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OBJECT DETECTION IN SECURITY SCENE BASED ON
IMPROVED YOLOvV5

Kunwei LV?, Ruobing WU?, Zhiren XIAQ?, Ping LAN*"

In this study, traditional manual security detection methods suffer from
significant drawbacks, especially low efficiency and high cost. To overcome these
challenges, this paper introduces a new approach: First, a parallel convolutional
module is designed and enhanced by a hybrid attention mechanism, which
significantly improves the network's ability to process complex image data. Second, a
decoupled detection header is devised, aiming to enhance the neural network's
performance in classification tasks and regressions. Lastly, a hybrid data
enhancement strategy and an anchor frame adaptive matching technique are
integrated, enhancing the network's robustness. These innovations aim to
significantly boost object detection efficiency and capability, improve detection
accuracy, and extend method applicability to diverse scenarios. The approach
surpasses the benchmark YOLOv5m by 6.10%, demonstrating its effectiveness.

Keywords: anchored frame matching approach, decoupled header, hybrid
attention, target identification, and data augmentation

1. Introduction

Air terminals, rapid transit train depots, swift courier hubs, and additional
mass transit junctions extensively utilize radiographic safety inspection systems to
ensure the security of passengers by examining bags and parcels. Nevertheless, the
conventional manual scrutiny approaches are becoming increasingly impractical
due to their high subjectivity, low efficiency, substantial expenses, and
susceptibility to inaccuracies and misdirections. With the swift progression of
machine vision technology, deep learning-based item recognition has gained
prominence in various domains, including video monitoring, healthcare imagery
evaluation, smart manufacturing, self-driving vehicles, and human-machine
interaction. Item recognition, a fundamental and challenging undertaking in
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machine vision, underpins advanced applications like instance segmentation, image
analysis, and video tracking. These tasks not only necessitate locating items within
an image but also categorizing them. In the context of security screening, item
recognition technology can revolutionize the process by enabling real-time
identification of prohibited items. This application can significantly decrease
inspector workloads and boost operational efficacy, playing a pivotal role in the
realms of intelligent transportation, logistics, and public safety.

The study of deep convolutional neural networks (DCNN) underwent a
paradigm shift following the seminal work of Hinton et al. [1], who utilized
AlexNet, a profound convolutional neural network, for extensive image
categorization, clinching victory in the 2012 ImageNet competition. This milestone
marked a new direction in DCNN research, particularly within the realm of object
detection, where models with one and two phases are now dominant.

The two-stage detection models involve three primary steps: (1) Girshick et
al.'s method combines semantic segmentation with object detection, significantly
enhancing detection accuracy through a comprehensive, multilevel feature
representation [2]. (2) The introduction of ROI pooling layers and RPN by
Shaoging Ren et al. led to the development of Faster R-CNN [3]. (3) Kaiming He
et al. proposed a groundbreaking neural network architecture, the Residual Network
(ResNet), introducing the concept of residual learning [4].

In contrast, models with one phase in detection, exemplified by the YOLO
[5] and SSD [6] families, are based on regression analysis. These models, along
with the R-CNN family, represent a candidate region-based approach to object
detection.

Originally, deep convolutional neural networks were employed by R-CNN
as an alternative to traditional object detection methods. This adoption has since
spurred a substantial increase in the use of DCNNSs for target identification, leading
to the development of numerous effective models that leverage DCNNs to address
various challenges in object detection.

The YOLO (You Only Look Once) object detection framework, introduced
by Redmon et al. [5], represented a significant breakthrough as the inaugural neural
network framework capable of real-time object detection. To achieve an optimal
trade-off between detection accuracy and processing speed, subsequent versions
and improvements were developed, drawing inspiration from related research.
These include YOLOv4 [7], YOLOX [8], and YOLOvV7 [9], each integrating
additional modular structures and enhancement techniques.

Xu et al. [10] proposed an attention mechanism grounded in cognitive
science theory, presenting a novel approach to managing computational resources
in deep learning. This deep learning attention mechanism addresses the challenge
of information overload by focusing limited computational capacity on select
critical tasks. Selvaraju et al. [11] developed Grad-CAM, a technique employing a
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heatmap to visualize the network’s prediction process, thus providing partial
insights into the functioning of neural networks.

Sun et al. [12] contributed to this field by developing a multiscale self-
attention module. This module, which synthesizes self-attention in both spatial and
channel dimensions, enables the network to extract information across multiple
scales by grouping convolved feature data. However, a specific challenge in object
detection within security screening scenarios is the prevalence of mutual occlusion
and overlapping among targets. In such contexts, the channel information of feature
maps assumes greater importance than spatial data.

In object detection networks, the detection head plays a crucial role in
processing fused feature maps to generate final detection frames and labels.
Originally, the YOLO family adopted a coupled detection head, where both
localization and classification branches were integrated and shared. However, this
approach can lead to conflicts between localization and classification tasks due to
their differing feature representation requirements, potentially impeding network
performance [13].

Song et al. [14] conducted experimental research on the localization and
classification subtasks within object detection tasks. Their findings suggest that a
convolutional head is better suited for localization, whereas a dense head (dense-
head) is more suitable for classification tasks. This insight underscores the
importance of designing detection heads that align with the specific demands of
each subtask.

Furthermore, the design of a priori frames significantly influences model
performance. Anchor frames, or sets of predefined a priori frames, are employed in
object detection models to fine-tune the network’ s final output and provide a more
nuanced detection mechanism. Literature reveals the emergence of object detection
models that employ an anchor frame-free strategy [15]. Comparative analyses
between anchor frame-free and anchor frame-based methods, under identical
network structures, reveal that anchor frame-free approaches exhibit superior
performance in hazardous material detection tasks.

Nevertheless, a middle ground between anchor frame-free and anchor frame
methods can be achieved by generating dataset-specific groups of anchor frames
using clustering-based methods [16, 17]. However, it is crucial to consider that for
tasks with potential targets exhibiting varied aspect ratios, the anchor frame-free
approach may negatively impact the model's performance. This emphasizes the
importance of customizing anchor frame strategies to cater to the unique needs of
each object detection task. A range of routine changes to the training samples is
known as data augmentation, and it assists in teaching the model more fundamental
characteristics of the dataset and improves its ability to adjust to small changes in
the samples (thereby decreasing sensitivity to change). Two popular techniques for
enhancing data are mosaic [17] and mix up [16].
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In choosing YOLOV5[18] as the base model, we consider its excellent
performance in various target detection tasks. YOLOV5 achieves a good balance
between accuracy and speed and is especially suitable for security scenario
detection with high real-time requirements. In addition, YOLOV5 has relatively low
computational resource requirements compared to other models, making it more
suitable for deployment in resource-limited environments. Specifically, the
performance of the YOLOv5m version on multiple benchmark datasets shows that
it possesses high detection accuracy and robustness, making it an ideal choice for
this study.
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In this study, YOLOV5 serves as the benchmark model, and our primary
contributions include:

(1) In this paper, a parallel convolution module that integrates hybrid
attention mechanisms is introduced. This module leverages the synergistic effects
of various attention mechanisms to enhance the network's focus on specific tasks,
particularly in security screening scenarios. The parallel structure facilitates the
acquisition of richer gradient flow information, thereby enhancing the network's
analytical capabilities.

(2) To resolve the discrepancy between classification and regression tasks
in object detection, this paper introduces a decoupled detection head as a
replacement for the coupled detection head employed in the original model. This
alteration seeks to enhance the network's performance tailored to specific tasks.

(3) In this paper, two new strategies are introduced to enhance the efficacy
of networks in security screening: hybrid data enhancement methods and anchor
frame adaptive matching techniques.

The structure of the paper unfolds as follows: Section 2 outlines the
methodology and enhancements introduced in this study. Section 3 encompasses
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the experimental setup, dataset description, model assessment metrics, analysis of
experimental results, ablation studies, and comparative experiments. Finally,
Section 4 presents the conclusions drawn from this research.

2. Techniques
2.1 Module RCES

The RCES (Residual Convolutional Efficient Squeeze-and-Excitation)
module in our study is specifically designed to amplify salient features while
concurrently suppressing less relevant ones. This is achieved by learning the
significance of each feature channel and accordingly assigning variable weights
across different regions of the feature map. A key component of this mechanism is
the ECA-SENet hybrid attention module, as illustrated in Fig.. 2. This module
integrates two distinct networks: the Efficient Channel Attention (ECA) and the
Squeeze-and-Excitation (SE) networks [19, 20].

The ECA-SENet module enhances the ability of the convolutional neural
network to prioritize specific channels by assigning them greater weights. This
selective weighting of feature maps is contingent upon the nature of the task at hand.
In the context of security screening scenarios, such a mechanism significantly
boosts the network’s performance by focusing on the most pertinent features for
analysis.

Adaptive Selection of Kernel Size :
K=1(C)

Excitation

Squeeze M—'m
x 7

\
W

H
W
( C
S —_— Refined Feature

Fig. 2. ECA-SENet

Fig. 1 in the paper illustrates the dimensions of the feature map, indicating
'H','W', and 'C' as the height, width, and channel count, respectively. The Efficient
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Channel Attention (ECA) module, a critical component of our model, effectively
reduces computational complexity compared to a dense layer. This reduction is
achieved by integrating a 1 X 1 convolutional layer subsequent to the global
average pooling layer, thereby facilitating efficient cross-channel interaction.

To maximize the utilization of channel information, this paper introduces
equation (1). This equation is pivotal in enabling the network to adaptively select
the extent of the convolutional kernel, which is contingent on the channel count
present. This adaptability allows for more effective processing and integration of
channel-specific information, thereby enhancing the overall efficacy of the network
in handling diverse channel quantities:

log>(C) +2

p(O) =7 —+7 (1)
odd

In the context of the equation, 'C' denotes the channel count in the feature
map. The parameters 'y "' and 'b' are constants, assigned values of 2 and 1,
respectively. These constants are pivotal in determining the extent of the
convolution kernel, denoted as ¢ (C). An important aspect of this formula is the
condition |t| odd, which signifies that if the computed value of t is not an odd
number, it should be rounded to the closest odd number. This adjustment is critical
to ensure the symmetry and effectiveness of the convolution kernel, enabling it to
adapt to the varying channel dimensions more effectively.

To construct a channel descriptor, the Squeeze Excitation (SE) module
initially executes a compression operation on the feature maps, which are spatially
dimensioned as H>XW. This operation consolidates the feature mappings across
these spatial dimensions to transform a feature map of dimensions H XWX C into
a channel descriptor of dimensions 1X1XC. This transformation effectively
condenses the global spatial information of the feature maps into the channel
descriptors, ensuring that the input layer can utilize this condensed form of data
effectively. Equation (2) in the paper mathematically delineates this compression
operation, providing a clear representation of how the channel descriptors are
derived from the feature maps.

Fog(ue) = — 2L N (i, ) 0)
The global spatial information within the network is encapsulated in a
collection of local descriptors, denoted as uc. Following this, a channel-dependent
self-selecting gate mechanism is employed. This mechanism is pivotal in enabling
each channel to selectively highlight informative features while attenuating less
significant ones, a process guided by learning sample-specific activations.
To empower the network with the capability to extract finer features from
complex images, this paper innovatively designed a parallel convolution module.
This design draws inspiration from the deep residual network and innovates upon
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the original C3 module of YOLOV5 by introducing parallel branching. This
addition allows the network to access a more comprehensive gradient flow
information, while maintaining its lightweight architecture.

Building upon this foundation, we integrate the ECA-SENet module, as
previously discussed. The resultant module, combining the parallel branching
strategy with ECA-SENet, is designated as the RCES module. Fig. 3 in our paper
visually contrasts this newly developed RCES module (b) with the original C3
module (a), illustrating the enhancements and modifications made for this research.
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2.2 Decoupled Head for Detection

To mitigate conflicts between localization and classification tasks in object
recognition, our recognition head comprises two distinct components: a
convolutional network dedicated to regression tasks for the target frame, and a
dense network focusing on classification tasks. Fig. 4 in our paper illustrates the
structures of both the coupled and decoupled recognition heads.

In the decoupled head, feature maps are bifurcated into two branching
networks. The first branch, a convolutional network, is tasked with the localization
job. It extracts features using a 3 X 3 downsampled convolutional layer, specifically
tuned for this purpose. The second branch, a dense network, is designed for the
classification task. It adjusts the channel dimensions of the feature map to
correspond with the count of classes of the predicted target.

Subsequently, the feature maps are processed by two separate networks. The
first network is responsible for predicting the anchor frame’ s dimensions - its
height, width, and center coordinates. The second network focuses on calculating
the intersection between the predicted and actual frames. This bifurcated approach
enhances the robustness of the model and its generalization ability. The overarching
objective of this network structure design is to independently extract and learn the
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target location and category information through different network branches, before
eventually fusing these features for final output.
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Fig. 4. Decoupling header and header
2.3 Mix up data enhancement

The mix-up data enhancement method, although simple in concept, has
proven to be a highly effective technique for data augmentation. This method
involves selecting two random samples from the training dataset and performing a
basic random weighted summation of these samples. Essentially, this process
blends two images together, creating a new composite image that retains elements
from both original images. This technique is particularly beneficial in scenarios
where diversity in training data can lead to more robust models.

As illustrated in Fig. 5 of our paper, the mix-up data enhancement method
has been determined to be particularly well-suited for the task scenario addressed
in this research. By employing this approach, the training dataset can be augmented
in a way that introduces variability and complexity, thereby enhancing the
network's capability to generalize from the training dataset to new, unseen samples.
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Fig. 5. Mix up data enhancement

2.4 Anchor frame alignment technique

This study develops a method to generate a customized set of anchor
framesets specifically for a given dataset. This process involves analyzing and
computing the characteristics of the anchor frames within the dataset. To achieve
this, a new combination of K-means clustering and genetic algorithms is used in
this paper. This methodology allows for the efficient identification and selection of
the most representative anchor frames, ensuring optimal compatibility with the
specific features of the dataset.

The algorithm's workflow is comprehensively depicted in Fig. 6 of our
paper. This illustration provides a step-by-step visual representation of the process,
from the initial data input through to the final generation of the anchor frame
groups. By combining K-means clustering with genetic algorithms, the accuracy
and effectiveness of the anchor frame selection process are improved, thus
enhancing the overall effectiveness of the target detection model.

Our method starts with initializing the {k} cluster centroids, which are
chosen empirically to best fit the features of the dataset, to represent the initial
positions of the anchor frames in K-means clustering. After that, each bounding box
in the dataset is grouped with other comparable bounding boxes by assigning it to
the closest cluster centroid using the Euclidean distance. Iteratively averaging the
bounding boxes allocated to each cluster, the centroids are recalculated until they
stabilize.

We use a genetic approach to refine these clusters after the K-means
initialization to make sure they are best suited to the dataset. Each member of the
population is represented by a set of anchor frames in this algorithm, and the



232 Kunwei Lv, Ruobing Wu, Zhiren Xiao, Ping Lan

average Intersection over Union (loU) between the anchor frames and the ground
truth bounding boxes is used to determine each member's fitness. Based on their
fitness scores, a roulette wheel selection mechanism chooses people for
reproduction in a probabilistic manner. To introduce diversity, a single-point
crossover method permits parent individuals to trade portions of their anchor frame
sets to form offspring. To avoid premature convergence, mutation is administered
with a probability of 0.1 and modifies randomly chosen anchor frames. Until a
predetermined number of generations or a plateau in fitness improvement is
reached, this process iterates across several generations, possibly creating better-
suited anchor frames through selection, crossover, and mutation. In order to ensure
well-matched anchor frames for more accurate and dependable object detection,
this integrated technique handles the issue of various aspect ratios and scales within
the dataset. It is especially well-suited to the intricate requirements of security scene
analysis.

3. Investigation and evaluation
3.1 Setting for experimentation and metrics for assessment

Table 1 provides a comprehensive overview of the experimental
environment configuration employed in this research. Our study utilized the EDS
dataset [21], which encompasses a total of 31,655 instances of target objects. This
dataset is composed of 14,219 images captured using three different scanning
devices, featuring 10 different categories of objects. Each image within the dataset
is meticulously annotated by professionals.

For training the model, this paper constructs the training and test sets by
aggregating and randomly dividing the data collection. The training set comprises
1743 samples, while the test set comprises 12476 samples. This partitioning
resulted in a training-to-test ratio of approximately 7:1, guaranteeing a thorough
assessment of the model's effectiveness.

Table 1
Experimental environment configuration
parameters configure
CPU Intel(R) Xeon(R) Platinum 8255C
GPU NVIDIA GeForce RTX 3090
system environment Ubuntu 18.04
multilingualism Python 3.8
Accelerated environment Cuda 11.1
PyTorch version 1.8.0
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The evaluation of our model is based on key metrics, including mean

average precision (mAP), recall (Recall), and precision (Precision). These metrics
offer crucial perspectives on the model's performance, ensuring a comprehensive

assessment of its capabilities.
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The computation of these metrics is formally illustrated by the following

equation:
TP

Precision = 9
TP+FP
Recall = e (10)
) TP+FN
AP = Y770 (Tiv1 — 1) Pinter (i + 1) (11)
Zk AP;
mAP = ZAPt (12)

Precisely, the model's precision is quantified as the percentage of correctly
identified positive categories out of all positively labeled samples. This calculation
involves considering false positives (FP), which represent negatively assessed
samples that the model erroneously classified as positive.

On the other hand, recall evaluates the effectiveness of the model in
accurately detecting positive categories. This metric is determined by comparing
the true positives (TP), which are the accurately classified positive samples by the
model, to the false negatives (FN), which are samples incorrectly classified as
negative.

To thoroughly evaluate the performance of the model, this paper employs
the mean accuracy (mAP) metric. The mAP metric combines precision and recall,
offering a holistic measure of the model's efficiency.

Notably, the mAP was calculated for different intersections over the union
(loU) threshold. The metric was denoted as mAP 0.5 when a threshold of 0.5 was
assumed. Additionally, model performance was evaluated for a series of loU
thresholds between 0.5 and 0.95, increasing by 0.05, denoted as mAP 0.5:0.95.3.2.
experimental analysis.

Table 2 presents the experimental results pertaining to the RCES module.
In our dataset, compared to the benchmark model, the introduction of the RCES
module resulted in notable improvements across various metrics. Specifically, there
was a substantial increase in mean average precision at an loU of 0.5 (mAP 0.5) by
1.40%, a significant enhancement in mean average precision across the range of
loU thresholds from 0.5 to 0.95 (mAP 0.5:0.95) by 2.50%, a marginal increase in
accuracy by 0.10%, and a substantial boost in checking completeness by 2.00%.
These findings underscore the efficacy of the RCES module in enhancing the
model's performance across multiple evaluation criteria.

Table 2
Experimental results of RCES module
Model mAP 0.5 mAP 0.5:0.95 accurate recall rate
YOLOv5m 0.781 0.559 0.836 0.706
YOLOv5m RCES module 0.795 0.584 0.837 0.726
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To enhance accuracy and provide some insight into the neural network's
functionality, this paper employs a Grad-CAM [22] heatmap visualization to gain
a clearer understanding of the attentional mechanisms of the network. In this
visualization, the network's focus is represented through a color gradient, with
warmer colors indicating higher attention or 'heat' at specific locations within the
image.

Fig. 7 in our paper showcases the detection results on the original image,
which initially contained four items. Grad-CAM visualization allows us to compare
the outcomes of the YOLOv5s network before and after the integration of the
ECA_SE hybrid attention module. Fig. 8 provides this comparison, with (a)
depicting the focus of the enhanced network and (b) showing the focus of the pre-
enhanced network. Upon examination, it becomes evident that the improved
network exhibits more focused attention on the objects of interest, while the pre-
improved network demonstrates a more dispersed attention pattern.

(b) Pre-improvement model concerns
Fig. 8. Grad-CAM heat map visualization
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Table 3 provides a comprehensive presentation of the experimental
outcomes concerning the anchor frame adaptive matching strategy. After
implementing this strategy in our dataset, significant improvements were observed
in several key metrics. Specifically, there was a notable increase in mean average
precision at an loU of 0.5 (mAP 0.5) by 0.7%, a substantial enhancement in mean
average precision across the range of loU thresholds from 0.5 to 0.95 (mAP
0.5:0.95) by 0.8%, and a significant boost in recall by 1.1%. These findings
underscore the effectiveness of the anchor frame adaptive matching strategy in
enhancing the model's performance across various evaluation criteria.

However, it is worth noting that there was a marginal decrease in precision
by 0.7% when comparing the results to the baseline model. This trade-off between
recall and precision warrants further consideration in the context of specific
application requirements.

Table 3
Experimental results of the anchor frame adaptive matching strategy
Model mAP 0.5 mAP 0.5:0.95 accurate recall rate
YOLOv5m 0.781 0.559 0.836 0.706
YOLOv5m_autoanchor 0.788 0.567 0.829 0.717

Table 4 presents the outcomes of the Mix up data enhancement technique
experiment. With the introduction of this technique, our dataset experienced
significant improvements in multiple key metrics. Specifically, there was a
substantial increase in mean average precision at an loU of 0.5 (mAP 0.5) by 1.60%,
a noteworthy enhancement in mean average precision across the range of loU
thresholds from 0.5 to 0.95 (mAP 0.5:0.95) by 1.60%, a substantial boost in
accuracy by 1.70%, and a notable improvement in checking completeness by
1.00%. These findings demonstrate the efficacy of the Mix up data enhancement
technique in enhancing the model's performance across various evaluation criteria
when compared to the baseline model.

Table 4
Experimental results of hybrid data enhancement strategies
Model mAP 0.5 mAP 0.5:0.95 accurate recall rate
YOLOvSm 0.781 0.559 0.836 0.706
YOLOv5m-mixup 0.797 0.575 0.853 0.716

Table 5 provides a comprehensive display of the experimental findings
associated with the decoupled detection head. The integration of this approach
yielded notable improvements in several key metrics. Specifically, there was a
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significant increase in mean average precision at an loU of 0.5 (mAP 0.5) by 0.5%,
a substantial enhancement in mean average precision across the range of loU
thresholds from 0.5 to 0.95 (mAP 0.5:0.95) by 1.3%, and a notable improvement in
checking completeness by 1.2%. These findings highlight the effectiveness of the
decoupled detection head in improving the model's performance across various
evaluation criteria.

However, it is worth noting that there was a marginal decrease in accuracy
by 0.3% when comparing the results to the benchmark model. This trade-off
between accuracy and other metrics warrants further consideration in the context of
specific application requirements.

Table 5
Experimental results of decoupled detection head
Model mAP 0.5 mAP 0.5:0.95 accurate | recall rate
YOLOv5m 0.781 0.559 0.836 0.706
YOLOv5m_decoupled head 0.786 0.572 0.833 0.718
3.3 Ablation experiment
Table 6
Ablation experiments
RCES Ao | p | DecouPle | AP 05 mAP05:0.95 P R
module anchor head
1 0.781 0.559 0.836 0.706
2 N 0.791 0.574 0.842 0.724
3 \ \ 0.801 0.582 0.834 | 0.742
4 \ \ \ 0.811 0.603 0.847 | 0.745
5 \ \ \ \ 0.823 0.620 0.859 | 0.753

After implementing all the enhanced strategies, our model demonstrated
significant overall improvements in key performance metrics. Notably, there was a
substantial increase in mean average precision at an loU of 0.5 (mAP 0.5) by 4.20%,
a remarkable enhancement in mean average precision across the range of loU
thresholds from 0.5 to 0.95 (mAP 0.5:0.95) by 6.10%, a notable improvement in
precision by 2.30%, and a substantial boost in recall by 4.70%. These
comprehensive improvements underscore the effectiveness of our combined
strategies in enhancing the model's overall performance. The results of the ablation
experiment are shown in Table 6..

Recognizing that while the introduction of some strategies led to slight
performance degradation in specific aspects, the net gain in overall performance
demonstrates the successful integration and synergy of these strategies. 3.4
comparative experiment.
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In the comparative experimental section, several prominent target detection
models underwent comprehensive evaluation. The results, as presented in Table 7,
unequivocally demonstrate the distinct advantages of our enhanced model over the
other network models in every aspect assessed. Our model exhibits superior
performance across a range of metrics, reaffirming its effectiveness and
competitiveness.

Table 7
Performance of different models on EDS dataset
Model mAP 0.5 mAP 0.5:0.95 P R
SSD 0.794 0.561 0.845 0.731
Faster R-CNN 0.819 0.618 0.853 0.751
YOLOv5m 0.781 0.559 0.836 0.706
YOLOv7 0.787 0.569 0.851 0.742
YOLOV8m 0.797 0.605 0.828 0.724
YOLOv5m-improved 0.823 0.620 0.859 0.753

For a more intuitive evaluation, this paper provides a direct comparison of
the actual detection results achieved by YOLOv5m before and after the
implementation of our improvement strategies. As depicted in Fig. 9, our strategies
effectively address the challenges associated with error detection and missing
detection, particularly in the case of small targets and occlusions within complex
backgrounds. These visual results provide compelling evidence of the significant
enhancements brought about by our strategies in real-world detection scenarios.
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(a) Lnitial image (b) YOLOvSm (¢) Improved YOLOVS

Fig. 9. Comparison of detection effect
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4. Conclusions

Traditional manual security detection is not only slow but also less accurate.
To address these issues, a parallel convolutional module, RCES, is proposed in this
paper, utilizing a hybrid attention mechanism. Built upon YOLOv5m as a baseline
model, the design aims to improve the network’s detection performance in complex
scenes. To enhance the network's performance in classification and regression
tasks, a decoupled detection head tailored to our design is introduced, surpassing
the effectiveness of the original decoupled detection head. The incorporation of a
hybrid data enhancement strategy and an anchor frame adaptive matching strategy
significantly contributes to the network's robustness. When compared to other
mainstream target detection models, the method presented in this paper
demonstrates notable advantages across various aspects.
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