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A PARAMETRIC STUDY ON THE INFLUENCE OF THE NONLINEAR
CHARACTERISTICS OF THE SECONDARY SUSPENSION UPON THE
VERTICAL VIBRATIONS IN THE RAILWAY VEHICLES

Madalina DUMITRIU!

The paper herein regards to a parametric study aiming to evaluate the
influence of the nonlinear characteristics of the secondary suspension upon the
behaviour of vertical vibrations of the railway vehicle. The nonlinearity of the
secondary suspension model is given by the component of the elastic force and the
component of the dry friction force. The study is based on the results from the
numerical simulation of the free vibrations behaviour, the steady-state harmonic
behaviour of vibrations and of the random vibrations behaviour. A series of
properties of the non-linear system have been pointed out at and the selective
influence of the dry friction force has been proven, as a function of the excitation
frequency and the carbody reference point. Similarly, it has been drawn attention to
the influence of the dry friction force upon the ride quality and ride comfort of the
railway vehicle.

Keywords: railway vehicle, suspension, coil spring - rubber, non-linear model,
vibration behaviour

1. Introduction

During running, the railway vehicle is subjected to a permanent behaviour of
vibrations, with inconvenient effects on the ride quality, ride comfort and safety,
whose main cause is to be found in the interaction between the vehicle and the
track (Cheli and Corradi, 2011; Mazilu, 2009; Young et al., 2003).

The evaluation of the vibrations behaviour in the vehicle is already done in the
designing stage, in order to optimize the dynamic performance of the vehicle and,
at a later date, to investigate the issues emerging during exploitation, when using
for this purpose programs of numerical simulation developed on the basis of
theoretical models of the vehicle (Evans and Berg, 2009; Schupp, 2003). The
,virtual homologation” of the railway vehicles also requires tests based on
numerical models and virtual simulations (Funfschilling et al., 2012; Jonsson et
al., 2008).

The suspension plays an important role in terms of the capacity of the
passenger trains to provide, at least for the level of vibrations, ride quality and ride
comfort. The potential and success of the numerical simulations to evaluate the
vibrations behaviour of the vehicle greatly depend on how the suspension
components are modelled (Eickhoff et al., 1995; Bruni et al, 2011). Quality and
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even quantity-based results can be obtained from simple models, where the
suspension components are considered to have linear characteristics. For instance,
the rubber elements that are frequently used in the railway engineering both for
the vehicle suspension and the track superstructure, are modelled via Kelvin-
Voigt systems (Mazilu, 2010). The use of such models can, however, lead to
results of the numerical simulations with a low degree of feasibility and
reliability.

The goal of this paper is focused on the analysis of the influence that the
nonlinear characteristics of the suspension have upon the vertical vibrations in the
railway vehicles. To this purpose, a passenger coach was considered, one that
includes in its secondary suspension a mix coil spring — rubber and it is
represented by an original model (Dumitriu, 2016). The model for the mix coil
spring — rubber is developed on the basis of a non-linear dynamic rubber spring
model (Berg, 1997, 1998), which best reflects the mechanical behaviour of rubber
suspension components in railway vehicle dynamics and also provides a very
good agreement between the theoretical and experimental results. The model in
this paper, similar with the initial one, relies on the overlapping of three
component forces, working in parallel — the elastic force, viscous force and
friction force. Unlike the initial model, this one has its elastic component
represented by an elastic element with a graded variable stiffness, which includes
both the elastic force in the coil spring and the one in the rubber element. The
model carries two sources of nonlinearity, one coming from the component of the
friction force and the other from the component of the elastic force.

The nonlinear model of the secondary suspension is embodied in the vehicle
model, which is a rigid-flexible coupled type model. The carbody is modelled as
free-free Euler-Bernoulli equivalent beam, where this model allows considering
the first bending mode of the carbody that has a significant importance on the
vertical vibrations behaviour of the carbody (Diana et al., 2002).

The study is based on the results from the numerical simulation of the free
vibrations behaviour the steady-state harmonic behaviour of vibrations and of the
random vibrations behaviour and on the evaluation of the level of vertical
vibrations in three reference points of the carbody — at the centre and above the
bogies, depending on the component of the dry friction force developed in the
rubber element.

2. The mechanical model of the vehicle
Fig. 1 shows the mechanical model of a four-wheelset, two-level suspension

vehicle, which travels at a constant velocity V on a track that is considered
perfectly rigid, with vertical irregularities. The track irregularities are described
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against each wheelset by the functions nj,+1), with j = 2i-1, for i =1, 2, while
mentioning that every bogie i is fitted with the axles j and j+1.
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Fig. 1. The vehicle mechanical model.

The carbody is represented by a free-free equivalent beam, with constant cross-
section and uniformly distributed mass, of Euler-Bernoulli type. The beam
parameters are defined in terms of the carbody, such as: Lc — beam length; pc =
m¢/Lc — beam mass per length unit, where mc is the carbody mass; u - structural
damping coefficient; EI — bending modulus, where E is the longitudinal modulus
of elasticity, and I is the area moment of inertia of the beam cross-section.

There will be taken into account the carbody rigid vibration modes - bounce z¢
and pitch O, and the first carbody natural bending mode in a vertical plan —
symmetrical bending. The carbody inertia reported to the rigid vibration modes is
represented by mass m¢ and the mass moment of inertia J.. The carbody
wheelbase is 2ac. Distances |12 = L¢/2 £ ac fix the supporting points position of the
carbody on the secondary suspension.

The carbody vertical movement wc(x,t) comes from the superposition of the
two rigid vibration modes with the first bending mode

We (X, 1) = Zc(t)"'(x_%jec(t)"' X ()T (D), (2.1)

where T¢(t) is the time coordinate of the first natural bending mode in a vertical
plan and Xc(x) stands for its eigenfunction
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- . _ sinBLg —sinh L
X (X) =sin Bx + sinh Bx coSPL. —coshpL. (cosPx + coshpx) , (2.2)
with  p=4%wp./(El), cospL, coshpL, —1=0, (2.3)

where o is the natural angular frequency of the carbody symmetrical bending.
The stiffness, damping and the modal mass of the carbody are given by the

equations below
L 2 L/ 42 2 L
km=Eq m;qm=“q dﬁc W;mngJX@x. (2.4)

0 0 dx 0

The bogies have two degrees of freedom, namely bounce zni and pitch Oy, with
I =1, 2. Each bogie has the mass mp, inertia moment J, and wheelbase 2ay.

The elastic mix of the secondary suspension pertinent to a bogie is represented
by a unidimensional nonlinear model, comprising of three components operating
in parallel (Dumitriu, 2016): an elastic element of variable stiffness 2kgi2; a
Maxwell system that includes an element of viscous damping of a constant 2cy in
series with an elastic element of stiffness 2ky; an elastic element in series with a
friction element that help with the modelling of the component of the friction
force 2Fs2. This model is used to represent the mix coil spring — rubber in the
secondary suspension of the Y 32R bogie. The mix coil spring-rubber model will
be described in the next section. The damping of the secondary suspension is
taken into account by the damping constant 2Cxc.

The plan of the secondary suspension finds at distance of he from the carbody
medium fiber and at distance hy from the bogie centre of gravity. The longitudinal
traction system between carbody and bogie is shaped via a Kelvin-Voigt system
with the elastic constant 2kyc and damping constant 2Cyc.

The vertical primary suspension corresponding to an axle is modelled by a
Kelvin-Voigt system with the elastic constant 2k;, and damping constant 2C;.

d?X,
dx?

3. The non-linear model of the mix coil spring-rubber

Figure 2 shows a mix coil spring - rubber used in the secondary suspension of
the Y 32R which certain passenger railway vehicles are fitted with. The static
characteristic of the mix in the vertical direction is featured in Fig. 3. This
characteristic is noticed to be of a non-linear type with step-wise/graded variation
of stiffness. The stiffness of the mix increases along with the applied loading, due
to the rubber deformation.



A parametric study on the influence of the nonlinear characteristics [...] the railway vehicles 129

Force

]

2
I

|
o

=712, Zs| | %B+I2

2kzc:1,2

Zp1 2

+—>z Deformation

QANAAM E
ECRCRENCHTRE

1

Fig. 2. Mix coil spring - rubber:  Fig. 3. The static characteristic: 1. Fig. 4. Model for mix
1. coil spring; 2. rubber; 3. the characteristic of the coil coil spring — rubber.
intermediary element. spring; 2. the characteristic of the
mix coil spring - rubber.

The proposed model to represent the mix coil spring — rubber is featured in
Fig. 4 (Dumitriu, 2016). This model relies on Berg’s model (Berg, 1997, 1998),
which very well expresses the mechanical behaviour of rubber suspension
components in railway vehicle dynamics.

The Berg model is a one-dimension model, based on the overlapping of three
component forces working in parallel, where each of them contributes to the total
deformation force of the rubber spring (Berg, 1997). They include the component
of the elastic force, the viscous force and the dry friction component. The elastic
force component is linear and models the rubber elasticity property. When
introducing the viscous force, the increase in stiffness triggers a similar frequency
response, as well as the rate-dependent hysteresis. The inclusion of a friction force
means an increased stiffness at small displacement amplitudes as well as rate-
independent hysteresis.

The mix coil spring - rubber model consists of the same three components
operating in parallel (see. Fig. 4), as in Berg’s model. The elastic force component
is thus described by an elastic element that has a graded variable stiffness 2kzc1 2,
unlike Berg’s model. It includes both the elastic force in the coil spring and the
other one in the rubber element.

The elastic force is calculated as a function of the direction of the relative
displacement z1 2 in relation to the equilibrium position of the system under the
action of the static force Fs, while considering the variation in the stiffness of the
elastic mix

I:el,2 = 2kzcl,221,2 ) (31)
where kZCl,Z = kzc(;, for 712 > 0, and kzc1,2 = kzcd, for 712 < 0, with kzcc > kzcd; kzcc
means the stiffness of the elastic mix during compression and kzcq iS the stiffness
of the elastic mix during expansion. The relative displacement z1 2 is

3,2 =Wer,2 = Zp1,2: (3.2)
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where w12 is the vertical displacement of the carbody against the leaning points
on the secondary suspension
Wep,2 =We (|1,2) =z, tab; + Xc(ll,Z)Tc : (33)

As for the viscous force component, this is represented by a Maxwell system
containing an element of viscous damping of constant 2cy in series with an elastic
element of stiffness 2ky. The viscous force is determined as follows

R =0 (W2 —2012) =Ky (Zy1,2 = Zp1.2) - (3.4)

The component of the friction force is modelled as a 'smooth Coulomb friction
force' to avoid the issues emerging during the numerical simulations due to the
fact that Coulomb model is non-smooth, multi-valued and non-differentiable
(Berg, 1997, 1998).

The friction force depends on the relative displacement z1, of the system, as
well as on the reference state (zr1,2, Ffr1,2), that corresponds with the change in the
sign of the relative speed z,,. Two more parameters are defined, namely the

maximum friction force Fmax and the relative displacement zo for which the
friction force is half the value of the maximum friction force Fr12 = Fimax/2, when
starting from the initial reference state (zr1,2 = 0, Fs1,2 = 0) and reaching zo.
The friction force is defined in relation to the reference state, as follows:
Fi12=Fp2, fOr 212=17n7; (3.5)

02— %2
Zo(l— 0y ) + (212 — Zp12)

127 Zn2
2o(1+0y2) (212 = Zp12)

The parameter a2 is given by the reference force-maximum friction force
relation and its values range from -1 to 1.

The non-linearity of the secondary suspension model results, on the one hand,
from the elastic force component developed in the mix coil spring — rubber and,
on the other hand, from the component of friction force occurring in the rubber
element.

Fi12=F2+ (F¢max —Frr12), forzaz>zn2;  (3.6)

Fiio=Fpi2+ (Ff max + Fra2)  forziz <zma.  (3.7)

4. The vehicle equations of motion

The vertical motion of the vehicle is described by both the equations of the
vibration rigid modes in the carbody and bogie — bounce and pitch, and also by
the equation of the first vertical bending mode of the carbody.

The general form of the carbody equation of motion is:
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o', (x,t) . 8w, (x,t) oW, (X, 1) & 2 ds(x—1.)
El 8;4 +pl 6>(C4at +Pc actz :;cmis(x_li)""lzl:hclzxci T' :
(4.1)
where 5(.) is Dirac delta function, and Fi and Fy stand for the forces coming
from the secondary suspension and from the traction longitudinal system

W (lo.t) W (l,t)
Fri2 = _20201,2[% - Zbl,ZJ - 2kzcl,2[Wc (2,0~ Zbl,Z]_ ch(cat—l'z - Zvl,2] +2F
(4.2)
o?w, (It ) ow.. (I, 5t
I:xc1,2 = 2Cxc{hc M + hbebl,Z} + kac{hc M + hbeb1,2:| : (4-3)

By applying the modal analysis method and considering the orthogonality
property of the eigenfunction in the carbody vertical bending, the equation of
motion (4.1) turns into three three-order differential equations with ordinary
derivatives. These equations describe the movements of bounce, pitch and
bending in the carbody:

MoZ, +2C,.[22, + 26T, — (2yg + 2p)]+ 20, [22 + 26T, — (21 + 2,)]+ »

+2Kyq (2o +8,0, + €T, — 2p) + 2Kyep (Ze — 8.0c + €T, — Zyp) — 2(Fg1 + Fy ) =0 44

30, +2¢,.8.[28.6, — (Zy; — 2pp)]+ 26,8.[28.0, — (Zy1 — 2,2)]+

+ 2K 8. (2, + 8.0, + €T, — 2pq) — 2Kye08c (2, — a0, +€T) — Zpp) +

+2C,. N [2N:0, + hy (Bp; + 6, )1+ 2K, 1o [2h:0, + hy By + 6, )]— 28, (F4; — Ff,) =0;
(4.5)

MpeTe +Crme Te + Ko Te +2C,c€[22 + 26T, — (Zpg + 22 )]+ 2C,€[22 + 26T, — (21 + Zy0) ]+

+ 2K,016(Z¢ + 8,0, + €T, — Zpq) + 2K,08(Z. — a0, + €T, —2p5) +

+2C,. N A[2h AT, + hy (61 —0,0)]1+ 2K, N A[2h AT, + hy (8 —0,5)]—26(F¢1 + F5) =0,

(4.6)
where the below notations were introduced, based on the symmetry property of
the eigenfunction Xc(x)
Xo) = Xo(1p) = o; Ll Hella) 5 @“7)
dx dx
The above equations will be added the ’hidden coordinate’ equation of
Maxwell model for the viscous component of the suspension force

oW, (l,,,t
Cv(zvl,Z —%}r ky(Zy12 = 2, 2) =0, (4.8)

which becomes after transformations




132 Madalina Dumitriu

Cv[z.vl,z - (Zc * acéc + STC)] + kv(zv1,2 - Zb1,2) =0. (4-9)
The relations (4.9) are still written as

CV[ZZC + 28-I;c - (2v1 + sz)] = kv [(Zvl + sz) - (Zbl + sz) ; (4-10)

Cv[zacéc - (zvl - sz)] = kv[(zvl - Zv2) - (Zbl - Zb2) . (4-11)

The equations (4.10) and (4.11) will be replaced in the carbody equations of
motion (4.4) — (4.6), changing into
mczc + 2Czc [220 + 28Tc - (Zbl + sz)] + 2kv[(zvl + sz) - (Zbl + sz)] +
+ 2kzcl(zc + acec + 8Tc - Zbl) + 2kzc2(zc - acec + STC - Zb2) - 2(Ffl + Ff 2) =0
(4.12)
‘Jcec + 2Czcac [2acec - (Zbl - Z.b2)] + 2|(vac[(zvl - sz) - (Zbl - sz)] +
+2Kye18c (e +@c0¢ + €T — 7py) — 2Kye08c (2 —8c0; +£T5 — 75) +

+ 2Cxchc[théc + hb (ébl + eb2)]"‘ 2kxchc[2hcec + hb (ebl + ebz)]_ 2ac(Ffl - I:f 2) =0 ;
(4.13)
MineTe +Cme Te + KmaTe +2C,c€[22¢ +2€T, — (2 + Zyp) 1+ 2K e[ (241 + 2y2) — (Zpg + Zp2)]+

+ 2K,018(Z; + 8,0, + €T, — 2p1) + 2Ky08(Z, — 80, + €T, — 7)) +

+ 2Cxc hck[thx'Tc + hb (ebl - ébz)] + 2kxc hcl[Zh(:;"Tc + hb (ebl - ebz)] - 2'S(Ffl + Ff 2) =0.
(4.14)

The equations describing the bounce and pitch motions in the bogies will be
added to the previous relations:
My Zyi +2C55[22p; — (M +Mj12)]+ 2K [225 —(j + M1+

+2C,c (25 — 2. F acéc - STC) + 2Ky (zpi — 2o F a0 —€Te) + 2k, (zpi —2,3) +2F4 =0;
(4.15)
J50pi + 26,25 [285 01 — (M =1 j:1)]+ 2K, [2850 — (M =M j41)]+ (4.16)
+2C,6 g [N, 8pi + e (0, + AT)]+ 2K, hy [Ny 0y; + he (B, £AT,1=0. '
The solving of the equations of motion is done numerically, by applying
Runge-Kutta algorithm.

5. The results of the numerical simulations

This section describes the results of the numerical simulations based on which
the influence of the nonlinear characteristics of the secondary suspension on the
behaviour of vertical vibrations in the railway vehicle is analysed. The free
vibrations behaviour, the steady-state harmonic behaviour of vibrations and of the
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random vibrations behaviour are considered. Similarly, three reference points of
the carbody are defined — at the centre and against the two bogies (against the
bearing points of the carbody on the secondary suspension). The vibration
behaviour at the carbody centre is the result of the overlapping between bounce
and bending of the carbody. Against the two bogies, the carbody vibration is due
to all three modes of vibration — bounce, pitch and bending of the carbody.

The parameters of the numerical model can be seen in Table 1, as
representative for a passenger coach fitted with Y32 bogies.

Table 1
The parameters of the numerical model.
m¢ = 34000 kg Lc=26.4m 2Kzec = 0.66 MN/m 2C;c = 34.28 kKNs/m
m, = 3200 kg anaC =19 m; 2ap = 2.56 | 2Kzca = 0.54 MN/m 26, = 50 kNs/m
Mme = 35224 kg hc=13m;h,=0.2m 2ky= 250 KN/m 4kap = 4.4 MN/m
kinc = 88.998 MN/m | Jc = 1963840 kg-m? 2cy = 4 KNs/m 4cp = 52.21 KNs/m
Cme = 53.117 KNm/s Jb = 2048 kg-m? 2kyc = 4AMN/m El = 3.158-10°Nm?

For a first state, the behaviour of the free vibrations is looked at. The analysis
will be about how the elastic characteristic with two-step variable stiffness
influences the regime of the non-damped free vibrations. As for the initial
conditions of the free vibrations, a vertical 10-mm displacement of the carbody is
taken into account. Fig 5 shows the carbody vibration for a 10-sec time in the
reference point at its centre. The vibration is found out not to be harmonic, due to
the overlapping of the carbody eigenmodes of vibration — bounce and bending. It
can be also noticed that the amplitudes of the expansion displacement are higher
than of the compression’s.  Moreover, the periods corresponding to the
expansion/compression displacements are not equal; the expansion’s are longer
than the compression’s. For instance, when considering the average values for the
10 cycles, the amplitude of the displacement is 11.01 mm and the time 0.4418 s,
for expansion. As for compression, the amplitude is 10.28 mm and the time
0.4144 s. These differences can be explained by a higher stiffness of the elastic

element during compression, compared to expansion.
12 T T T T T T

. Displacernent (rmmj

Time (s)
Fig. 5. The non-damped free vibrations of the carbody.

Another aspect to be analysed refers to the manner in which the damping
coming from the friction in the rubber element in the secondary suspension
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influences the regime of free vibrations in the carbody. To this purpose, only the
component of dry friction will be considered, while the other damping coefficients
are deemed null. The diagrams in Fig. 6 present how the free vibrations of the
carbody are damped for various initial conditions — the displacement at the
carbody centre of 5, 10 and 15 mm respectively, while having the maximum
friction force of 100, 200 and 300 N. In the diagram, the displacements are
normalized via the division by the value of the initial displacement. Firstly, the
vibrations are noticed to have a slower damping when the initial displacement of
the carbody increases. Secondly, the free vibrations of the carbody will be damped
within a shorter period of time when the maximum friction goes up. Thirdly, the
longer the initial carbody displacement, the lower frequency of vibrations, an
aspect explained by the lowering in the stiffness of the rubber elements, due to the
friction force component.

Mormalised displacement  Momalised displacement  Mormalised displacement

712 1 1 1 | 1 1 1 | 1
0 1 2 3 4 5 53 7 g 9 10

Time (s)
Fig. 6. The behaviour of the damped free oscillations:
(2) Fimax = 100 N; (b) Frmax = 200 N; (€) Fimax = 300 N; ——, initial displacement 15 mm; — — —,
initial displacement 10 mm; - - - -, initial displacement 5 mm.

As for the steady-state harmonic behaviour of vibrations, what interests most is
the behaviour of carbody vibrations at the resonance frequencies of the vibration
eigenmodes — 1.17 Hz — the frequency of the bounce vibrations; 8.20 Hz — the
frequency of bending; 1.46 Hz — the frequency of the pitch vibrations (Dumitriu,
2015a). The vehicle is considered to travel at velocity of 200 km/h on a track with
vertical irregularities of a sinusoidal shape with 1 mm in amplitude. The
wavelength of the track vertical irregularities is thus selected so as the excitation



A parametric study on the influence of the nonlinear characteristics [...] the railway vehicles 135

frequency correspond with the carbody eigenfrequency vibrations - 47.483 m for
1.17 Hz, 6.775 m for 8.20 Hz and 38.051 m for 1.46 Hz.
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Fig. 7. The carbody acceleration in a permanent harmonic vibration behaviour:
(a) at 1.17 Hz; (b) at 8.20 Hz; (c) at 1.46 Hz;
—, at the carbody centre; — —, above the front bogie; - - - , above the rear bogie.

Fig. 7 features the vertical accelerations calculated in three reference points of
the carbody for Fmax = 200 N. For the excitation frequency of 1.17 Hz, the highest
acceleration is above the rear bogie and the lowest at the carbody centre. At 8.20
Hz, the maximum level of vibrations occurs at the carbody centre and the
minimum level against the front bogie. For the excitation frequency of 1.46 Hz,
the same level of vibrations will happen against the two bogies. If the excitation
frequency is 1.17 Hz, the carbody motion is not harmonic and this is the result of
the nonlinear characteristic of the secondary suspension. The above is also visible
in Fig. 8, with the spectra of the vertical acceleration in the reference points of the
carbody. Numerous harmonic components are present, as well as the one at 8.20
Hz whose frequency coincides with the carbody bending frequency.
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Frequency (Hz)
Fig. 8. Spectra of the carbody acceleration in a permanent harmonic vibration behaviour at 1.17
Hz:
e at the carbody centre; m, above the front bogie; ¢, above the rear bogie.
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Fig. 9. Influence of the maximum friction force upon the steady-state harmonic vibrations
behaviour:
(a) at 1.17 Hz, (b) at 8.20 Hz, (c) at 1.46 Hz;
e at the carbody centre; m, above the front bogie; ¢, above the rear bogie.

To examine the influence of the dry friction force upon the steady-state
harmonic vibrations behaviour in the carbody, the diagrams in Fig. 9 are used,
which introduces the RMS acceleration in the reference points of the carbody. The
same values of the frequency induced by the track vertical irregularities are
considered, namely 1.17 Hz (diagram (a)), 8.20 Hz (diagram (b)) and 1.46 Hz
(diagram (c)), and different values of the maximum friction force within the range
of 0 ... 1000 N. The influence of the friction force component can be seen to
differently manifest as depending on the excitation frequency and the position of
the reference point. For the frequency corresponding to the carbody bounce (1.17
Hz), the increase in the maximum friction force leads to an obvious decrease of
the level of vibrations in the reference points at the carbody centre and against the
rear bogie and less significant against the front bogie. Consequently, for this
frequency, the increase of friction in the rubber element means a general decrease
in the level of vibrations in the carbody. At the carbody bending frequency (8.20
Hz), a higher maximum friction force corresponds to a higher vertical acceleration
in all the reference points of the carbody. In this situation, the stiffening of the
secondary suspension triggers a higher value of the level of vibrations in the
carbody. Should the excitation frequency coincide with the frequency of the
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carbody pitch, the increase of the maximum friction force leads to a lower
vibration level of the carbody in the reference points above the bogies.

Further on, the analysis refers to the influence of the friction force component
upon the random vibrations regime in the carbody induced by the track vertical
irregularities. Against each wheelset, the track vertical irregularities are described
by a pseudo-stochastic function, written as (Dumitriu, 2015b)

N
M, 541X, 41) = K F X (31)) DUk COSEQX; (1) + @) » FOr X g1y > O, for j = 2i-1,
k=0

(5.1)
with, x =x=Vt; x, =x-2a,,fori=1; x3=x-2a.; X, =x-2a, —2a,, fori =2,
(5.2)
and K, = . Nadm , (5.3)
max| f (X (j11)) DUk COS@X; (j11) +Pk)
k=0

where: K, is a scaling coefficient of the amplitudes in the track lateral
irregularities, nadm IS the maximum value of the track lateral irregularities as per
UIC 518 Leaflet; f(xj+1) is an adjustment function applied on the distance Lo, in

the form of
5
J -+

f(xj,(j+l)):[6(

where H(.) is the Heaviside’s unit step function; Uk is the amplitude of the spectral
component corresponding to the wave number Q, and o« is the lag of the spectral
component ,k* for which a uniform random distribution is selected. The amplitude
of each spectral component is established on the basis of the power spectral
density of the track irregularities described in accordance with ORE B176 and the
specifications included in the UIC 518 Leaflet regarding the track geometrical
quality described by the quality levels QN1 and QN2.
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Fig. 10. Influence of the maximum friction force upon the random vibrations regime:
(a) at the carbody centre; (b) above the front bogie; (c) above the rear bogie.
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Fig. 10 displays the influence of the friction force component upon the random
vibrations behaviour in the carbody, evaluated as based on the RMS acceleration
— an appreciation criterion for the ride quality (UIC 518 Leaflet, 2009), at the
velocity of 200 km/h on a QN2 quality track. Former, the highest level of
vibrations is noticed in the reference points above the two bogies. Latter, the
influence of the friction force has a different manifestation, depending on the
position of the reference point. At the carbody centre, the increase in the friction
force means a higher RMS acceleration. In the reference point located above the
front bogie, the RMS acceleration has a minimum for Fmax = 500 N. Against the
rear bogie, the level of vibrations goes down along with the going up of the
friction force.
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Fig. 11. Influence of the maximum friction force upon the ride comfort:
(a) at the carbody centre; (b) above the front bogie; (c) above the rear bogie.

The influence of the friction force component is also visible on the ride
comfort, as evaluated on the ride index comfort (ENV 12299, 1997), as seen in
Fig. 11. The influence of the friction force component depends on the position of
the reference point of the carbody in this case, as well.

At the carbody centre and against the front bogie, the best comfort index can be
obtained for a certain value of the friction force: Fimax = 400 N — at the carbody
centre and Fmax = 700 N — against the front bogie. Against the rear bogie, the
comfort index lowers along with the increase of the friction force. It is worth
mentioning that the level of vibrations is smaller at the carbody centre and higher
against the two bogies, irrespective of the value in the friction force.

6. Conclusions

The paper is a parametric study aiming to analyse the influence of the
nonlinear characteristics of the secondary suspension upon the behaviour of
vertical vibrations of the vehicle carbody in three reference points — at the carbody
centre and against the two bogies. The model of the secondary suspension herein
includes two nonlinear aspects derived from the component of the elastic force
coming from the mix coil spring — rubber, on the one hand, and from the
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component of the dry friction force developed in the rubber element, on the other
hand.

The study is based on the results from the numerical simulation underlying
a rigid-flexible coupled model of the vehicle, where the carbody is modelled as
Euler-Bernoulli beam. The free vibrations behaviour, the steady-state harmonic
behaviour of vibrations and of the random vibrations behaviour have been taken
into account.

The analysis has also applied to the manner in which the elastic
characteristic with a two-step variable stiffness influences the behaviour of the
non-damped free vibrations. The amplitudes and the time periods of the
displacements of the carbody are not equal, due to the higher stiffness of the
elastic component during compression, compared with expansion. Upon
examining the influence of the dry friction force upon the behaviour of free
vibrations, the conclusion was that the damping of the nonlinear system depends
on the amplitude and frequency of the free vibrations.

Based on the study of the vibrations regime of the carbody generated by
the track vertical irregularities in harmonic shape, the influence of the friction
force was visibly different in its manifestation, depending on the excitation
frequency. Therefore, the increase in the maximum friction force at the excitation
frequencies corresponding to the carbody bounce and pitch leads to a reduced
level of vibrations in the carbody. On the contrary, higher friction in the rubber
element means increase in the level of vibrations in all the reference points of the
carbody, at the excitation frequency corresponding to the carbody bending.

The analysis of the random vibrations behaviour has made obvious the
effect of the friction component upon the level of vibrations in the carbody, in
terms of ride quality and ride comfort. The influence of the friction component
has been proven to manifest differently in the reference points of the carbody.
Generally speaking, a higher friction force triggers an improvement in the ride
quality and ride comfort in the reference points against the bogies, points to be
considered critical when dealing with the level of vibrations in the carbody.
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