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A PARAMETRIC STUDY ON THE INFLUENCE OF THE NONLINEAR 

CHARACTERISTICS OF THE SECONDARY SUSPENSION UPON THE 

VERTICAL VIBRATIONS IN THE RAILWAY VEHICLES  
 

Mădălina DUMITRIU1 

 
The paper herein regards to a parametric study aiming to evaluate the 

influence of the nonlinear characteristics of the secondary suspension upon the 

behaviour of vertical vibrations of the railway vehicle. The nonlinearity of the 

secondary suspension model is given by the component of the elastic force and the 

component of the dry friction force. The study is based on the results from the 

numerical simulation of the free vibrations behaviour, the steady-state harmonic 

behaviour of vibrations and of the random vibrations behaviour. A series of 

properties of the non-linear system have been pointed out at and the selective 

influence of the dry friction force has been proven, as a function of the excitation 

frequency and the carbody reference point. Similarly, it has been drawn attention to 

the influence of the dry friction force upon the ride quality and ride comfort of the 

railway vehicle. 
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1. Introduction 
 

During running, the railway vehicle is subjected to a permanent behaviour of 

vibrations, with inconvenient effects on the ride quality, ride comfort and safety, 

whose main cause is to be found in the interaction between the vehicle and the 

track (Cheli and Corradi, 2011; Mazilu, 2009; Young et al., 2003).  

The evaluation of the vibrations behaviour in the vehicle is already done in the 

designing stage, in order to optimize the dynamic performance of the vehicle and, 

at a later date, to investigate the issues emerging during exploitation, when using 

for this purpose programs of numerical simulation developed on the basis of 

theoretical models of the vehicle (Evans and Berg, 2009; Schupp, 2003). The 

‚virtual homologation’ of the railway vehicles also requires tests based on 

numerical models and virtual simulations (Funfschilling et al., 2012; Jönsson et 

al., 2008).  

The suspension plays an important role in terms of the capacity of the 

passenger trains to provide, at least for the level of vibrations, ride quality and ride 

comfort. The potential and success of the numerical simulations to evaluate the 

vibrations behaviour of the vehicle greatly depend on how the suspension 

components are modelled (Eickhoff et al., 1995; Bruni et al, 2011). Quality and 
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even quantity-based results can be obtained from simple models, where the 

suspension components are considered to have linear characteristics. For instance, 

the rubber elements that are frequently used in the railway engineering both for 

the vehicle suspension and the track superstructure, are modelled via Kelvin-

Voigt systems (Mazilu, 2010). The use of such models can, however, lead to 

results of the numerical simulations with a low degree of feasibility and 

reliability. 

The goal of this paper is focused on the analysis of the influence that the 

nonlinear characteristics of the suspension have upon the vertical vibrations in the 

railway vehicles. To this purpose, a passenger coach was considered, one that 

includes in its secondary suspension a mix coil spring – rubber and it is 

represented by an original model (Dumitriu, 2016). The model for the mix coil 

spring – rubber is developed on the basis of a non-linear dynamic rubber spring 

model (Berg, 1997, 1998), which best reflects the mechanical behaviour of rubber 

suspension components in railway vehicle dynamics and also provides a very 

good agreement between the theoretical and experimental results. The model in 

this paper, similar with the initial one, relies on the overlapping of three 

component forces, working in parallel – the elastic force, viscous force and 

friction force. Unlike the initial model, this one has its elastic component 

represented by an elastic element with a graded variable stiffness, which includes 

both the elastic force in the coil spring and the one in the rubber element. The 

model carries two sources of nonlinearity, one coming from the component of the 

friction force and the other from the component of the elastic force. 

The nonlinear model of the secondary suspension is embodied in the vehicle 

model, which is a rigid-flexible coupled type model. The carbody is modelled as 

free-free Euler-Bernoulli equivalent beam, where this model allows considering 

the first bending mode of the carbody that has a significant importance on the 

vertical vibrations behaviour of the carbody (Diana et al., 2002). 

The study is based on the results from the numerical simulation of the free 

vibrations behaviour the steady-state harmonic behaviour of vibrations and of the 

random vibrations behaviour and on the evaluation of the level of vertical 

vibrations in three reference points of the carbody – at the centre and above the 

bogies, depending on the component of the dry friction force developed in the 

rubber element. 
 

2. The mechanical model of the vehicle 

 

Fig. 1 shows the mechanical model of a four-wheelset, two-level suspension 

vehicle, which travels at a constant velocity V on a track that is considered 

perfectly rigid, with vertical irregularities. The track irregularities are described 
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against each wheelset by the functions j,(j+1), with j = 2i-1, for  i = 1, 2, while 

mentioning that every bogie i is fitted with the axles j and j+1. 
 

 
Fig. 1. The vehicle mechanical model. 

 

The carbody is represented by a free-free equivalent beam, with constant cross-

section and uniformly distributed mass, of Euler-Bernoulli type. The beam 

parameters are defined in terms of the carbody, such as: Lc – beam length; c = 

mc/Lc – beam mass per length unit, where mc is the carbody mass;  - structural 

damping coefficient; EI – bending modulus, where E is the longitudinal modulus 

of elasticity, and I is the area moment of inertia of the beam cross-section.  

There will be taken into account the carbody rigid vibration modes - bounce zc 

and pitch c, and the first carbody natural bending mode in a vertical plan – 

symmetrical bending. The carbody inertia reported to the rigid vibration modes is 

represented by mass mc and the mass moment of inertia Jc. The carbody 

wheelbase is 2ac. Distances l1,2 = Lc/2 ± ac fix the supporting points position of the 

carbody on the secondary suspension. 

The carbody vertical movement wc(x,t) comes from the superposition of the 

two rigid vibration modes with the first bending mode 
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where Tc(t) is the time coordinate of the first natural bending mode in a vertical 

plan and Xc(x) stands for its eigenfunction 
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where c is the natural angular frequency of the carbody symmetrical bending. 

The stiffness, damping and the modal mass of the carbody are given by the 

equations below  
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The bogies have two degrees of freedom, namely bounce zbi and pitch bi, with 

i = 1, 2. Each bogie has the mass mb, inertia moment Jb and wheelbase 2ab. 

The elastic mix of the secondary suspension pertinent to a bogie is represented 

by a unidimensional nonlinear model, comprising of three components operating 

in parallel (Dumitriu, 2016): an elastic element of variable stiffness 2kzc1,2; a 

Maxwell system that includes an element of viscous damping of a constant 2cv in 

series with an elastic element of stiffness 2kv; an elastic element in series with a 

friction element that help with the modelling of the component of the friction 

force 2Ff1,2. This model is used to represent the mix coil spring – rubber in the 

secondary suspension of the Y 32R bogie. The mix coil spring-rubber model will 

be described in the next section. The damping of the secondary suspension is 

taken into account by the damping constant 2czc. 

The plan of the secondary suspension finds at distance of hc from the carbody 

medium fiber and at distance hb from the bogie centre of gravity. The longitudinal 

traction system between carbody and bogie is shaped via a Kelvin-Voigt system 

with the elastic constant 2kxc and damping constant 2cxc.  

The vertical primary suspension corresponding to an axle is modelled by a 

Kelvin-Voigt system with the elastic constant 2kzb and damping constant 2czb. 

 

3. The non-linear model of the mix coil spring-rubber 

 

Figure 2 shows a mix coil spring - rubber used in the secondary suspension of 

the Y 32R which certain passenger railway vehicles are fitted with. The static 

characteristic of the mix in the vertical direction is featured in Fig. 3. This 

characteristic is noticed to be of a non-linear type with step-wise/graded variation 

of stiffness. The stiffness of the mix increases along with the applied loading, due 

to the rubber deformation.  
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Fig. 2. Mix coil spring - rubber: 

1. coil spring; 2. rubber; 3. 

intermediary element. 

Fig. 3. The static characteristic: 1. 

the characteristic of the coil 

spring; 2. the characteristic of the 

mix coil spring - rubber. 

Fig. 4. Model for mix 

coil spring – rubber. 

The proposed model to represent the mix coil spring – rubber is featured in  

Fig. 4 (Dumitriu, 2016). This model relies on Berg’s model (Berg, 1997, 1998), 

which very well expresses the mechanical behaviour of rubber suspension 

components in railway vehicle dynamics.  

The Berg model is a one-dimension model, based on the overlapping of three 

component forces working in parallel, where each of them contributes to the total 

deformation force of the rubber spring (Berg, 1997). They include the component 

of the elastic force, the viscous force and the dry friction component. The elastic 

force component is linear and models the rubber elasticity property. When 

introducing the viscous force, the increase in stiffness triggers a similar frequency 

response, as well as the rate-dependent hysteresis. The inclusion of a friction force 

means an increased stiffness at small displacement amplitudes as well as rate-

independent hysteresis.   

The mix coil spring - rubber model consists of the same three components 

operating in parallel (see. Fig. 4), as in Berg’s model. The elastic force component 

is thus described by an elastic element that has a graded variable stiffness 2kzc1,2, 

unlike Berg’s model. It includes both the elastic force in the coil spring and the 

other one in the rubber element. 

The elastic force is calculated as a function of the direction of the relative 

displacement z1,2 in relation to the equilibrium position of the system under the 

action of the static force Fs, while considering the variation in the stiffness of the 

elastic mix 

2,12,12,1 2 zkF zce  ,                                                                  (3.1) 

where kzc1,2 = kzcc, for z1,2 > 0, and kzc1,2 = kzcd, for z1,2 < 0, with kzcc > kzcd; kzcc 

means the stiffness of the elastic mix during compression and kzcd  is the stiffness 

of the elastic mix during expansion. The relative displacement z1,2 is 

2,12,12,1 bc zwz  ,                                                                  (3.2) 
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where wc1,2 is the vertical displacement of the carbody against the leaning points 

on the secondary suspension  

ccccccc TlXazlww )()( 2,12,12,1  .                                           (3.3) 

As for the viscous force component, this is represented by a Maxwell system 

containing an element of viscous damping of constant 2cv in series with an elastic 

element of stiffness 2kv. The viscous force is determined as follows 

)()( 2,12,12,12,12,1 bvvvcvv zzkzwcF   .                                         (3.4) 

The component of the friction force is modelled as a 'smooth Coulomb friction 

force' to avoid the issues emerging during the numerical simulations due to the 

fact that Coulomb model is non-smooth, multi-valued and non-differentiable 

(Berg, 1997, 1998).  

The friction force depends on the relative displacement z1,2 of the system, as 

well as on the reference state (zr1,2, Ffr1,2), that corresponds with the change in the 

sign of the relative speed 2,1z . Two more parameters are defined, namely the 

maximum friction force Ffmax and the relative displacement z0 for which the 

friction force is half the value of the maximum friction force Ff1,2 = Ffmax/2, when 

starting from the initial reference state (zr1,2 = 0, Ff1,2 = 0) and reaching z0.  

The friction force is defined in relation to the reference state, as follows: 

2,12,1 frf FF  , for   z1,2 = zr1,2 ;                                                          (3.5) 
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The parameter  is given by the reference force-maximum friction force 

relation and its values range from -1 to 1. 

The non-linearity of the secondary suspension model results, on the one hand, 

from the elastic force component developed in the mix coil spring – rubber and, 

on the other hand, from the component of friction force occurring in the rubber 

element.  

 

4. The vehicle equations of motion 

 

The vertical motion of the vehicle is described by both the equations of the 

vibration rigid modes in the carbody and bogie – bounce and pitch, and also by 

the equation of the first vertical bending mode of the carbody.  

The general form of the carbody equation of motion is:  
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where (.) is Dirac delta function, and Fzci and Fxci stand for the forces coming 

from the secondary suspension and from the traction longitudinal system 
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By applying the modal analysis method and considering the orthogonality 

property of the eigenfunction in the carbody vertical bending, the equation of 

motion (4.1) turns into three three-order differential equations with ordinary 

derivatives. These equations describe the movements of bounce, pitch and 

bending in the carbody: 

0)(2)(2)(2

)](22[2)](22[2

212211

2121





ffbcccczcbcccczc

vvccvbbcczccc

FFzTazkzTazk

zzTzczzTzczm 
     (4.4) 

; 0)(2)](2[2)](2[2

)(2)(2

)](2[2)](2[2

212121

22211

2121







ffcbbbcccxcbbbcccxc

bcccczcbccccczc

vvcccvbbccczccc

FFahhhkhhhc

zTazakzTazak

zzaaczzaacJ





 

(4.5) 

, 0)(2)](2[2)](2[2

)(2)(2

)](22[2)](22[2

212121

2211

21212







ffbbbcccxcbbbcccxc

bcccczcbcccczc

vvccvbbcczccmcmccmc

FFhThhkhThhc

zTazkzTazk

zzTzczzTzcTkTcTm





         (4.6) 

where the below notations were introduced, based on the symmetry property of 

the eigenfunction Xc(x) 
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The above equations will be added the ’hidden coordinate’ equation of 

Maxwell model for the viscous component of the suspension force   
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which becomes after transformations 
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0)()]([ 2,12,12,1  bvvccccvv zzkTazzc  .                                              (4.9) 

The relations (4.9) are still written as  

)()[()](22[ 212121 bbvvvvvccv zzzzkzzTzc   ;                              (4.10) 

)()[()](2[ 212121 bbvvvvvccv zzzzkzzac   .                                     (4.11) 

The equations (4.10) and (4.11) will be replaced in the carbody equations of 

motion (4.4) – (4.6), changing into 
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The equations describing the bounce and pitch motions in the bogies will be 

added to the previous relations: 
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The solving of the equations of motion is done numerically, by applying 

Runge-Kutta algorithm.  

 

5. The results of the numerical simulations 

 

This section describes the results of the numerical simulations based on which 

the influence of the nonlinear characteristics of the secondary suspension on the 

behaviour of vertical vibrations in the railway vehicle is analysed. The free 

vibrations behaviour, the steady-state harmonic behaviour of vibrations and of the 
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random vibrations behaviour are considered. Similarly, three reference points of 

the carbody are defined – at the centre and against the two bogies (against the 

bearing points of the carbody on the secondary suspension). The vibration 

behaviour at the carbody centre is the result of the overlapping between bounce 

and bending of the carbody. Against the two bogies, the carbody vibration is due 

to all three modes of vibration – bounce, pitch and bending of the carbody. 

The parameters of the numerical model can be seen in Table 1, as 

representative for a passenger coach fitted with Y32 bogies. 
 Table 1 

The parameters of the numerical model. 

mc = 34000 kg Lc = 26.4 m 2kzcc = 0.66 MN/m 2czc = 34.28 kNs/m 

mb = 3200 kg 2ac = 19 m; 2ab = 2.56 

m  

2kzcd = 0.54 MN/m 
2cxc = 50 kNs/m 

mmc = 35224 kg hc = 1.3 m; hb = 0.2 m 2kv= 250 kN/m 4kzb = 4.4 MN/m 

kmc = 88.998 MN/m Jc = 1963840 kgm2 2cv = 4 kNs/m 4czb = 52.21 kNs/m 

cmc = 53.117 kNm/s Jb = 2048 kgm2 2kxc = 4MN/m EI = 3.158109Nm2 

 

For a first state, the behaviour of the free vibrations is looked at. The analysis 

will be about how the elastic characteristic with two-step variable stiffness 

influences the regime of the non-damped free vibrations. As for the initial 

conditions of the free vibrations, a vertical 10-mm displacement of the carbody is 

taken into account. Fig 5 shows the carbody vibration for a 10-sec time in the 

reference point at its centre. The vibration is found out not to be harmonic, due to 

the overlapping of the carbody eigenmodes of vibration – bounce and bending. It 

can be also noticed that the amplitudes of the expansion displacement are higher 

than of the compression’s.  Moreover, the periods corresponding to the 

expansion/compression displacements are not equal; the expansion’s are longer 

than the compression’s.  For instance, when considering the average values for the 

10 cycles, the amplitude of the displacement is 11.01 mm and the time 0.4418 s, 

for expansion. As for compression, the amplitude is 10.28 mm and the time 

0.4144 s. These differences can be explained by a higher stiffness of the elastic 

element during compression, compared to expansion.  

 
Fig. 5. The non-damped free vibrations of the carbody. 

 

Another aspect to be analysed refers to the manner in which the damping 

coming from the friction in the rubber element in the secondary suspension 
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influences the regime of free vibrations in the carbody. To this purpose, only the 

component of dry friction will be considered, while the other damping coefficients 

are deemed null. The diagrams in Fig. 6 present how the free vibrations of the 

carbody are damped for various initial conditions – the displacement at the 

carbody centre of 5, 10 and 15 mm respectively, while having the maximum 

friction force of 100, 200 and 300 N. In the diagram, the displacements are 

normalized via the division by the value of the initial displacement. Firstly, the 

vibrations are noticed to have a slower damping when the initial displacement of 

the carbody increases. Secondly, the free vibrations of the carbody will be damped 

within a shorter period of time when the maximum friction goes up. Thirdly, the 

longer the initial carbody displacement, the lower frequency of vibrations, an 

aspect explained by the lowering in the stiffness of the rubber elements, due to the 

friction force component.  

 
Fig. 6. The behaviour of the damped free oscillations:  

(a) Ffmax = 100 N; (b) Ffmax = 200 N; (c) Ffmax = 300 N; ——, initial displacement 15 mm; −  −  −,  

initial displacement 10 mm; ∙ ∙ ∙ ∙, initial displacement 5 mm. 

 

As for the steady-state harmonic behaviour of vibrations, what interests most is 

the behaviour of carbody vibrations at the resonance frequencies of the vibration 

eigenmodes – 1.17 Hz – the frequency of the bounce vibrations; 8.20 Hz – the 

frequency of bending; 1.46 Hz – the frequency of the pitch vibrations (Dumitriu, 

2015a). The vehicle is considered to travel at velocity of 200 km/h on a track with 

vertical irregularities of a sinusoidal shape with 1 mm in amplitude. The 

wavelength of the track vertical irregularities is thus selected so as the excitation 
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frequency correspond with the carbody eigenfrequency vibrations - 47.483 m for 

1.17 Hz, 6.775 m for 8.20 Hz and 38.051 m for 1.46 Hz.  

 
Fig. 7. The carbody acceleration in a permanent harmonic vibration behaviour:  

(a) at 1.17 Hz; (b) at 8.20 Hz; (c) at 1.46 Hz; 

—, at the carbody centre; − −,  above the front bogie; ∙ ∙ ∙ , above the rear bogie. 
 

Fig. 7 features the vertical accelerations calculated in three reference points of 

the carbody for Ffmax = 200 N. For the excitation frequency of 1.17 Hz, the highest 

acceleration is above the rear bogie and the lowest at the carbody centre.  At 8.20 

Hz, the maximum level of vibrations occurs at the carbody centre and the 

minimum level against the front bogie. For the excitation frequency of 1.46 Hz, 

the same level of vibrations will happen against the two bogies. If the excitation 

frequency is 1.17 Hz, the carbody motion is not harmonic and this is the result of 

the nonlinear characteristic of the secondary suspension. The above is also visible 

in Fig. 8, with the spectra of the vertical acceleration in the reference points of the 

carbody. Numerous harmonic components are present, as well as the one at 8.20 

Hz whose frequency coincides with the carbody bending frequency. 

 
Fig. 8. Spectra of the carbody acceleration in a permanent harmonic vibration behaviour at 1.17 

Hz: 

●, at the carbody centre; ■, above the front bogie; ♦, above the rear bogie. 
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Fig. 9. Influence of the maximum friction force upon the steady-state harmonic vibrations 

behaviour:  

(a) at 1.17 Hz, (b) at 8.20 Hz, (c) at 1.46 Hz;  

●, at the carbody centre; ■, above the front bogie; ♦, above the rear bogie. 

 

To examine the influence of the dry friction force upon the steady-state 

harmonic vibrations behaviour in the carbody, the diagrams in Fig. 9 are used, 

which introduces the RMS acceleration in the reference points of the carbody. The 

same values of the frequency induced by the track vertical irregularities are 

considered, namely 1.17 Hz (diagram (a)), 8.20 Hz (diagram (b)) and 1.46 Hz 

(diagram (c)), and different values of the maximum friction force within the range 

of 0 ... 1000 N.  The influence of the friction force component can be seen to 

differently manifest as depending on the excitation frequency and the position of 

the reference point. For the frequency corresponding to the carbody bounce (1.17 

Hz), the increase in the maximum friction force leads to an obvious decrease of 

the level of vibrations in the reference points at the carbody centre and against the 

rear bogie and less significant against the front bogie. Consequently, for this 

frequency, the increase of friction in the rubber element means a general decrease 

in the level of vibrations in the carbody. At the carbody bending frequency (8.20 

Hz), a higher maximum friction force corresponds to a higher vertical acceleration 

in all the reference points of the carbody. In this situation, the stiffening of the 

secondary suspension triggers a higher value of the level of vibrations in the 

carbody. Should the excitation frequency coincide with the frequency of the 
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carbody pitch, the increase of the maximum friction force leads to a lower 

vibration level of the carbody in the reference points above the bogies.  

Further on, the analysis refers to the influence of the friction force component 

upon the random vibrations regime in the carbody induced by the track vertical 

irregularities. Against each wheelset, the track vertical irregularities are described 

by a pseudo-stochastic function, written as (Dumitriu, 2015b) 
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where: K is a scaling coefficient of the amplitudes in the track lateral 

irregularities, adm is the maximum value of the track lateral irregularities as per 

UIC 518 Leaflet; f(xj,(j+1)) is an adjustment function applied on the distance L0, in 

the form of  
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where H(.) is the Heaviside’s unit step function; Uk is the amplitude of the spectral 

component corresponding to the wave number k, and k is the lag of the spectral 

component ‚k’ for which a uniform random distribution is selected. The amplitude 

of each spectral component is established on the basis of the power spectral 

density of the track irregularities described in accordance with ORE B176 and the 

specifications included in the UIC 518 Leaflet regarding the track geometrical 

quality described by the quality levels QN1 and QN2.  

 
Fig. 10. Influence of the maximum friction force upon the random vibrations regime:  

(a) at the carbody centre; (b) above the front bogie; (c) above the rear bogie. 
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Fig. 10 displays the influence of the friction force component upon the random 

vibrations behaviour in the carbody, evaluated as based on the RMS acceleration 

– an appreciation criterion for the ride quality (UIC 518 Leaflet, 2009), at the 

velocity of 200 km/h on a QN2 quality track. Former, the highest level of 

vibrations is noticed in the reference points above the two bogies. Latter, the 

influence of the friction force has a different manifestation, depending on the 

position of the reference point. At the carbody centre, the increase in the friction 

force means a higher RMS acceleration. In the reference point located above the 

front bogie, the RMS acceleration has a minimum for Ffmax = 500 N. Against the 

rear bogie, the level of vibrations goes down along with the going up of the 

friction force.  

 
Fig. 11. Influence of the maximum friction force upon the ride comfort:  

(a) at the carbody centre; (b) above the front bogie; (c) above the rear bogie. 

 

The influence of the friction force component is also visible on the ride 

comfort, as evaluated on the ride index comfort (ENV 12299, 1997), as seen in 

Fig. 11. The influence of the friction force component depends on the position of 

the reference point of the carbody in this case, as well.   

At the carbody centre and against the front bogie, the best comfort index can be 

obtained for a certain value of the friction force: Ffmax = 400 N – at the carbody 

centre and Ffmax = 700 N – against the front bogie. Against the rear bogie, the 

comfort index lowers along with the increase of the friction force. It is worth 

mentioning that the level of vibrations is smaller at the carbody centre and higher 

against the two bogies, irrespective of the value in the friction force.  

 

6. Conclusions 

 

The paper is a parametric study aiming to analyse the influence of the 

nonlinear characteristics of the secondary suspension upon the behaviour of 

vertical vibrations of the vehicle carbody in three reference points – at the carbody 

centre and against the two bogies. The model of the secondary suspension herein 

includes two nonlinear aspects derived from the component of the elastic force 

coming from the mix coil spring – rubber, on the one hand, and from the 
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component of the dry friction force developed in the rubber element, on the other 

hand. 

The study is based on the results from the numerical simulation underlying 

a rigid-flexible coupled model of the vehicle, where the carbody is modelled as 

Euler-Bernoulli beam. The free vibrations behaviour, the steady-state harmonic 

behaviour of vibrations and of the random vibrations behaviour have been taken 

into account. 

The analysis has also applied to the manner in which the elastic 

characteristic with a two-step variable stiffness influences the behaviour of the 

non-damped free vibrations. The amplitudes and the time periods of the 

displacements of the carbody are not equal, due to the higher stiffness of the 

elastic component during compression, compared with expansion. Upon 

examining the influence of the dry friction force upon the behaviour of free 

vibrations, the conclusion was that the damping of the nonlinear system depends 

on the amplitude and frequency of the free vibrations. 

Based on the study of the vibrations regime of the carbody generated by 

the track vertical irregularities in harmonic shape, the influence of the friction 

force was visibly different in its manifestation, depending on the excitation 

frequency. Therefore, the increase in the maximum friction force at the excitation 

frequencies corresponding to the carbody bounce and pitch leads to a reduced 

level of vibrations in the carbody. On the contrary, higher friction in the rubber 

element means increase in the level of vibrations in all the reference points of the 

carbody, at the excitation frequency corresponding to the carbody bending.   

The analysis of the random vibrations behaviour has made obvious the 

effect of the friction component upon the level of vibrations in the carbody, in 

terms of ride quality and ride comfort.  The influence of the friction component 

has been proven to manifest differently in the reference points of the carbody. 

Generally speaking, a higher friction force triggers an improvement in the ride 

quality and ride comfort in the reference points against the bogies, points to be 

considered critical when dealing with the level of vibrations in the carbody.   
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