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LOCALIZATION AND MAPPING IN DYNAMIC
ENVIRONMENT USING MOVING OBJECTS
SEGMENTATION FOR AUTONOMOUS DRIVING

Bo WANG?, Hong BAO!*, Cheng XU*

Simultaneous localization and mapping (SLAM) is a key technology for
localization in autonomous vehicles. This method only applies to the static
environment; it limits the application of dynamic urban environments that contain
many vehicles and pedestrians. In this paper we propose a visual SLAM system for
dynamic urban environments. It has the capabilities of dynamic objects
segmentation and removal. Localization and mapping are implemented by ORB-
SLAM2. The difference is that we have a special pre-processing of the input images.
We use instance-aware semantic segmentation to detect the objects, such as cars.
Then use sparse optical flow to classify moving objects and potentially moving
objects, such as driving cars and parked cars. The moving objects are removed
directly, and potentially moving objects are utilized in the pose estimation section,
but their corresponding landmarks are deleted in the mapping section, which is
useful for loop-closure detection and relocalization. We evaluate our system on the
public KITTI and TUM dataset. The results demonstrate that our system can work in
highly dynamic urban environments and outperforms the accuracy of the state-of-
the-art visual SLAM system.

Keywords: SLAM; dynamic urban environments; objects segmentation; sparse
optical flow

1. Introduction

Simultaneous localization and mapping (SLAM) have been a popular
research area in computer vision and mobile robotics since the 1980s [1]. In an
unknown environment, robots carrying sensors can utilize the SLAM technology
to estimate their position and orientation and build the environmental map.
Recently, with the rise of autonomous driving, unmanned logistics, as well as
virtual and augmented reality, SLAM technology has been received more
attention. There are many sensors that can be used for localization, such as: Light
Detection and Ranging (LIDAR), Global Positioning System (GPS) and Inertial
Measurement Unit (IMU). Among them, LIDAR is very expensive and difficult to
popularize in a short time. GPS has the disadvantage of large error (around 10

1 Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing,
100101, China, e-mail: wangbo161819@gmail.com; baochong@buu.edu.cn; xc-f4@163.com
* Corresponding author: Hong Bao


mailto:wangbo161819@gmail.com
mailto:baohong@buu.edu.cn
mailto:xc-f4@163.com

178 Bo Wang, Hong Bao, Cheng Xu

meters) and cannot meet the requirements of lane level localization. There is a
problem of the accumulated error in the IMU, and long-term use will bring a large
error. Camera has the advantage of low cost, portability and rich visual
information, so visual SLAM has become popular. In particular, in this work we
focus on monocular and stereo camera.

In order to achieve practical application, visual SLAM has many key
issues to be solved. SLAM requires that the environment in which the robot is
located is static, but in reality, there are many dynamic objects in the environment,
such as moving vehicles and pedestrians. These dynamic objects reduce the
localization accuracy and the quality of the map. Although the Random Sample
Consensus (RANSAC) algorithm can eliminate mismatched feature points caused
by dynamic objects, it fails when there are many dynamic objects and occupying a
large scene.

Visual SLAM has many system pipelines, including feature-based
methods and direct methods. Feature-based methods [2, 3, 4, 5] minimize the
reprojection error, and can only generate a sparse map, which cannot be used for
further obstacle avoidance and navigation. Direct methods [6, 7, 8] minimize the
photometric error and build a semi-dense map for a better interactive experience.
In recent years, SLAM systems incorporating cameras and IMUs [9, 10, 11] have
achieved better accuracy robustness, it can solve the problem of scale uncertainty
caused by monocular camera, weak texture scene localization and camera motion
blur.

None of the above classic and mainstream methods address the dynamic
objects like cars, pedestrians and bicycles. More strictly speaking, dynamic
objects include moving objects and objects that are now stationary and will move
in the future. Bescos et al. [12] remove these objects, regardless of moving or
static, which reduces the localization accuracy of scenes with more static objects
such as parked cars. Barsan et al. [13] is the same as the above method, but the
static object is removed from the map to improve the reusability of the map.

In this paper, we propose a method to deal with dynamic objects in visual
SLAM. We have a special pre-processing of the input image captured by camera.
We use a Convolutional Neural Network (CNN) to segment the dynamic objects
in the images and then unify their pixel values to achieve the purpose of not
extracting features on them. To distinguish moving and static objects, we track
them and then use the sparse optical flow to classify them. For moving objects,
remove them directly. After removing the moving objects, the images are input to
the ORB-SLAMZ2 system for localization and mapping. In particular, static objects
are used in the pose tracking phase to improve localization accuracy, but the
corresponding map points are deleted when the map is built to improve the
accuracy of the relocation. In the rest of the paper, we discuss related work in
Section Il, we describe our system in Section Ill, then present the evaluation
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results in Section IV and end with conclusions in Section V.
2. Related work

Robust visual SLAM in dynamic environment generally performs motion
segmentation prior to localization and 3D reconstruction. Using the motion
segmentation method to detect moving objects in images, because localization and
3D reconstruction only utilize the image other than moving objects.

A. Background-Foreground Initialization.

Background-Foreground Initialization assumes that the system has prior
knowledge about the environment and leverages that information to segment static
and dynamic features [14]. Zhang et al. [15] employ 3-D motion segmentation
method to segment the feature point trajectories into different motions. Lee et al.
[16] detect humans from recorded video frames of a moving camera and tracks
the humans in the V-SLAM-inferred 3-D space via a tracking-by-detection
scheme. Babaee et al. [17] use CNN to perform the segmentation estimate
background model from video.

B. Geometric Constrains.

Standard visual SLAM systems use outlier rejection algorithm by
geometric models, such as by RANSAC [18]. Zou et al. [19] leverage the
reprojection error, they project features from the previous frame into the current
frame and measure the distance from the tracked features. If the distance exceeds
a certain threshold, the feature point is treated as an outlier.

C. Optical Flow and Scene Flow

These literatures [20, 21] compute optical flow of dense stereo to detect
moving objects. Alcantarilla et al. [22] segment moving objects by means of a
dense scene flow (3D version of optical flow) representation.

D. Deep learning.

Based on deep learning, Lin and Wang [23] accomplish motion
segmentation the images taken by a moving stereo camera. Fully Convolutional
Network [24] is used to take input of arbitrary size and produce correspondingly-
sized output with efficient inference and learning. Bescos et al. [12] uses Mask-
RCNN and multi-view geometry to segment moving objects, and inpaint the
frame background that has been occluded by such objects. Barsan et al. [13] uses
both instance-aware semantic segmentation and sparse scene flow to classify
objects as either background, moving or potentially moving.

All of the above methods can only detect moving objects. For temporarily
static objects, they cannot appear in the map, but can be used during pose
tracking. Bescos et al. [12] treats all detected objects as moving objects, this
results in a decrease in the accuracy of scene localization in which a plurality of
temporarily static objects are located. Barsan et al. [13] classifies dynamic objects
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and temporarily static objects, and does not process the pose tracking, but
reconstructs the dynamic objects and the temporarily static objects separately in
the 3D reconstruction. The proposed method uses the instance-aware semantic
segmentation and sparse optical flow to simultaneously detect moving objects and
temporary static objects and uses the features of temporary static objects in the
position tracking but deletes the corresponding map points when the 3D
reconstruction.

3. System description

Fig. 1 show an overview of our proposed system. Input the raw image into
the Mask R-CNN [25] to generate an image with a dynamic object mask. This
step does not distinguish whether the dynamic object is moving or movable. The
optical flow [26] of the multi-frame segmented image is calculated, and the
moving object and the movable object are classified. The image after removing
moving object is input to a state-of-the-art SLAM system to obtain a camera's
motion trajectory and a sparse map with delete movable objects of the
environment.
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Fig. 1. An overview of system pipeline. The input image sequence is taken by a monocular or
binocular camera.

Next, we will describe the details of each of the main modules.

A. Object segmentation and tracking

In order to distinguish the dynamic part and the static part of the image
more finely, we use pixel-wise semantic segmentation to segment the dynamic
objects from the image. In our experiments we use Mask R-CNN, a state-of-the-
art deep neural network architecture for pixel-wise semantic segmentation. The
input of Mask R-CNN is the original RGB image, and the output is segmentation
masks for each instance of an object in the image (Fig. 2). We use pre-trained
weight for MS COCO to segment objects, mainly cars, pedestrians and buses.

In order to determine whether dynamic objects are moving or temporarily
static, we need to track them across multiple frames. Instance labels are useful for
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tracking different objects and inspired by [13]. We associate new detection with
existing tracks by ranking them based on the Intersection-over-Union (loU) score.
The same or similar loU scores are detected as the same object, otherwise it is a
new object. loU is simply an evaluation metric. It is defined as
Ag
foU = 2* (1)

174

A, is the area of overlap between the inter-frame bounding box. A4, is
the area of union between the inter-frame bounding box.

(a) Original image. (b) Instance-aware semantic segmentation.

(c) Masks. (d) Removed masks.

Fig. 2. Picture (a) is an input RGB image. It can be seen that there are many cars driving on the
road. Picture (b) is the output of the instance-aware semantic segmentation. Picture (c) is the
masks of the segmented instances. Picture (d) is the result of removing the masks from the original
image.

B. Sparse optical flow

Optical flow describes the motion of objects between frames. The optical
flow method infers the moving speed and direction of the object by detecting the
change of the intensity of the pixel of the image with time. In order to reduce the
computational complexity, we use the sparse optical flow to calculate only the
optical flow of the representative pixel points in the segment and the static part of
the image. The car is rigid, and the speed and direction of the pixels are the same,
so we can select a small number of pixels with obvious features on the segmented
objects. By comparing the velocity and direction of the segmented objects and the
static portion of the pixels, we can determine whether the segmented objects are
motion or static.

For a 2D+t dimensional case a pixel at location (x,v.t)

with intensity I (x, v, t) will have moved by AxAx, Ay, and At At between the two
image frames, and the following brightness constancy constraint can be given:
Ix,y.t) = Hx + Ax,y + Ay, £ + At ) 2
Assuming the movement to be small, the image constraint at I (x, v, t) with
Taylor series can be developed to get:


https://en.wikipedia.org/wiki/Taylor_series
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ai 21 a1
I+ Ax,y + Ayt +4t) = I0ey.t) + —Ax + oy + 58t 3
From these equations it follows that:
.y, By, B
kg h 5 =0 4
where V.. V,, V...V, are the x and y components of the velocity or optical
grar a1 ar ar ar . . .
flow of I(x,v.t) and ——, — —and — — are the derivatives of the image at
Bxdx’ Ay Aw At At

(x, v.t) in the corresponding directions.

Fig. 3 shows the optical flow of an image. First, extract some key points
on the image and then track them in the next sequence, which represents the
motion trajectory of the key points. The static object moves in the opposite
direction to the camera, and the key points on the car have no trajectory,
indicating that the car is moving in the same direction as the camera. The core of
the optical flow method used here is to judge whether the object moves by
comparing the moving direction and speed of the key points.

— - —

Fig. 3. Sparse optical flow. The dot represents a key point, and the line segment represents a
motion trajectory of a key point.

C. Handling moving and movable objects

By the object segmentation and optical flow method, we determine
whether the segmented objects are moving or static and mark them. For moving
objects, we remove them directly from the image. For objects that are now static
and likely to move in the future, we use them in pose estimation, but delete their
corresponding map points when building the map. Deleting objects (such as cars
parked on the side of the road) that should not exist on the map can help improve
the accuracy of relocation when reusing the map. In the long-term SLAM, when
we return to a certain position, the previously stationary object has now left, and
we can use the marker information of the stationary object to improve the success
rate of place recognition.

With the optical flow method, we judge that the instances in Fig. 2(c) are
moving, so they are removed from the original input image. On the contrary, the
instances in Fig. 4(c) are static. We don't do the removal process, just save their
semantic information.
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(@) Original image.

(c) Masks. (d) Do not remove the masks.
Fig. 4: Picture (a) is an input RGB image, it can be seen that there are many cars parked on the
road. Picture (b) is the output of the instance-aware semantic segmentation. Picture (c) is the
masks of the segmented instances. Picture (d) is the original image without remove the masks.

D. Localization and mapping

Visual SLAM is mainly divided into feature-based methods and direct
methods. Since the direct methods are greatly influenced by illumination
variations and speed, a more robust feature-based method is used in our
experiments. In some scenes with more dynamic objects, after removing the
moving objects, fewer feature points are available, and the pose tracking fails. In
order to improve the robustness of the system in low-textured environment, in
addition to extracting the point features in the image, we extract the line features
at the same time (Fig. 5).

(b)
Fig. 5. Extract point features and line features of the image. Picture (a) improves the accuracy and
robustness of the system by extracting more features. Picture (b) compensates for the adverse
effects caused by the reduction of point features by extracting line features.

We input the images of the removed dynamic objects and with the
stationary object markers into the state of the art ORB-SLAM2 [18] and PL-
SLAM [27], and then verify the effectiveness of our system by comparing the
localization accuracy with the original system on the KITTI and TUM dataset.

4. Experiments

In order to evaluate the performance of the system, we have tested our
system on the well-known autonomous driving dataset KITTI Vison Benchmark
Suite [28] and compared to other state-of-the-art SLAM systems.



184 Bo Wang, Hong Bao, Cheng Xu

All the experiments have been run on an Intel Core 17-6800K CPU @
3.40GHz and 16GB RAM with an NVIDIA GeForce 1080Ti GPU. This hardware
configuration is similar to that used in state-of-the-art papers, so we use the results
published in the paper directly for comparison. Due to the randomness brought by
the system, we have run each sequence over 10 times and show always median
results.

The sparse map we generated using feature-based method has no obvious
structural features so that cannot be used to qualitatively and quantitatively
evaluate the effect of removing dynamic objects. Therefore, the localization
accuracy is mainly discussed in this paper.

A. KITTI dataset

The KITTI odometry benchmark consists of 11 sequences (00-10) with
ground truth trajectories collected by the camera-loaded car in urban and highway
environments. Sequence 10 has a lot of cars on the road. Sequence 00 has a lot of
cars parked on the roadside. After processing these cars, we can verify the
effectiveness and advantages of our system. Table | shows a comparison between
our results and state-of-the-art ORB-SLAMZ2 in the eleven sequences.

Table |
COMPARISON OF ACCURACY IN THE KITTI DATASET
ORB-SLAM?2 Our method

Sequence trel Rrel tabs trel Rrel tabs
(%) (deg/100m) (m) (%) | (deg/100m) | (m)

00 0.70 0.25 1.3 0.65 0.24 1.3
01 1.39 0.21 10.4 1.35 0.20 9.8
02 0.76 0.23 5.7 0.81 0.26 6.1
03 0.71 0.18 0.6 0.75 0.18 0.6
04 0.48 0.13 0.2 0.45 0.11 0.2
05 0.40 0.16 0.8 0.39 0.16 0.8
06 0.51 0.15 0.8 0.52 0.20 0.8
07 0.50 0.28 0.5 0.48 0.28 0.5
08 1.05 0.32 3.6 1.05 0.29 3.4
09 0.87 0.27 3.2 0.91 0.28 2.5
10 0.60 0.27 1.0 0.65 0.29 1.1

We use two different metrics, the absolute translation RMSE tans proposed
in [29], and the average relative translation tr and rotation r errors proposed in
[30].



Localization and mapping in dynamic environment using moving objects segmentation for... 185

ground-trath ground-truth
estimated esbimmated

L]

Fim)

100 f 1000

100 200 100 0 100 0 300 1] 500 1000 1500
X (m) x (m)

Fig. 6. Two examples of estimated trajectories with our system (in solid line) and ground-truth in
dotted line.

Our system outperforms ORB-SLAM2 in most sequences. In particular,
for the sequences KITTI 01 and KITTI 04 with more dynamic objects, our system
accuracy is significantly improved. The key is that we remove the dynamic object
and no longer extract the feature points on it. These wrong feature matching will
reduce the accuracy of the tracking. For sequences with fewer dynamic objects,
our system accuracy is not stable enough, and the accuracy of some sequences
(KITTI 09, KITTI 10) is reduced. This is because we use the optical flow method
to judge whether the object is moving, and the optical flow method has the
assumption of small motion. However, the speed of the vehicle using the KITTI
data set is faster, which may reduce the accuracy of the optical flow method. If a
large number of static objects are removed as judged as dynamic objects, the
available feature points are reduced, and the accuracy of the system is reduced.
However, we obtain the semantic information of the image through segmentation,
which can provide effective constraints in loop detection and long-term
application.

Fig. 6 shows three examples of estimated trajectories in KITTI dataset.

B. TUM RGB-D dataset

The TUM RGB-D dataset [19] containing RGB-D data and ground-truth
data and is an important dataset for evaluating camera localization accuracy. In
particular, in some sequences of dynamic objects, some people move in small
areas in front of the camera or walk in a wide range, which can effectively test the
performance of our system. We use the absolute trajectory RMSE [19] as the error
metric of our experiments. Table 1l shows the median results over 10 executions
in each of the 5 sequences selected.
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Table 11
COMPARISON OF ACCURACY IN THE TUM RGB-D DATASET

Absolute KeyFrame Trajectory RMSE
Sequence ORB-SLAM2 Our method
fr3_sit xyz 0.79 cm 0.75cm
fr3_sit_halfsph 1.34 cm 1.28 cm
fr2_desk person 0.63 cm 0.60 cm
fr3_walk xyz 1.24 cm 1.08 cm
fr3_walk halfsph 1.74 cm 1.59 cm

Compared to the KITTI dataset, the accuracy of our system is generally
higher than that of ORB-SLAM2 on the TUM dataset. This is because the TUM
dataset is collected by a human hand-held camera, and the relative displacement
between frames is small, making the optical flow method more reliable.
Moreover, our system is more advantageous when there are highly dynamic
objects in the scene.

5. Conclusions

We have presented a robust visual SLAM system for dynamic urban
environments. Our system uses a deep convolutional neural network for instance-
aware semantic segmentation to segment dynamic and potentially dynamic
objects from the original image. Sparse optical flow is used to identify the
dynamic and potentially dynamic objects. Localization and mapping is building
on the ORB-SLAMZ2. The difference is that the input image removes the moving
objects. Experiments on the KITTI and TUM dataset show that our system
accuracy is better than ORB-SLAMZ2, especially in scenes with more dynamic
objects, so that our system can be applied to large-scale urban dynamic
environments. The original ORB-SLAMZ2 is running in real time, and because the
semantic segmentation takes more computation time, the whole system cannot
meet the real-time requirements of the automatic driving. Moreover, the optical
flow method is prone to failure when the motion between frames is large.
Therefore, future work is to speed up the calculation of the semantic segmentation
module and use the scene flow [31].
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