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MAXIMAL INVARIANT SUBSPACES AND OBSERVABILITY OF
MULTIDIMENSIONAL SYSTEMS. PART 2: THE ALGORITHM

Valeriu Prepeliti!, Tiberiu Vasilache?

The paper is connected with the Geometric Approach, a trend which enriched the
field of System Theory with new notions and techniques. An algorithm is proposed,
which determines the maximal invariant subspace with respect to a finite number of
commuting matrices and which is included in a given subspace. The complete proof of
the algorithm is provided. This algorithm can be used in the study of the observability of
multidimensional (nD) linear systems and to determine the subspace of the unobservable
states. A Matlab program is proposed, which implements the algorithm and computes

an orthonormal basis of the mazximal invariant subspace.
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time systems.
MSC2010: primary 93B07, 93C35; secondary 93C05, 93B25, 93C55.

1. Introduction

The Geometric Approach is a trend in System and Control Theory which has pro-
vided simpler and elegant solutions for many important problems, such as controller syn-
thesis, decoupling, pole-assignment, controllability, observability, minimality, duality, etc.
The history of the Geometric Approach started with the papers of Basile and Marro (see
[3]) and was developed by Wonham and Morse [10], Silverman, Hautus, Willems et al. The
cornerstone of this approach is the concept of invariance of a subspace with respect to one
linear transformation.

In the past four decades a lot of published paper and books have been designed to
the theory of multidimensional (nD) systems, which has become a distinct and important
branch of the systems theory. The reasons for the increasing interest in this domain are
on one side the important application fields (signal processing, image processing, computer
tomography, gravity and magnetic field mapping, seismology etc.) and on the other side the
richness and significance of the theoretical approaches, some of them being distinct from

those concerning the theory of 1D systems.
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Various state space 2D discrete-time models have been proposed in literature by
Roesser [9], Fornasini-Marchesini [4], Attasi [1] etc.

This paper extends the Geometric Approach techniques to present an algorithm for
determining the maximal subspace which is invariant with respect to a finite number of
commutative matrices and is included in a given subspace. It completes [8] by providing the
proof of this algorithm and also by determining recurrently the maximal invariant subspaces
w.r.t. the first one, two etc. matrices. When the matrices represent the drifts of a multidi-
mensional linear system and the subspace is the kernel of the output matrix, this algorithm
can be adapted to determine the subspace of unobservable states, with applications in the
study of the properties connected with the concept of observability [6]. The dual algorithm
which determines the minimal invariant subspace that includes a given subspace (e.g. the
image of the input matrix) is described in [7].

Section 2 gives the description of the maximal invariant subspace with respect to
r > 2 commuting matrices which is included in a given subspace. An algorithm which
calculates this maximal subspace is proposed and its proof is developed. This algorithm is
a generalization of the 1D method of G. Marro (see [5]). It was applied (without proof) in
[8] to determine the subspace of unobservable states of a multidimensional (rD) system.

Section 3 provides a Matlab program that implements Algorithm 2.1 presented in
Section 2 which computes an orthonormal basis of the maximal invariant subspace. An
example illustrates the advantages of the proposed method.

In Section 4 it is shown how Algorithm 2.1 can be applied to problems concerning the

concept of observability of a class of multidimensional discrete-time systems.

2. Algorithm of maximal invariant subspaces

Let K be a field, € a proper subspace of K™ and Ay,..., A, € K"*" commuting

matrices.

Definition 2.1. A subspace V of K™ is said to be (A1, ..., A;)-invariant if Aju €V, Vv €
v, Vje{l,2,...,r}

A subspace V of K" is said to be (Ay,...,A.;C)-invariant if V is (A1,...,4,)-
invariant and it is included in €. V is called mazimal if, for any subspace V which is
(Ay,...,Ay)-invariant and included in C, V.

Let us denote by maxI(Ay,...,A,;C) the maximal (44, ..., A,)-invariant subspace
included in €.

For a subspace V of K", we consider the following subspaces: A; L= {weK"|Awe
V}, A7M = {v € K" A¥v € V} and ([T, A;7F)V = {v € K*|([]/_, AF)v € V}, k; € N,
where ([[0_, A;7°)V = V. If v € A79V, then Ajw € A7V DV Vi {1,2,...,r},¥j > 1.
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Proposition 2.1. The mazimal (Ay, ..., A;)-invariant subspace included in C is
mazl(Ay,..., A ﬂ () T4 e (1)
1=0  k,=0 i=1

Proof. Let us denote by V; the subspace from the right-hand member of (1). If v € V;
then particularly v € (J[}= A;" )A (*)5+1@ . hence A e ([T_, A7F)e, Yk € N, j €
{1,2,...,r}. It follows th;fc Ajv eV, Vje{l,2,...,r} ie. Vi is (Ay,..., Ay)-invariant.
We can write by (1) Vi = €N _- N —o(ITizy AZ- )@ where (ki,..., k) # (0,...,0),
hence V; is included in C.

Now, let V be any (A4, ..., A, )-invariant subspace included in €. Then, for any v € V,
(T, AF)v € V c €, hence v € (T[_, A; )€, Vk; >0, Vi € {1,2,...,r}, which implies

v € Vq. Therefore V C Vq, i.e. V; is the maximal such subspace. O
Proposition 2.2. The mazimal (A1, ..., A;)-invariant subspace included in C is
mazl(Ai,..., A ﬂ n HA (2)
k}l 0 _O =1

Proof. Let us denote by Vs the subspace from the right-hand member of (2). Obviously, by
Proposition 2.1, Vi C Vg, where Vi = maxI(Ay,..., A4,;C).

Now, for any v € Vs, ([Ti_, Ay e ¥k e N, 0<k <n—1, Vie{1,2,...,r}.
Let p;(s) = det(s[—A;) = s"+an_1,78" 1 +---4a1 js+ao,; be the characteristic polynomial
of the matrix A4;, j € {1,2,...,r}. By Hamilton-Cayley Theorem, p;(A;) = 0,, hence

n n—1
A} = —an_1;A] — - —ar;A; —ag ;1. (3)
n—1
Then, for any vector v € Vo, ATv = — g alyjAév. Since A; are commutative matrices, we
1=0

can premultiply this equality by ([Ti=, A¥) and we obtain ([]}-, A¥)A T = Z a H Al Ab,
i#] i#]

z#]
hence (HT;I AF) AT € € since (HT; Al)Aly € € for 0 <1< n—1and Cis a subspace.
1%£] ¥

Similarly, by postmultiplying (3) by (HT; Afi)Az.v, t = 1,2,..., one obtains recurrently
i#j
that (H:;l Afi)A;”tv € € and finally that ([]/_, A¥)v € @, Vk; > 0, hence v € V;. Tt
i#j
follows that Vo C V4, hence Vo =V; = maxI(Ay,...,A;C). |

Algorithm 2.1.

Stage 1. Determine the sequence of subspaces (5;, 0,....0,0)0<i; <n Of the space X = K":

S0,0,...,0,0 = C; (4)
Siv0.00=CNATYS, 10, 00, i1 =1, .0, (5)
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Stage 2. Determine 4, the first index in {0,1,...,n — 1} which verifies

Si‘1)+1,0,...,0,0 = Sz'?,o,i..,o,o~ (6)

% S5i9.0,...,0,0 is the maximal Aj-invariant subspace which is included in C.

If iY = n — 1, then maxI(A;,...,A,;C) = {0} c K®. STOP

If iY <n—1, put j := 2 and GO TO Stage 3.

Stage 3. Determine by (7) the sequence of subspaces (S0 ;0 i Li,0,...,0)0<i;<n Of

the space X = K": for i; =1,2,...

7n7

-1
Si0 49 i;? 198550, = S0 40 i? 18 —1,0,.., oﬂAj Si?,ig,...,i?il,ijfl,o ..... 0- (7)

LR 1t

Stage 4. Determine z , the first index 4; in {0,1,...,n — 1} which verifies

0 ;0 ) ;0 0,0 ( )
521712,...,2].71,%-&-1,0, 511,12, ,z] 1,1],0 .0 8

% S;o
cluded in €

If i = n — 1 then maxI(4y,...,4,;C) = {0} C K". STOP

If i? < n —1 then GO TO Stage 5.

Stage 5. If j < r then put j := j+ 1 and GO TO Stage 3.

If j = r, then maxI(A;,...,A;C) = S0 0 Li0,.i0- STOP

195000585 158550y

0,i,09_1,1,0,...,0 18 the maximal (A;,...,A;)-invariant subspace which is in-

Proof. We consider the D chain of subspaces

11,12, i — m m ﬂ A k1A k2"~A:kre’ (9)

k1=0Fk2=0 k=0

i; €{0,1,...,n}, j€{0,1,...,7}. Obviously, for i; <l;, Vj e {0,1,...,7},
§1122'L ) §l1,l2,...7l7.~ (10)

By (9) and Proposition 2.1 we obtain S;, 4, 2 maxI(Ay,...,A.;€), Vi; >0, Vj €
{1,2,...,r} and it follows from Proposition 2.2 that §,L_17n_1,__47n_1 =maxI(Ay,...,A4,;C).

From (4) and (9) one obtains goﬁoy__qow() = A7°A;° - A79C = @ = Spo..00- Let
us assume that §i171,0,~.,0,0 = Si,-1,0,..00 for some i; € {1,2,...,n}. Applying (9), (5)
and the Change of the index k1 — 1 = k, we get §i1)0,,,,70,0 = ﬂkl oA k ¢ = A en
AT AT e =enAri M) ATFe = €N ATYS, J1o.00 = s“,o,,,_,o,o, hence we

obtained by 1nduct10n and by (10) the following relations:

81000 = Siv 0.0, Vi1 € {1,2,...,n}, (11)

AAAA

Sil,O,...,O D) SilJrl)ow,,o, Vil S {07 1, N 1}. (12)

Using Hamilton-Cayley Theorem as in the proof of Proposition 2.2, one obtains

51.,0,....0 = Sn—10,..0, hence by (11), Sno,..0 = Sn—1,0,..0, i.e. 39 from (6) verifies 1 <

s
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10 <n — 1. Let us consider the chain of subspaces
K" D 500,002 51,0,....0,0 286,000 2 - 25,-1,0,...,0,0 = Sn0,...,0,0-
Since Sp.0,....0,0 = C is a proper subspace of K", dim Sg,....00 <n — 1.
If 49 = n — 1 is the first index which verifies (6), it follows that
n—1> dim 50,07,,,)070 > dim Sl,O,...,O,O > ... >dim Snfl’(),m’o)o >0,
hence dim S;,—1,0,....0,0 = 0 and we have
{0} = 5n-1,0,...00 = Sn—1,0,....00 2 maxI(Aq,..., A;C) D {0}.
Therefore maxI(Ay,...,A;; €) = {0}, which proves the instruction in Stage 2.
If iY < n — 1, one obtains by (5) and (6)
—1 —1
Si012,0,...00 = CNAT Sioy10,..00=CNAT S0 00=S50410,..,00 = Si00.,..0,0-
Let us assume that S, 0,..,00 = Siv,. 00 for some i; € {i9 +2,...,n}. Then,
applying again (5) and (6), we get
—1 —1
Sir41,0,...,00 = CNV AT Si1 0,00 = €N AT S0 0. 0.0 = Sio41,0,...,00 = Si0.0,...,0,04
hence we proved by induction that S, o,....00 = S0 0,....0,0, Vi1 € {i9+1,...,n}.
Now, let us assume that gi?,..‘,i_?_l,irl,O, 0 = S,L*(l)’““itj)_lyijil 0.0 for some j €

{2,...,r}and i; € {1,...,n}.
Consider some subspaces Vi, € K™, k=0,1,...,7, i € N*. We have

i i—1 i—1 i—1 i—1 4
(N Ve =Yon ([ V&) Vi=Von ([ VIO Ve) Vi = () V&) N ([ Vi)
k=1 k=0 k=1

k=0 k=1 k=1

Therefore, by replacing V}, by A;kj G, we have

ij 1,—1 ij
N 47%e=(N 47%e)n() 4"e)
k;=0 k;=0 kj=1

o1 i
I _ —k1 —kj—1 —kio _
St o0 = [V [ AT AT () A7V e =
k;=0

k1=0 k7‘ 1=0

1(1) ijo'fl 15—1 0 0
(1 O atea N oen () [ ateate () 45
k1=0 k;_1=0 k;=0 k1=0 kj_1=0 kj=1

which becomes by the backward movement of Aj_1 and the change of the index k; —1 =

k in the last term
ij—1

R D
(N A A2 U0 a7 (o 1) A )

j—1
E1=0 k;j_1=0 k;j=0 E1=0 k;j_1=0 k=1



18 Valeriu Prepelita, Tiberiu Vasilache

:(ﬂ ﬁ A7k "“7-1“(_]1 AMe)nA; l(ﬂ ﬁ At A ﬁlA ke),
k1=0 kj_1=0 k;=0 k1=0 k;_1=0

which is equal by (9), by the induction assumption and by (7) to

1 _
Sio...., 0 ij—1,0... oNA; Szl'u, 95 =1,00.,0 =

-1
=S, ,g?_l,ijq,om,omAj S50, i1 —10,0..,0 = S50, ... 40 1,07,0...,07

hence we proved by induction that

Sz'(l’,...,z';?fl,z‘j,o,...,o = Si?,...,i;?,l,ij,o, Lo Vied{l, ...} Vi e {1,...,n}, (13)
therefore
Si0,.i0,i0 = S0, 0 i (14)

By (9),(13) and (12),we obtain, for i?,...,i?_l determined in Stage 4 and ; €

{1,...,n}

J71 Zj*l

19,0100 ﬂ ) ) AT HA hie (15)
k1=0  k;_1=0k;=0
and
Sz?,..“ i 11i7,0,0.0,0 2 Si‘l),.‘.,i?_l,ij+1,0,...,0'
By (15) and by applying Hamilton-Cayley Theorem to the matrix A;, one obtains
Si‘fv---vig,l,n,o,...,o = Si(l’,“.,i(;il,n—l,O,...,O'

Let us consider the chain of subspaces

n
K™ 2 So,0,....00 2 Si(l),...,i?il,O,O,...,O 2.2 Sig’,...,igﬂ,l,o,...,o 2.2 Si?,...,igil,n—l,o,...,o

- Szl, 7.5)71,71,0,...,0'

If z'g? = n—1is the first index which verifies (8), since dim Sy ... 00 < n—1, it follows
that

9

49_4,0,0,..,0 = dim Sz'(f,... 0 1,0,.0> .. >dim Si‘l),...,i871,n—l,O,...,O >0

7Zj717 g

which implies dim Sjo ;0 10,0 =0, hence Spo 0 10 . 0= {0} By Proposition
st _1n—=1,0,..., s _n—=1,0,...,

2.2 and (15), maxI(Ay,...,A4.;C) gSi?,---,ig,l,n—LO,..-,O> hence maxI(A4y,...,A.;C)= {0}, which

proves the instruction from Stage 4.

Consider the case i? < n—1 (condition which includes i) < n—1, Vk € {1,...,j—1}).

We have by (8> Si(l’,.“,i‘]?fl,i?—&-l,o,. Szg, 149_1,49,0,...,0
L aq — ;0
Let us assume that Sitl)7.__,i2717ij707___70 = Su,... 49 1,i0,0,..1,0 for some i; > 7;. Then
_ -1 1
Si0, 04y 41,0,00,0 = 000 iy 0,00 AT S0 0 0,0 Sl[l), 0 ,i9,0,..,0N AT S0 o 00,
Sicl’,..‘,i?_l,i?+1,0,...,0 = Si‘f,..‘,i?_l,i?,o,...,O' We proved by induction
51910001 4i3,0,,0 = Di,00 1 i0,0,..,00 Vij € {if+1,...,n—1}. (16)

0=
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By (13) and (16) we obtain

Sz'() 0= Sill),“.’z‘?il,i?,oﬁ_“’o, VZ] S {Zg) + 1, e, — 1} (17)

1,...,1';?71,1',-,0,...,
For j = 1 we proved that if i} < n—1, then S;, 0.0 = Si0.0,..,0, Vi1 € {i94+1,...,n—
1}. Using (11), we get S 0,0 = th Lo Vipe{if +1,...,n}

Let us now assume that

Si17---7ij—170,07---70 = Si?,...,i?fl,o,o,“.,O?Vik € {Zg +1,...,n— l}ak € {1727 N 1}7
i.e. (see (9))
11 'LJ 1 0
ﬂ ﬂ A7k A ,ifle: ﬂ ﬂ AR A ‘Jl‘fle_
k1=0  kj_1=0 k1=0  kj_1=0
Then
ij i1 i1 ij itl)

—k; k —kj— —k; k -
A7 ) afalie= 47 () ﬂ At At e
k;=0 k1=0  kj_1=0 k;=0 k1=0  kj_1=0

and using the commutativity of the matrices A; we have
’LJ 1
NN () et fe—m A
kj—1=0 k;=0 kj—1=0 k;=0

i.e. again by (9)

Sitijo11i0,0 = Sig,.i.,igfl,ij,o,...,m

and using (17) we obtain by induction, for any j € {1,2,...,r}

Shwuﬂj—l,ljxopnﬁ

Sio 0 o0 Yike€{if+1,... n—1}ke{l,2,....5}, (18)

Li— 1’17’
particularly
gz’l,...,ij,...,ir = gz’[l), .,i?,,...,igv V’Lk € {Zg + 1) s, — 1}7 ke {1a 27 ey 7‘}. (19)

It follows by Proposition 2.2 and (14) that

InaXI(1417 .. AT, G) Sn 1,. —1,....,n—1 = Si(f, 30 305 (20)

gty

which proves the final statement from Stage 5.

By (9) and (20) we obtain

Proposition 2.3. The mazimal (Ay, ..., A;)-invariant subspace included in C is

i9 i0
mazl (A, ..., A C) = ﬂ ﬂ AR AR,
k fr=0

where 1Y, . ..,i% are the numbers determined in stages 2 and 4.
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3. Matlab program

The Matlab program presented below and based upon the algorithm above calculates
the dimension and an orthonormal basis of the maximal invariant subspace. The instructions
make use of the m-functions ints, invt and ima included in the Geometric Approach toolbox
published by G. Marro and G. Basile at
http://www3.deis.unibo.it /Staff /FullProf/GiovanniMarro/geometric.htm;
this GA toolbox works with Matlab and Control System Toolbox.

More precisely, given the matrices A, Ay .... A, that commute and the matrix C,
the next commands will compute and display the dimension of a basis and an orthonormal
one in the subspace S = maxI(A1, A, ... A,;C), where € = ImC. The matrices are loaded
from the m-File GetAC.m, where Ay, As .... A, are stored in an 1 X r— dimensional cell
array A as A{1},...A{r} .

% begin m-file

% ints(X,Y)=an orthonormal basis for Im(X) intersected with ImYB)

% invt(X,Y)=an orthonormal basis for the inverse image of Y through X
% ima(Z) = an othhonormal basis in the subspace generated by Z
Get_A_C;

% A is a 1 x n cell array, containing A{1},... A{r}

[ =, r] = size(A);

S = ima(C);

[n, dimMax] = size(8); ’% will be the dimension of the maximal invariant subspace

index = zeros(l, r); % the index of the calculated subspace
for j = 1:r % loop for index position
for i= 1:n-1 % loop for index value
S = ints(S, invt(A{j},8));
[, m1] = size(S);

index(j) = 1i;

if (m1 == dimMax) break;
else dimMax = mil;
end
end
if ((dimMax == 1) && (norm(S, 2) == 0))
dimMax = 0; break;
end

end disp([’The dimension of the maximal invariant subspace is ’])
disp([ num2str(dimMax)]) disp(’and an orthonormal basis of this
subspace is:’) disp(S)

% end m-file
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For example, given the commuting matrices

1 2 1 3 1 2 -1 5
-2 -2 2 =2 -6 —4 6 -6
Al = ,A2 - )
1 2 1 -1 1 —1
2 0 -2 0 6 0 -6 2
1 3 3 2 1 0 O
2 -2 =2 0 0 1 0
As = and C = ,
3 3 1 4 0 0 1
-2 0 2 =2 0 0 O

the m-File GetAC could be
A = cell(1, 3);

A{l} = [1’2,1,3;_2:_2s2:_2;1’2,1:1;2’0’_2:0];
A{Q} = [1,2;_1,5;_6,_4:6,_6;_1’2:1,_1;6901_6,2];
A{3} = [1,3,3,2;2,-2,-2,0;3,3,1,4;-2,0,2,-2];

c=[1003;010 ;001 ; 000 1];
and the above Matlab program will give the answers:

The dimension of the maximal invariant subspace is 2 and an

orthonormal basis of this subspace is:

-0.7071 0
0 1.0000
-0.7071 0
0 0.

4. Application to the observability of a class of discrete-time rD systems

In this section we will show how Algorithm 2.1 can be applied to problems concerning
the concept of observability of a class of multidimensional systems.

We shall use the following notations: 7 := {1,2,...,r} where r € N*. A function
z(t1,...,t.) is denoted by x(t), where t = (t1,...,t.), and t; € ZT are the discrete-time
variables.

For a subset § = {iy,...,i;} of 7 , we consider the notations || :== I, § := 7\ § and
|@| := 0; for i € 7, i := 7{i}. The notation § C 7 means that § is @ or § is a subset of 7
and 6 # 7. For 6 = {iy,...,1}, the shift operator o4 is defined by osx(t) = z(t + e5) where
es =€, +--+e, e =(0,...,0,1,0,...,0) € Z"; when § = T we denote o5 = o, hence

—_——

j—1
ox(ty,ta, ..., ty) =x(t; + 1,2+ 1,...,t. + 1).

Definition 4.1. An rD discrete-time linear system is an ensemble X = (A4,..., A,; B;C; D)

where A;, i € T are commuting n X n matrices over a field K and B, C, D are respectively
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n X m, p X n and p x m matrices over K. The K-spaces X = K", U = K™, Y = K?
are called respectively the state space, input space and output space and the time set is
T = N7". The following equations are called respectively the state equation and the output

equation:

ox(t) = Z( yrlol=t HA osx(t) + Bu(t), (21)
6CT ics
y(t) = Cx(t) + Du(t), (22)

where z(t) = x(t1,...,t.) € X is the state, u(t) € U is the input and y(t) € Y is the output
of the system X at the moment t € T'.

For any set 6 = {i1,...,4;} CT and for t; € ZT, i € §, we use the notation
x(t5,05) == 2(0,...,0,;,,0,...,0,¢;,,0,...,0).

Definition 4.2. The vector zg € K" is called an initial state of the system ¥ if

w(ts, ) <HA ) o (23)

1€9

for any § C T; equalities (23) are called initial conditions of X.
By [8, Proposition 2.2], we have

Theorem 4.1. The output of the system X at the moment t, determined by the initial state
xo and the output w: T — U is (with 1 = (l1,...,1;)):

t1—1 tr—1

HA“ 4y Zc HA”_I Bu(l) + Du(t). (24)

1,=0
Definition 4.3. A state € K™ is said to be unobservable if, for any input u(t), the initial
states 2 = z and 2° = 0 produce the same output y(t), Vt € T.

Proposition 4.1. The state x € K" is unobservable if and only if

11 A9 |2 =0,V eN,Vj €T (25)

Proof. We denote by y,(t) and yo(t) the outputs produced by the initial state 2° = 2 and

0 = 0 respectively, for an arbitrary input u(t). We obtain by (24) from y,(t) = yo(t) that
the state x is unobservable if and only if y,(¢) — yo(t) = 0 V¢t € T which is equivalent to
(25). O
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In the sequel we will consider the system ¥ reduced to the ensemble ¥ = (A, ..., A,; C)
which is involved in formulas concerning observability.

Using Hamilton-Cayley Theorem as in the proof of Proposition 2.2, we deduce from
(25) the following result.

Proposition 4.2. The state x € K™ is unobservable if and only if

T
ClI[A7 |z=0¥teN, t;<n—1VjeT. (26)
j=1
Let us denote by X, the set of the unobservable states of ¥ and by € the subspace
€ = KerC'. The next theorem gives the geometric characterization of the set of unobservable
states of X.

Theorem 4.2. X, is the mazimal (Aq,..., A,; C)-invariant subspace of K™.

Proof. Let x be an unobservable state of ¥. Obviously, one obtains from (25), for t; =
0, Vj € 7, that Cx = 0, hence X,, C KerC.

,
For arbitrary ¢ €7 and t; €N, j € T one obtains from (25): O:C(H A;j)A’;i“sc:
=1
i#i

C’(H A;j)Aix, hence A;x € X, Vi € T, i.e. Xy is (A1,..., Ay; C)-invariant.
j=1

Now, consider an arbitrary (Ay,..., A,; C)-invariant subspace V of K™ and let v be
an element of V. Since V is (Ay,..., A,)-invariant and it is included in KerC' one obtains
(H A;j)v €V and C’(H Azj)v =0, Vt; >0, Vj €. By (25), v € X0, hence V C X,,, i.e.

Jj=1 Jj=1
Xuo is the maximal such space. O

Definition 4.4. The system X is said to be completely observable if there is no unobservable
state z # 0.

Therefore, the system X is completely observable if and only if X,, = {0}. From

Theorem 4.2 we obtain

Theorem 4.3. The system ¥ is completely observable if and only if {0} is the mazimal
(A4, ..., Ay; C)-invariant subspace of K™.

By Theorem 4.2 we can use Algorithm 2.1 to determine the subspace X, of the
unobservable states of a multidimensional system 3.

If one gets in Stage 2 the value i = n — 1 or in Stage 4 i? =n — 1, it follows that
Xuo = {0}, hence, by Theorem 4.3, Algorithm 2.1 can be used to check if the system ¥ is

completely observable.
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To this aim we modify Algorithm 2.1 by replacing € by KerC in Stage 1 (see (4) and
(5)) and in Stages 2 and 4. We also replace maxI(Ay,...,A,;C) by X,, in Stages 2,4 and
5. We write ”The system is completely observable” in Stages 2 and 4 and ”The system is

not completely observable” in Stage 5.

5. Conclusions

An algorithm is proposed and its proof is given, in the lines of the Geometric Ap-
proach. This algorithm determines the maximal invariant subspace with respect to a finite
number of commuting matrices and which is included in a given subspace. This algorithm
can be used in the study of the observability of multidimensional (nD) linear systems, es-
pecially to find the canonical form of the unobservable systems and (combined with the
dual algorithm for the controllable subspace), the Kalman canonical decomposition of a

multidimensional system.
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