarding a family of
parametrized curves passing through a point a: (strongly) optimal family, (strongly)
C(a)-subordinate and (specially) continuity ensuring. The fundamental result is
Theorem 2.4, which states that these three concepts are equivalent. Using the notion
of extremum point weakly constrained by a family I'(a), we were able to extend the
previous result for a constrained extrema problem (Theorem 2.6).

For other developments of nonlinear optimization problems developed by our
research team, see [9] <+ [22], and [30].
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