
U.P.B. Sci. Bull., Series C, Vol. 85, Iss. 1, 2023 ISSN 2286-3540

SDLC AND THE IMPORTANCE OF SOFTWARE SECURITY

Andreea-Iulia CONCEA-PRISĂCARU1, Tudor-Alin NIȚESCU2,

Valentin SGÂRCIU3

Security vulnerability mitigation in the Software Development Life Cycle

(SDLC) represents an important step when designing and delivering a software

product, in the context of omnipresent high potential risk factors. The mitigation of

security threats can be performed more easily in the present due to the variety of

secure code scanning tools and the awareness spread on this area by organizations

such as OWASP, which are frequently analyzing and classifying the latest software

security vulnerabilities.

Keywords: software development life cycle, software security, security threats,

OWASP, secure code scanning, vulnerability mitigation

1. Introduction

As we live in the technology era, there is no secret that software

development has had and continues to have a constantly increasingly growth on

the market. Furthermore, the diversity of software solutions is remarkable in a lot

of areas, such as: IT, automotive, banking, medical, educational, marketing etc.

Moreover, these solutions are easing our day-to-day activities by saving our most

important resources, time, money and energy. It is true that the IT field and the

software solutions may have a lot of advantages, as we highlighted earlier, but we

shouldn't neglect the disadvantages either. Here I am referring to the software

vulnerabilities, malwares and cyberattacks that we are exposed to via these

software applications. In this regard, our paperwork will be focused on software

development life cycle (SDLC) and the weight of software security in this

process.

In the next section we will present the context in which we approached

this topic, but also relevant findings from the same area of interest.

1 PhD student, Dept. of Automation and Industrial Informatics, University POLITEHNICA of

Bucharest, Romania, e-mail: andreea.concea@stud.acs.upb.ro
2 PhD student, Dept. of Automation and Industrial Informatics, University POLITEHNICA of

Bucharest, Romania, e-mail: tudor_alin.nitescu@stud.acs.upb.ro
3 Prof., Dept. of Automation and Industrial Informatics, University POLITEHNICA of Bucharest,

Romania, e-mail: valentin.sgarciu@upb.ro

118 Andreea-Iulia Concea-Prisăcaru, Tudor-Alin Nițescu, Valentin Sgârciu

2. State of the art

The need for secure programming and software security has been in the

center of attention lately. This trend has been triggered by remote working.

During the pandemic, remote working emerged as a lifeline for all of us, a lot of

areas/businesses migrating their activity to the online environment.

This fact involved using a variety of software solutions available now on

the market (open source / licensed), connecting to VPN (virtual private network),

transferring documents/information and more. All the activities mentioned above

are exposing the users of the applications to a multitude of risks, risks which we

should prevent and mitigate as much as possible. That being said, the need for

software security is clearly visible and the main stakeholders of this process are

the software security researchers and the software development companies. This

section presents the current state of the art in the field of software security,

focusing on the latest findings.

“The Software Security Threat” topic is found in the spotlight of a group

of Ukrainian researchers, their paperwork is concentrated on documenting the

main security threats concepts and the determination of threat ratio. Their study

presents the advantages and disadvantages between web applications and

standalone applications, but also the different types of risk factors we are exposed

to, for each category. The results of the study have shown that standalone

applications are more vulnerable, having a greater risk score. Their work

highlights the importance of minimizing the risk score and the factors that are

influencing it (the possibility of performing the threat, investment attractiveness

and the attacker qualification degree). With a high level of impact over the risk

score of the application and the minimization of it, they mention the volume of

scientific research in the field, the preparation level of the engineers and the

software tool used for the determination and mitigation of the vulnerabilities [1].

Moreover, not only the researchers were interested in this area, but also the

software developers and their employers. The topic was taken to the research level

by the business enterprises, and it was materialized on an extensive study among

different roles (developers, scrum masters, managers) which addressed this

important element of the security development life cycle. The results were not

very pleasing, they have shown the lack of awareness, training and competence on

this subject and at the same time the need of increasing the knowledge and

development level on this extent. Among the programmers it was found that a

percentage of 34% software developers are not pleased with the performance of

the software solution used within their company, showing there is place for

improvement on the framework solution side. Besides that, a percentage of 56%

developers don’t consider they are prepared with suitable test collections in order

to perform secure software development. It was concluded that the knowledge on

SDLC and the importance of software security 119

the software security side should be increased, this thing being able to be achieved

by improving or upgrading the software solutions, increasing the knowledge level

on different type of roles inside the teams and last but not least by following

secure coding standard and performing secure code scanning [2].

Another group of Finnish researchers approached the software security

topic in the context of different management methodologies. They observed that

security activities are usually present in the business requirements, and they are

performed at the initial stages of the development process. Although security

engineering practices were initially challenging, as time grew by, also the

knowledge, documentation and improvements in this field did. The most popular

management technologies present on the survey were Scrum and Kanban, while

the most common positions were developer and software architect. This study

highlights the fact that security requirements are important for performing secure

development, on the second place coming the software architecture and design,

among with the development guidelines and secure code standards. Furthermore,

software safety and security seem to be beneficial for the Agile way of working,

although they may require compromising the flexibility on some ends [3].

Another study based on static code analysis topic presented some popular

coding standards and software solutions which can improve the software security

level of a project. They have followed the standard code review process, but they

have improved it by adding several iterations to it, those iterations being based on

the feedback of the reviewer. They have used some performant solutions used for

static code scanning: Cppcheck, FindBugs and SonarQube, their experiment

showing that SonarQube was the best solution for their application, having the

greatest level of coverage on scanning the code for different type of vulnerabilities

among the 3 solutions [4].

Besides coding standards, software methodologies and software tools for

code scanning and vulnerabilities detection, the researchers were interested also in

analyzing the software vulnerabilities categories. A survey based on software

attacks and vulnerabilities has shown that among the most encountered

vulnerabilities within a system they found injection, outdated software and denial

of service. These vulnerabilities were detected with the help of static of static code

scanning, and they can be further analyzed and mitigated by following the secure

code practices and standards [5].

The current state of the art chapter presented some of the most important

concepts that should be taken into account in order to increase the software

security level: risk score, vulnerabilities, static code scanning, software solutions,

management methodologies, code standards and others. Having those said, in the

following section we will describe in more details the entire life cycle of software

development, we will identify and analyze the possible security threats and what

can we do to prevent and mitigate the risk.

120 Andreea-Iulia Concea-Prisăcaru, Tudor-Alin Nițescu, Valentin Sgârciu

3. Methodology

3.1. SDLC

SDLC (Software Development Life Cycle) represents the process followed

in all software development projects. This process is used by all software

development enterprises and it can have different variations depending on the

company, project and management methodology. The main stages of SDLC are

planning, analysis, design, implementation, testing and integration and last, but

not least, maintenance.

Fig. 1. SDLC stages

Planning is the most important phase of the process; this activity involves

defining the initial requirements. The planning should involve both sides,

customer (business side) and service provider (development team). Once the

requirements are defined, they are further analyzed and refined in the next phase

of the process.

Analysis stage involves defining and documenting the product

requirements. Once the requirements are clearly defined, the final documentation

(SRS – Software Requirement Specification) should be reviewed and approved by

the customer.

The SRS document is later used by the architects in the design phase. The

architects will propose several design options, building a documentation for it

(DDS – Design Document Specification). The document must be reviewed by all

the parties involved in the process and based on some KPI’s (Key Performance

Indicators) the best design will be chosen.

The development phase, as the name already mentions, is the phase were

the software development starts, based on the DDS design. The developers will

SDLC and the importance of software security 121

have to follow different category of standards and guidelines, such as coding, risk,

security and others.

The testing phase supposes testing the product obtained after the

development phase, finding possible issues and fixing them until the product will

respect the quality standards that were agreed in the terms. Once the product is

developed and tested, it is ready to “go live” and it will be available for the

customers. The maintenance stage involves maintaining the product during its

lifetime. It may involve bug fixing, adding new features or even improvements.

The customer’s feedback is very important at this phase [6].

3.2. Software security

As we have described the stages of SDLC, we can move on to software

security in the context of SDLC. The software security concept involves

protecting the software product during its lifetime against malicious attacks and

other possible risks. Secure SDLC refers to the integration of several security

checks and scans in the earlier stages of SDLC. With this purpose, the

development team should be able to identify and fix the security vulnerabilities by

following the security concepts, principles and standards. Some of those concepts

are risk assessment, security testing, secure code review and threat modeling [7].

When speaking about security vulnerability mitigation, most of the

software development companies follow global standards, trying to avoid the

most critical security concerns. One of the most widely recognized list of software

vulnerabilities, which gets updated every three years is the OWASP Top Ten Web

Application Security Risks. Since web applications are present in a high

percentage of software companies, this document provides a strong guideline

when it comes to identifying high risk security issues [8].

OWASP (Open Web Application Security Project) is an NGO that targets

the improvement of the software security area. The latest updated list from them

comes from 2021, this report being based on the work of security experts from all

around the world, using a methodology to calculate the Top10 Risk Rating

(Fig.2). The risks are ranked depending on the severity of the vulnerabilities, their

frequency and their potential impact on an application. The latest version of

OWASP Top Ten highlights these vulnerabilities [9]:

1. Broken Access Control

2. Cryptographic Failures

3. Injection

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable and Outdated Components

7. Identification and Authentication Failures

8. Software and Data Integrity Failures

122 Andreea-Iulia Concea-Prisăcaru, Tudor-Alin Nițescu, Valentin Sgârciu

9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery (SSRF)

Fig. 2. Calculating OWASP Top10 Risk Rating

The purpose of this list is to offer the software companies that watch

closely the OWASP updates an insight into the most common and dangerous

security risks, so that the respective companies evaluate these risks in their

applications in order to minimize their presence as much as possible. The impact

of these vulnerabilities on business and users depends on the type of the attack

and data sensitivity, leaving the businesses in financial losses [10].

3.3. Secure code scanning

Code scanning can be performed by a wide variety of tools, most of them

trying to identify security vulnerabilities by static code scanning. These tools test

the codebase provided against different types of tests, and then highlight the

vulnerabilities found, some of them giving tips in solving and mitigating them.

From the list of the most popular tools used for detecting and scoring software

vulnerabilities we can count: SonarQube, Checkmarx, Synopsis, Veracode, Raxis

and others.

One of the most popular software solutions for secure code scanning is

Checkmarx, which is a static application security testing (SAST) tool used to

identify flaws and vulnerabilities. This tool is used to analyze the uncompiled

source code of an application, finding vulnerable patterns and badly written code

within the source. The advantages offered by this solution are [11]:

✓ Integration in automatic delivery processes – it can be scheduled to run

automatically after each source code change, therefore enforcing the secure

coding standards offered by this solution.

✓ It is a fast solution, when speaking about finding the critical vulnerabilities

of an application, locating the exact code lines with flaws.

SDLC and the importance of software security 123

✓ Cost efficient – by offering the option to detect and remediate issues as they

are encountered makes it a strong candidate to be integrated in the SDLC,

saving important time and money.

However, there is also a list of disadvantages for this solution, such as

[12]:

✓ High number of false positives/negatives – this solution sometimes struggles

to identify whether the identified security issue is an actual vulnerability or

not. This requires human intervention from the developers, as they should

try to identify by themselves if that was indeed a real threat or just a false

alert.

✓ Incapability of reviewing the compiled code, identifying vulnerabilities

based on business logic flows – this disadvantage is somehow obvious, as

Checkmarx only uses static code scanning to identify security threats.

✓ Limited code coverage – since the imported libraries and the configurations

used are not supposed to be represented in the application codebase,

Checkmarx struggles to locate potential issues that can occur between them.

Having these in mind, in the next section we will present a use case of the

Checkmarx solution in the context of scanning the entire codebase of a web

application written in Java, integrated in an automated pipeline to trigger the scan,

highlighting the vulnerabilities found and the steps taken to fix them in the code

of the application.

4. Proof of concept

In order to demonstrate the applicability of the security concepts presented

above, and also the automatic finding of software vulnerabilities, we have

integrated the Checkmarx tool in a build pipeline of an application for scanning

the entire codebase of a Web application that consists in a wide set of files and a

huge number of line of codes, mostly written in Java (around 95%), and

JavaScript (around 5%).

A build pipeline represents a set of automated jobs to be run on certain

conditions (for example, triggered when the source code of the application is

changed). In our case, the pipeline created consists in 2 steps (Fig. 3), Build,

where the application is packaged and CheckmarxCodeScan, where a new

Checkmarx scan is triggered (this scan can take even hours to be finished,

depending on the number of lines of code scanned, so the pipeline build will not

wait for it to finish, it will display ‘success’ if the build has been submitted

successfully). The Checkmarx step is not available by default in Azure DevOps

(like the Build stage), so we designed it to copy the packaged application from the

first step and upload it to the Checkmarx platform, triggering an automatic scan of

124 Andreea-Iulia Concea-Prisăcaru, Tudor-Alin Nițescu, Valentin Sgârciu

the code. The report will be later on available on an email or directly on the

Checkmarx platform.

Fig. 3. Pipeline run for a Checkmarx scan

The pipeline has been created using Azure DevOps, which is a CI/CD

(Continuous Integration and Continuous Delivery) tool, and it will run on each

change of the application’s source code. The task created for the Checkmarx

pipeline integration can be found below:

Fig. 4. Checkmarx task

The vulnerabilities found in the Java code were on High, Medium, Low

and Info categories, and on the JavaScript code, no High vulnerabilities were

detected (Fig. 5). In the Fig. 6, we can see that almost half of the vulnerabilities

were classified as Info, in addition to almost 39% classified as Low. Therefore,

only around 11.5% of the vulnerabilities found were targeted by a more in depth

analysis of the code.

Fig. 5. Vulnerability categories detected Fig. 6. Checkmarx scan results

SDLC and the importance of software security 125

 Based on these results, we made a top 3 for High and Medium

vulnerabilities detected, as these were considered by us to considerably increase

the risk score of the software application. These being said, in Fig. 7 and Fig. 8

we can see the illustration of that, and we can also notice that one of them, which

was the most encountered High vulnerability (Injection), with roughly around 90

occurrences, is one of the Top 10 OWASP, being number 3 on that list.

Fig. 7. Top 3 High Vulnerabilities

Fig. 8. Top 3 Medium Vulnerabilities

 As a proof of concept, we made an analysis for the Top 3 High and

Medium Vulnerabilities found, in order to conclude if they were false positives or

real threats (with fixes provided). Our analysis started with the High

vulnerabilities (Injection, Cross Site Scripting and Weak Encryption). The

presence of High vulnerabilities in an application should always be worrying, as

these could impose critical security threats to it. For the Injection category, we

didn’t find any false positives. Checkmarx detected wrongly constructed Java

SQL statements, by using String concatenation, which is a very bad practice, since

the String provided can be also an SQL statement that could be interpreted and

executed. An example of before and after fix can be found below (Fig.9):

126 Andreea-Iulia Concea-Prisăcaru, Tudor-Alin Nițescu, Valentin Sgârciu

Fig. 9. SQL Injection code example

In the code snip from above, in order to retrieve the orders of an user

authenticated in the application, an SQL statement is executed, retrieving all the

order records based on the authenticated user id. But, for example, if an attacker

provides 123’ OR 1=1, this will result in the following SQL query: SELECT *

FROM orders WHERE authUser=’123’ OR 1=1. The modified query will

return all the records from the orders table, where the authenticated user id is 123

or when 1 is equal to 1. Since 1 is always equal to 1, this query will return all

order records from the table.

The fix for this vulnerability would be the usage of prepared statements

instead of string concatenation, as this will force the user input to be interpreted

directly as literal, not allowing SQL interpretations anymore (Fig. 10)

Fig. 10. SQL Injection fix

 For Cross Site Scripting category, we did not find any false positives, and

most of them were related to user input embedded straight in the output, without

any validation, like in the example from below (Fig. 11):

Fig. 11. Cross Site Scripting example

In this case, an attacker would be able to execute scripts in the user’s

browser, by inserting malicious code between <script> /* malicious script code

</script> tags. This will directly reflect in the user’s browser, and in most of the

cases the user will pretend that this is the intended functionality of the application.

Since these vulnerabilities were found in .jsp files (Java Server Pages),

these being the frontend part of the application, taking user input from the Java

code, one of the best approaches for this situations would be input sanitization

using JSTL escapeXml function (Fig. 12), this preventing the user input to be

interpreted, treating it strictly as a literal.

Fig. 12. Cross Site Scripting fix

SDLC and the importance of software security 127

 For the Weak Encryption vulnerability, Checkmarx detected the usages of

any SHA algorithms weaker than SHA-256 (Fig. 13).

Fig. 13. Weak Encryption example

 In order to fix this problem, we replaced in the code the usage of SHA-1

algorithm with SHA-256, and we also updated the SHA-1 encrypted passwords

stored in the database with SHA-256 encrypted ones, to validate the new hashing

algorithm.

Fig. 14. Weak Encryption fix

Compared to High vulnerabilities, where we didn’t detect any false

positives, in the Medium findings categories we encountered quite a high number

of false positives in our analysis.

For the Cross Site Request Forgery category, most of the problems that we

found in the code were related to the fact that an attacker could create a copy of a

page and use it in a phishing attack to steal user’s cookies. This mostly encounters

when the application executes ‘POST’ requests, and an attacker intercepts the

cookies of a user and executes requests on its behalf. The fix that we considered

was the addition of a CSRF token as hidden input in the POST requests (Fig. 15),

generated using a call to the Java code. That would not allow an attacker to copy

the HTML page, as it will not have the csrf token on the copied page.

Fig. 15. CSRF example

In the case of Unchecked Input For Loop Condition, Checkmarx

highlighted all the repetitive instructions in the code that could go on an infinite

loop execution. However, many of them were false positives, as the code relied on

database side parameters when defining the loops. The possible issues that we

found were in the case when the loop was constructed based on user input

provided numbers. In this case, an attacker could try to input huge numbers in

order to slow down the application or even break it down. In these cases, we just

added a limit to the user provided numbers, to prevent the occurrence of this

vulnerability.

In the case of Excessive Data Exposure, Checkmarx highlighted all the

attributes that were included in the session by the application. However, after our

analysis, we concluded that this is the intended functionality of the application, as

128 Andreea-Iulia Concea-Prisăcaru, Tudor-Alin Nițescu, Valentin Sgârciu

these session attributes are later used in the application, and we found only false

positives on this category.

Other than that, we also computed the execution time of the scanning done

by Checkmarx, it took roughly about 7 hours to scan the entire codebase of the

application and create the vulnerability report. The uncompiled code was scanned

against all the vulnerabilities defined on the Checkmarx application, so this is one

of the key performance factors when it comes to execution time. If it gets updated

in the future with more vulnerability categories, the performance times will surely

increase. Furthermore, if the codebase of the application increases, this will also

bring up the scanning time of the code, even though the new code is written in a

secure way or not.

5. Conclusions

This paperwork highlights the importance of software security integration

in the SDLC. Software security guidelines, such as OWASP Top 10, are raising

awareness of the main software security vulnerabilities and their impact. Software

security vulnerabilities can cause serious damage in terms of time, money and

other resources, their prevention using automated code scanning tools being a

very useful solution. Using such tools, not only we can detect the actual

vulnerabilities that an application has, but we will also be able to determine

potential vulnerabilities that might appear from the future updates on the software

code.

The software security processes should be implemented in the early stages

of the SDLC, in order to reduce the eventual time and/or financial impact that the

security threats from the code level could have on the software product.

We have proved the applicability of Checkmarx, by integrating it in an

continuous delivery tool, in order to scan the code before it gets released, and we

also provided an analysis over the detected vulnerabilities. The results of our

experiment have shown which were the most frequent encountered vulnerabilities

in our application: Injection, Cross Site-Scripting, Weak Encryption (High) and

Cross Site Request Forgery, Unchecked Input for Loop Condition, Excessive Data

Exposure (Medium). From the High vulnerabilities category, almost all of them

(more than 95%) required a fix in the code, while for the Medium vulnerabilities

category, less than 60% required a fix in the code.

In our case, if the application would have been released, for example, with

the Injection vulnerability, without it being detected by Checkmarx and later on

fixed in the code, the potential risk could have been huge, if an attacker would

have detected and exploited it. By scanning the application for vulnerabilities,

identifying, analyzing and later on fixing the potential issues, we can reduce the

risk score of the application, preventing and protecting it from malicious attacks.

SDLC and the importance of software security 129

Last but not least, it is a good practice to spread awareness and learn about secure

coding when working in software development activities.

A future research for this subject would be the development of a tool that

parses the code highlighted as vulnerable by Checkmarx, and based on the

category of that vulnerability, it tries to automatically fix the vulnerability, as we

found out that some of the code fixes were quite repetitive, and those could

eventually be fixed on an automated approach, based on predefined code

templates for each category (for example, replacing String concatenated SQL

statements with Prepared Statements in the Java code, by detecting the table name

and the parameters, and constructing the SQL query in the Java code in the proper

and secure manner). This would significantly reduce the time allocated for fixing

some of the vulnerabilities, although it would still require at least a quick check

from a software engineer in order to assure that the fix has been applied correctly,

given the context of the application.

R E F E R E N C E S

[1] S. Semenov, V. Davydov, N. Kuchuk, I. Petrovskaya, “Software security threat research”,

2021 XXXI International Scientific Symposium Metrology and Metrology Assurance

(MMA), September 2021.

[2] S. Dziwok, T Koch, S. Merschjohann, B. Budweg, S. Leurer, "AppSecure.nrw Software

Security Study.", arXiv preprint arXiv:2108.11752, August 2021.

[3] K. Rindell, J. Ruohonen, J. Holvitie, S. Hyrynsalmi, V. Leppanen, “Security in agile

software development: A practitioner survey”, Information and Software Technology 131,

106488, 2021.

[4] D. Nikolic, D. Stefanovic, D. Dakic, S. Sladojevic, S. Ristic, “Analysis of the tools for static

code analysis”, 20th International Symposium INFOTEH-JAHORINA (INFOTEH)

Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–6, 2021.

[5] H. Chen, M. Pendleton, L. Njilla, S. Xu, "A survey on ethereum systems security:

Vulnerabilities, attacks, and defenses.", ACM Computing Surveys (CSUR) 53.3 (2020): 1-

43, 2020.

[6] S.Z. Iqbal, M. Idres, “Z-SDLC Model: A New Model For Software Development Life

Cycle (SDLC)”, International Journal of Engineering and Advanced Research Technology

(IJEART) ISSN: 2454-9290, Volume-3, Issue-2, February 2017.

[7] A.H.A. Kamal, C.C.Y. Yen, G.J. Hui, P.S. Ling, F. Zahra “Risk Assessment, Threat

Modeling and Security Testing in SDLC”, arrXiv preprint arXiv:2012.07226, December

2020.

[8] S. Rafique, M. Humayun, Z. Gul, A. Abbas, H. Javed, "Systematic Review of Web

Application Security Vulnerabilities Detection Methods", Journal of Computer and

Communications, 2015.

[9] OWASP, “OWASP Top Ten Vulnerabilities”, owasp.org (accessed March 2022).

[10] B.N. Matthew, “Understanding the top 10 OWASP vulnerabilities.”, arXiv preprint

arXiv:2012.09960, 2020.

130 Andreea-Iulia Concea-Prisăcaru, Tudor-Alin Nițescu, Valentin Sgârciu

[11] L. Jinfeng. “Vulnerabilities mapping based on OWASP-SANS: a survey for static

application security testing (SAST).” Annals of Emerging Technologies in Computing

(AETiC), Print ISSN, 2020.

[12] M.F. Ramadlan, "Introduction and implementation OWASP Risk Rating Management",

Open Web Application Security Project, 2019.

