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NUMERICAL CALCULATION OF EIGEN FUNCTIONS AND
ENERGY LEVELS OF QUANTUM WELLS, BASED ON
BOUNDARY ELEMENT METHOD

Mahdi SOVIZI*, Mahdi MOHSSENI?

In this article, a numerical method based on Boundary Element Method
(BEM) has been applied for the calculation of the eigenvalues and eigenfunctions of
2D and 3D quantum wells. First, the eigenvalue equation has been converted into
boundary integral equation, using the Green’s theorem. Then, a numerical method
to calculate the eigenvalues of the differential equations is illustrated; and the
eigenvalues of some kind of potential well such as a circular, elliptical and a 3D
potential well are calculated. Then, the mutual effects of the two circular well have
been analyzed. Afterwards, to obtain the eigenfunctions, we solved such integral
equations, using BEM; and the corresponding eigenfunctions to an energy level of
an elliptical well are calculated. A very good agreement was observed among the
theoretical and numerical methods. The short performing time of calculations and
high accuracy are the dominant characteristics of BEM in comparison with the
other methods.

Keyword: Eigenvalue, Eigenfunction, Quantum Well, Quantum Dot, Boundary
Element Method.

1. Introduction

Eigenvalue equations are among the group of equations, which have the
variety of applications in sciences. Schrodinger equation in quantum mechanics,
radiation in electrodynamics, propagation of light trough waveguides and
photonic crystals, eigenfaces in image processing, vibration analysis and also
studying stress tensor in solid mechanics are just few examples from the
applications of these kinds of equations. Accordingly, solving this problem and
finding its corresponding eigenvalues and eigenfunctions always are very
important for scientists; Furthermore, they proposed lot’s of methods to solve this
kind of equations[1-16]. In this article, first, we report a method to solve the
eigenvalue and eigenfunction of some differential equations base on Boundary
Element Method. Then, using this method, some 2D and 3D quantum well such as
single and double circular, elliptical and spherical potential well are solved and its
energy levels and eigenfunctions are obtained.
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2. Theory

In this section, a method to solve the eigenvalue of some differential operators
base on Boundary Element Method is illustrated. Consider (X ) satisfy below

differential equation:

L(w(X))=-f (X) o)
where L is a differential operator in the form bellow:
L=L'-2=V(p(X)V)+q(X )-2 2)

In this expression p(X ) and q(X ) are arbitrary functions and 2 is a constant

parameter, which can be considered as an eigenvalue of the operator U'=L+2 if
f (X )=0. The corresponding Green equation to Eq. (1) is

LG, (XX )=-5(X -X) 3)

Statement of this point is necessary that the operator L just apply on X
components. The second form of modified Green theory expresses as[17]:
[, (O)L (X)) -y (X)L (o(x ))d0-

§,006) 00 22D () 220 g “

Q is a domain which is surrounded by closed boundary, T, and a/on is a
normal derivative perpendicular to the boundary r. By considering Egs. (1) and
(3) and also considering @®(X )=G,(X,X '), the Eq. (4) can be rewritten as
follows:

[.6. (XX (X)+p (X )5(X =X )dQ=

006, (x x ) 2Dy () XD ©

Where, the points X and X' are known as the integration and observation
points, respectively. By using the characteristics of Delta function, the second
term in the left hand side of Eq. (5) will simplify to:

[Lw(X)s(x =X )dQ=C (X (X" (6)
By choosing f (X )=0 and putting (X )=1, Coefficient C (x ') will obtain as
[18]:
oG, (X, X ")

p dar (7)

C(X)==_p(x)
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If the observation point, X', lies outside the boundary T, the numerical
amount of ¢ (x ) will vanish; and if it places inside, its amount will be equal to

one; but, if it locates on the boundary, its amount should obtain by Eq. (7).
Substituting Eq. (6) into Eq. (5) yield:
C(X Y (X)=[ f(X)6,(X X ")d+

@rp(x) Gi(x’x/)awa&X) W dr ®)

-~y (X)

Considering Eq. (8), it is obvious, providing that the amount of (X ) and
oy (X )/on be definite on the boundary I and also by choosing the appropriate

Green function which satisfy Eq. (3), we will be able to calculate the amount of
w(X) on any arbitrary observation points. Therefore, solving Eq. (1) will shorten

just to find the amount of (X ) and ay (X )/an on the boundary r. As stated in

introduction, in the most of the sciences such as mathematics, physics and
engineering as well as in the most of the problems, finding the eigenvalues and
eigenfunctions of a differential operator like ['=L+4 are in demand. To reach
this aim, we will investigate just equations, in which, f (X )=0. These equations

are well-known as homogeneous equations and express as follows:
L(w (X)) =L (w(X))=2w (X )=0 ©
In fact, this equation is an eigenvalue equation of operator L', and represent in
this way:
C'(w (X)) =2y (X ) (10)
w(x ) and 2 are eigenfunction and eigenvalue of operator L', respectively.

Choosing the appropriate p(X ) and q(X ) will lead to convert Eq. (10) to the

set of well-known equation in physics, which is stated in table 1. By considering
Eq. (8), the corresponding integral equation to Eq. (10) yields as follows:
) N AoV (X) aG, (X, X")
C(Xw(X)=¢ p(X)[G, (X X )= (X )= (1)

Eq. (11) is an integral equation and should solve by considering the boundary
conditions. In this equation, in addition to (X ) and ay (X )/an on the boundary

I, the amount of 2 is undetermined as well.

Follows, we will investigate a problem that is applicable in photonic crystals,
fiber optic photonic crystals, quantum potential wells and in micro optic elements.
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Consider two domains, @, and Q,, which are separated from each other by
the boundary . The govern differential equation on (X ) in these two regions
are:

L'y, (X )=y, (X ), X e (12-3)
LA"//z(X )=y, (X) . X eQ, (12-b)
By considering the below boundary condition on the boundary 1 :
v, (X )=ay(X) (13-a)
61//2(X ) B Gl//l(X ) )
an =/ an (13-b)

and using the Eqg. (11), the corresponding integral equations to the eigenvalue
equations (Eq. (12)) will yield as follows:

C (X Jya(X )=

¢, p(x ){Gu(x X ')5‘/’;_?()_%()( )W}dr (14-2)
C (X, (X )=
biolx ){GM(X * ’)W;T(:()_WZ(X )%Xz’xr)}dr

G,, and G,, are Green functions of operator L in regions @, and Q,
respectively. Substituting boundary conditions (13) in recent equation and using
alon, =-o/on will simplify it:

C(X )y (X")=

¢ p(x )[—ﬂez,ﬂ(x X ')%m%(x )W}df (14-b)

To solve the coupled integral Egs. (14-a) and (14-b), first, should specify the
amount of the eigenvalue 2 ; then, calculate the numerical amount of y, (X ) and

dyy(X )/en on the boundary . To reach this goal, we will convert these

equations to algebraic equations, using an ordinary approximation in BEM. In this
method, the boundary T will divide to some finite boundary elements and also the
integral over the boundary T will change to the integral on the each boundary
elements by considering this equation:

$ (Jar- Z J, Qar (15)

N is the number of boundary elements on the boundary r. To use the Constant
Element Approximation (CEA) [18], we consider one point on every boundary
element as a node and show their positions by X, . Also, we ignore the variations
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of y,(X) and oy, (X )/on on a boundary element according to CEA. These
approximations express as follows:

‘/’I(X )|ri ~ l//l(X i ): R, (16-a)
a‘/’l(x )| za‘//l(xi)zs_ (16-b)
on |r on '

After meshing T and choosing one node on every element and using Egs. (15)
and (16), the Egs. (14-a) and (14-b) will approximated to the forms below:

C(Xp(X )=
i{si J, P(X)8., (X X )dar-R,|_p(X )Wd r} 17-2)

C(Xy2(X)=
i{—si Li Bp(X)G,, (X X )T +R, Li ap (X )Wd r} (17-b)

By describing follows integral relations:
1 (15X 7)== p(x )wdr (18-a)
s (15X ) =+[_ p(X )Gy, (X X ")dT (18-b)
3 (i) =+] ap(X )%:’X’)dr (18-C)
3o (isX ) ==[ Bp(X )G, (X X ")dT (18-d)
the Eq. (17) will converted to these forms:

C (X Yo (X )= SR, (15X )4, 14 (15X ) (19-a)
C (X )y, (X ’):iRiJR(i;X’)+SiJs(i;X’) (19-b)

i=1
In Egs. (19-a) and (19-b), the observation point X 'is taken inside the regions
Q, and Q,, respectively. In order to solve the Eq. (19), consider two points, one
inside the region Q, and the next one inside the region Q,. Then move these two
points toward the common node X ; on the common boundary of two regions. By
Doing this action the Eq. (19) will convert to these forms:

C(xj)y/l(xj):iRilR(i;xj)Jrsils(i;xj) (20-a)

c(xj)yxz(xj):iRiJR(i;xj)+siJs(i;xj) (20-b)
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Using Eqg. (13-a) and (16-a), the Eq. (20) will convert to the set of
homogenous equations:

iRi(lR(i;xj)—(sﬁc(xj))+si|5(i;xj):o (21-a)
iRi(JR(i;xj)—@jac(xj))+siJs(i;xj)=0 (21-b)

By Choosing j €(1...N ), these equations will construct 2N sets of homogenous
equations:

A% =0 (22)
A is the coefficient matrix of these set of equations and its elements state as:
A =1k (i3 )-8,C (X ) (23-a)
AN =1 (i5X ) (23-b)
AN =3q (i3X )= 8;aC (X ) (23-c)
A =35 (15X ) (23-d)
i,je@®..N)

Upper index, 4, denote that the numerical amount of each element in this
matrix is depend on the eigenvalue 4. Dependence of these equations to 4 is
arising from the dependence of Green function to this value. The column matrix
Y is considered in the form of below:

Y, =R,
Yin =3,

(24)

In order to have the non-zero answer for these set of equations, below
condition should satisfy:

det(w) -0 (25)

Note that Eqg. (25), will not result in characteristic equation; also, the
complicated dependence of each element of matrix A*” to the parameter 4 arise
from dependence of Green’s function to 4. Therefore, to solve the Eq. (25) and
determine the amount of 42 we used a method which is so similar to the bisection
method which uses to find an algebraic equation roots. In this method, first, to
obtain the Eq. (25) roots, we should determine the appropriate intervals that Eq.
(25) just has a single root in each one. To specify these intervals, we give some

values to 4 and calculate the det(A“)). Determining the sign of det(A“)), enable

us to specify the allowable intervals. Then, we can find the roots of Eg. (25) in
these intervals using bisection method. We show the roots of Eq. (25) by 4, . Note

that whenever each amount of 4 determined, the corresponding elements of A
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should find from Eq. (23) simultaneously. After determining 4, , we are able to

obtain the direction of its corresponding vector Y ® in 2N-dimension complex
space, using Eq. (22). Afterwards, by normalizing the vector Y ©, we can
calculate it completely. Of course, in spite of finding Y ®’, the eigenfunctions of
differential equations of Eg. (12) are still remained to determine. We are able to
calculate numerically these eigenfunctions using Eqg. (19). Then, numerical
amount of y,(X") or y,(X ') can be calculated by choosing X' in any arbitrary
point inside the regions of @, (Eq. (19-a)) or Q, (EQ. (19-b)). One of the dominate

characteristics of BEM is that, after determining the amount of desire functions on
the boundaries, calculating the amount of that function in every arbitrary point
inside the domain is possible. The other characteristic of this method is that, in
necessary cases we are able to derivate analytically from functions y, (X ') and
w, (X ") with respect to X ', using Eq. (19). Since in BEM, meshing is being done
just on the boundary of the domain, then, performing time of the calculation is too
short and also the accuracy is too high, in comparison with the other methods.
3. Numerical Results

In this part, due to investigate the correctness and preciseness of the
mentioned method we examine some numerical examples. First, we consider a
particle with mass m and electrical charge q which is lain in a potential well with

circular cross section:
V, p<a
V(p)=1 ' 27
R (27)
that v, <v, and a is the radius of the potential well. By solving the time

independent Schrodinger equation, eigenfunctions of the particle obtained as
follows:

AR (Kip)exp(imp) p<a
vulp ’¢)‘{Bme(sz)exp(im¢> p>a (28)
which J_ and K, are mth_order Bessel function of first kind and mth_order
modified Bessel function of second kind, respectively; and K, =./2m(E -V,)/#?

and K, =2m{,-E)/#* . Applying the continuity boundary conditions to the state
function and its normal derivative on the boundary of the potential well, the
amount of E and B, /A, ratio are calculable. As an example, this problem is

solved by the method which is mentioned in this article and energy spectrum of
the bounded particle is calculated. The numerical answers are compared for
different values of v, and v, and a very good accommodation observed between

two results. Table 2 shows theoretically and numerically calculated results.
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In table 2, numerical results of the energy levels are calculated by 1072ev
accuracy; increasing the accuracy to 107%V will vanish the slight difference
between the numerical and theoretical values. In Fig. 1, the behavior of det(A)

with respect to energy of electron in a circular potential well is shown for the
values expressed in table 2. As is clear, the det(A) vanishes in the position of each

energy levels.

To investigate the energy level degeneracy and also investigate the
perturbation effect on energy level gaps, we change the cross section shape of
potential well to an ellipse with radii of a=2.2A° and b =1.8A". Analytically
calculating the energy levels of potential well with arbitrary cross section is too
hard. However, using the mentioned method in this article, the time duration and
accuracy of calculating the energy levels are independent to the shape of the cross
section of the well. In table 3, the Energy levels of an electron in the elliptical well
(for the given parameter stated in description of table 2) are expressed.

The displacement and splitting of the energy levels of a particle in an elliptical
potential well in comparison with a circular potential well are shown in Fig. 2.
Behavior of det(A) is shown in Fig. 1 with respect to energy of the particle as

well. In Fig. 1, the splitting of energy levels is completely clear.

Afterwards, the probability density of existence of an electron in the elliptical
potential well for the forth level (13.943 eV) is calculated (Fig. 3). The
dimensions of the elliptical potential well considered 1.5 and 2.5 A° and the
amount of the potential inside and outside it are chosen zero and 20 eV
respectively.

As a next problem, the energy levels of a particle in two circular potential well
adjacent to each other, with characteristics that expressed in the description of
table 2, are calculated. Radius of each well and distance between their center are
considered as a=2A° and d =44A", respectively. Energy eigenvalues of the
particle through the double potential well are given in table 4. To investigate the
mutual effect of two wells on each other, we increased the distance between the
centers of two wells gradually and we calculated the energy spectrum of the
particle in each level. We saw that by increasing the distance between the centers
of two wells, the number of energy levels are decreased from 12 to 4 levels that
the numerical amount of these four levels are completely match with energy levels
of the sole circular potential well which expressed in table 2. In the last stage, the
distance between the centers is considered as d =14A°. As we expected, by
increasing the distance of two wells, not only the well’s wave function haven’t
had any overlap anymore but also each well behave as an isolated one.
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Finally, the energy levels of a particle in a 3D potential well are calculated.
One application of this problem is to find the energy spectrum of electrons and
holes in semiconductors with zero-dimension (quantum dots). The valance
electrons of atoms in a nano meters semiconductor are bent to just inside the
volume of the nano particle. This limitation causes the creation of distinct energy
levels that they behave as energy levels of an atom. To appear these levels, these
kinds of nano particles are named as artificial atoms. In the simplest
approximation, the quantum dot can be considered as a spherical potential well
that the electrons are bent through the potential well. We consider this
approximation in spherical coordinate as follow:

V, r<a
V(r)_{vz r>a (29)

Using the mentioned method in this article, we calculate the energy levels of

bent electrons. The numerical results are obtained considering V,=0eV ,

V,=50eV and a=2A°. Results are shown in table 5.

4. Conclusion

In this article, based on BEM a numerical method has been applied to
calculate the eigenvalues and eigenfunctions of some common differential
equations in sciences, especially in physics. First, the energy levels of a particle in
a circular potential well are calculated, analytically and numerically; and a very
good agreement is observed between the two results. Then, the eigenvalues of the
elliptical potential well are calculated. Also, the corresponding eigenfunctions to a
specific energy level of an elliptical potential well have been obtained. Then, the
mutual effect between two circular potential well are investigated. We show that
by increasing the distance between the centers of two wells gradually the number
of energy levels start to decrease to the energy levels of a sole circular well.
Finally, the energy levels of a quantum dot are calculated.

10.0 - —T !
Circular
-oeooeo o Elliptical

det(A) (A.U.)

0 500 1000 1500 2000
Energy of Particle (0.01eV)

Fig. 1: behavior of det(A) with respect to the energy of particle
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Fig. 2: energy levels of a particle in circular (A) and elliptical (B) quantum wells.

[
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Fig. 3: The probability density of existence of the electron in the elliptical potential well.

Table 1
Values of p(X ), q(X ), f (X ) and A for some different partial differential equations.
Equation p(X) q(Xx) A f(X)
Laplace 1 0 0 0
Poisson 1 0 0 #0
Homogeneous
Helmholtz ! 0 -K? 0
Inhomogeneous
Helmholtz ! 0 -K? #0
Schrodinger 1 —2mV (X)/h* | —2mE / #? 0
Heat K(X) 0 0 Q(X)
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Table 2

Analytically and numerically calculated amount of energy levels of a particle for m =m, (m,
is electron mass),V, =0eV ,V,=20eV and a=2A".

a@v) | V) | sEV) | aEv)
Analytical 3.666 9.122 15.890 17.596
results
Numerical 3.674 9.14 15.91 17.6
Results
Table 3

Energy levels of a particle in an elliptical quantum well with radii a =2.2 A and b=1.8 A’
and for the given values described in the description of table 2.

&(ev) £(eV) £3(ev) e4(eV) &5(eV) g6 (eV)
3.47 8.57 10.00 15.17 16.13 18.64
Table 4

Energy levels of the electron in two circular potential well adjacent to each other with respect to
eV and for different distance between their centers.

d=44A"| d=50A"| d=6.0A"| d=7.0A°| d=8.0A"| d=9.0A" | d=14.0~°

1 3.512 3.635 3.674 3.67 3.67 3.674 3.674

2 3.798 3.71 9.138 9.138 9.14 9.14 9.14

3 8.478 8.928 15.825 15.9 15.91 15.91 15.91

4 9.054 9.115 15.865 15.92 17.58 17.59 17.6

5 9.214 9.16 15.96 17.55 17.624 17.61

6 9.726 15.597 16 17.66

7 15.2 15.727 17.485

8 15.456 16.105 17.76

9 16.38 16.213

1 16.508 17.36

0

1 17.252 18.09

1

1 18.676

2

Table 5
Energy levels of the electron in a spherical potential well.
&(ev) £(eV) £3(ev) e4(eV) &5(eV)
9.5 19.4 31.8 37.6 46.6
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