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A NEW ALGORITHM ON PATH PLANNING FOR ROBOTICS 

Hongqiang LI1,*, Weimin KUANG2, Zhijia CHEN3 

Path planning process using sweeping robots has been a hot spot in the 

research community. It is noteworthy that conventional robots adopt random collision 

and infrared detection to avoid obstacles, which results in high repetition and low 

coverage of the cleaning area. In this research, we have proposed an intelligent 

obstacle avoidance area recovery algorithm. This algorithm was built on U-shaped 

trajectory. However, unlike conventional obstacle avoidance algorithms, the 

developed algorithm established a mechanism to allow the robots to remember the 

processed areas in order to avoid the cleaning of the same area again. Second, based 

on the kinematics analysis of the sweeping robot, the front side of the robot adopted 

universal wheels to address the limitation of incomplete linear motion and realize 

omni-directional motion. Experimental results of robots operating using the proposed 

algorithm revealed that 94.61% of the total area was covered, which was higher than 

those of robots using random cleaning technique. Furthermore, compared with 

conventional robots, those using the proposed algorithm consumed less power and 

presented high efficiencies. 

Keywords: Sweeping robot; Coverage path planning; Kinematic analysis; 

Navigation 

1.  Introduction 

In robotics, sweeping robots have been a hot spot in the research community 

[1]. The aim of developing a sweeping robot was to replace manual ground 

cleaning. Path planning and path keeping abilities are major topics in the research 

on sweeping robots [2]. It is noteworthy that complete area path planning requires 

the robots to cover every part of the workspace, which is a critical issue in cleaning 

robots [3]. Recently, with the development of intelligent houses, sweeping robots 

are greatly becoming research hot spot [4], but they are still not widely popularized. 

The factors limiting the development of sweeping robots include hardware-

based and software-based restrictions. Regarding hardware-based restrictions, 

traditional sweeping robots generally employ a single infrared [5] or ultrasonic 

sensor for obstacle avoidance. Walking mode is random reciprocating due to which 

cleaning robots cannot completely clean the target surface, thus making the process 
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less efficient and highly repetitive [6]. Therefore, it is difficult to develop an 

intelligent planning and obtain orderly cleaning. Fig. 1 illustrates this process. It 

should be noted that although internal spiral route cleaning had comprehensive 

coverage and low repetition rate, its cleaning time was longer, power consumption 

was higher and path planning was not optimal in the presence of obstacles [7]. 

Consequently, robots were unable to meet the requirements of the user. High-end 

sweeping robots, such as L10 PRO launched by Chomie, used double line laser to 

avoid obstacles during navigation [8]. Fig. 2 depicts this process. These sweeping 

robots had high precision; however, they were not cost effective. In terms of 

software, map construction (SLAM) [9] and path planning of sweeping robots 

involved operating system, deep learning, communication transmission and several 

other software features required for robot operation. These complex control 

algorithms have a variety of technical bottlenecks. Hence, the scavenging efficiency 

of current floor sweeping robots was not efficient. In addition, SLAM relied on lidar 

sensors, most of which were not cost effective and continuous rotation seriously 

affected their service life. 

Although sweeping robots usually maneuver their actuators along a 

predetermined path to reach a target location or to cover a designated target area, 

this approach is not optimized to avoid static or dynamic obstacles in the path space 

domain. Therefore, autonomous robots must overcome the obstacles of interacting 

in complex environments by solving the covered path planning (CPP) 

problem[1][2]. The goal of the CPP algorithm is to compute optimal paths and 

project collision-free trajectories to ensure that the robot completely covers the area 

of interest (AOI) within a certain period of time. The robustness and performance 

of CPP efficiency is based on several parameters such as percentage of area 

covered, travel time, path overlap rate, and energy consumption of the robot.  

CPP is the core of processing area coverage optimization in mobile robot 

exploration. Area coverage is generalized by robots as a fully or partially enclosed 

area with non-overlapping paths. According to the prior knowledge of the 

surrounding environment by airborne sensors, CPP algorithms can be divided into 

offline algorithms [3] [4]and online algorithms[5]. Offline algorithms allow mobile 

robots to perform coverage in static, known environments. CPP is generally based 

on global sequential point-to-point coverage, where the robot travels along a route 

on a given map and avoids obstacles[6][7]. However, in practice, robots need to 

deal with unknown or partially known environments[8][9]. Therefore, online 

algorithms are preferred to optimize the exploration strategy and explore unknown 

areas within the area of interest while the robot are moving in the environment. The 

robot will choose a suitable path by acquiring real-time data from local sensors and 

extracting unique features in the dynamic environment[10]. Finally, the robot must 

create a limited mapping of the probed environment using CPP techniques [11].  



A new algorithm on path planning for robotics                                  299 

Current CPP algorithms mainly focus on classical algorithms and heuristic 

algorithms for solving optimization problems[12]. Collision-free paths[13], 

covering cost functions [14] (shortest paths and smooth paths) and covering 

sequences (set covering problem, SCP and traveling salesman problem, TSP) are 

directly related to the CPP problem, in which the optimization problem is 

considered. It also includes the characteristics of the CPP optimization algorithm, 

as well as various technical characteristics, namely, search time, path optimality, 

dynamic performance, convergence speed, and computational complexity. CPP 

remains an open problem in the field of robotics in improving the efficiency of 

planning optimal paths covering target areas and generating collision-free paths 

with less computational effort. The generated coverage paths should be optimal to 

ensure minimal logistical costs such as overlap, number of turns, travel time, and 

energy consumption [15]. CPP problems include potential uncertain failures, 

unknown obstacles in complex environments, and path optimality, which are 

considered major challenges in robotics. 

SLAM is challenging in real-world applications. It requires to estimate the 

robot’s motion and the state of its surroundings from the sensor data and construct 

an accurate map at the same time. This process requires processing a large amount 

of data and needs to take into account sensor errors as well as the complexity of the 

environment[16]. In addition, the practical application of SLAM involves a variety 

of complex factors. For example, robots need to adapt to different sensors and 

algorithms in different environments. There are lots of issues such as dynamic 

obstacles, light changes, and sensor failures which needs to be taken into account 

in different environments. These factors increase the difficulty and complexity of 

SLAM implementation. In addition, practical applications of SLAM also should 

consider issues such as efficiency and real-time performance. In some cases, robots 

cannot construct maps and localize themselves in dynamic environments. In 

summary, SLAM is a hard to apply in practice. 

Deep learning is a powerful tool in a wide range of applications. However, 

for path planning problems, deep learning may not be the best choice. First of all, 

deep learning requires a large amount of data to train the model. For path planning 

problems, big data may lead to increased difficulty and cost of data collection and 

processing [17]. In addition, it would be impractical to collect all the map data. 

Secondly, deep learning models usually require long training time and expensive 

computing resources. In path planning problems, real-time response and fast 

calculation of paths are required, which requires the model to be able to make 

accurate decisions in a short period of time. The training and prediction time of 

deep learning models is long, which is difficult to meet the real-time demand. In 

addition, path planning problems usually need to consider multiple factors, such as 

scene conditions, obstacle restrictions, and driving distances. These factors are 

often not simple features but need to consider the interaction between multiple 
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factors. Deep learning models have difficulty dealing with such complex 

interactions, which may lead to inaccurate or uninterpretable predictions from the 

model. Therefore, although deep learning has a wide range of applications in many 

fields, it may not be the best choice in path planning problems.  

 

Fig. 1. The paths finding performance of random collision and path planning robots. 

 

Fig. 2. A seeping robot with SLAM. 

 

In this research, we improved traditional sweeping robots. We carried out 

kinematics analyses on robots based on U-shaped paths. This was accomplished by 

combining dead reckoning and gyroscope positioning schemes [10]. We employed 

infrared sensors, ultrasonic sensors, and photoelectric encoders to construct cost 

effective hardware, which effectively implemented path planning. The designed 

robot was cost effective and highly efficient. Also, it had low repetition rate and 

covered the complete area while successfully avoiding obstacles. 

2.  Kinematics analysis of sweeping robots  

The kinematics analysis and trajectory planning of robots are the most 

crucial processes for robot controlling, managing robot motion, and path planning 

[9,13,20]. 

2.1. Motion model analysis 

Sweeping robot model was developed using a two-wheel robot. A simplified 

sweeping robot model is illustrated as Fig. 3(a). 
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Fig. 3. The schematic diagram of robot motion model. (a) kinematic model for sweeping robot and 

(b) positional relationship. 

XOY in Fig. 3(a) represents world coordinates. World coordinate described 

robots in their current environment. Generally, robot cleaning starting point is 

denoted by world coordinate origin O. In Fig. 3(a), X'O'Y' is robot body coordinates. 

The central position O'' of the axes of the two wheels of the robot denoted the origin 

of local coordinate. Then, we established the relationship between the position (x,y) 

in global coordinates and position (x’,y’) in body coordinates. Local coordinates 

was assumed to be (x0,y0) and relative rotation angle between two coordinate 

systems was taken as α. Then, according to the rotation matrix, it could be expressed 

that:  
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Robot position was represented by axis midpoint and yaw angle theta. 

Sweeping robot position was described by the coordinate vector A=(x,y,θ)T in the 

global coordinate system, where (x,y) denotes robot coordinates and θ is the angle 

between travel direction of robot and positive direction of X axis; i.e., yaw angle. 

When the sliding of the driving wheel of the robot was neglected, kinematics model 

was stated as the following matrices. 
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2.2. Positioning model analysis 

In simplified robot motion control, the center of mass of the robot was 

considered to coincide with its geometric center. Considering this premise, the three 

most common robot motions were as follows [21]: 
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(1) Forward and backward motion: maintaining similar speeds for both side 

motors in the same direction. 

(2) Circular motion of any radius: allowing both side motors with different speeds 

along the same or opposite directions. 

(3) Zero radius circular motion: allowing both side motors with the same speed 

and in opposite directions. 

Considering the right wheel as an example, wheel diameter was D, encoder line 

number was n, and record pulse readings was Nr. During time Δt, the distance 

traveled by the right wheel was ΔSr. This was formulated as: 

                                                            r
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
 =                                                               (3) 

During time Δt, the distances covered by the left and right wheels were ΔSl 

and ΔSr, respectively. Then, the distance ΔS and angle Δθ of the rotation of the 

robot (with O ' as reference point) were mathematically stated as: 
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Figs. 3(a)-(b) illustrate the positional analysis of the sweeping robot. At first, 

the robot was in the position presented as A0(x(k), y(k), θ(k)). In time Δt (sampling 

period) of the control system, the robot moved from point A0(x(k), y(k), θ(k)) to point 

A1(x(k+1), y(k+1), θ(k+1)) where, Δx(k), Δy(k), and dθ(k) denoted increment along 

horizontal direction, increment along vertical direction, and yaw angle of the robot, 

respectively. It should be noted that yaw angle represented the angle between 

horizontal axis as the starting position and counterclockwise direction as the 

positive direction. ΔS(k) represents robot movement along the curved path from 

point A0 to point A1 and R(k) is the arc radius of the curved track during this time. 

Therefore, Δx(k), Δy(k), and dθ(k) were computed using the following equation. 
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Due to positioning calculation, the control system of Δt (sampling period) 

was small; therefore, dθ(k) was smaller. At this time, 
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Then, the pose at moment k was calculated using (5). The current pose 

information was expressed as: 
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3.  Algorithm design  

In this research, we presented an improved intelligent obstacle avoidance 

region recovery algorithm based on traditional U-shaped route [23,24]. The 

proposed algorithm aimed to increase cleaning range while minimizing the cost. 

However, unlike traditional obstacle avoidance algorithms, the proposed algorithm 

provided a mechanism which allowed the robot to memorize swept area by setting 

the variable Time-Swerve. The developed algorithm prevented robot from cleaning 

any certain area multiple times. This also ensured that the cleaning robot cleaned 

all target surfaces. 

3.1. Traditional U-shaped trajectory path algorithm 

Cleaning robots use yaw angle as reference angle. The robot int his research 

moved along forward direction and adjusted yaw direction based on reference 

direction. This was done to ensure that the robot did not deviate from its original 

direction [25,26,27]. When sensors detected an obstacle, the cleaning robot reduced 

its speed, rotated 90°, and then kept moving unless the width limit of the seeping 

area was reached. Then, the robot rotated 90° again and moved forward. Thus, the 

robot kept moving in the same fashion following a rotational trend. Fig. 4 illustrates 

this process. 

 

Fig. 4. The traditional U-shaped motion trajectory . 

 

It is noteworthy that the proposed algorithm worked effectively in a simple 

environment. In a slightly complex environment comprising obstacles, the robot 

could get trapped in a particular place [22,27]. 
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3.2. Improved intelligent obstacle avoidance algorithm based on 

traditional algorithm 

In real-world environments, there are different obstacle types. We ignored 

the irregular shape of obstacles and assumed their shape to be rectangular. Due to 

the obstruction caused by obstacles, traditional path algorithms might not be able 

to completely cover the sweeping area. Hence, improved intelligent algorithms 

were applied to clean the areas missed by the traditional algorithms. 

The improved algorithm developed in this research introduced additional 

variables into traditional U-shaped path algorithm, namely W, T, D, Prev-D, and Φ. 

These variables enabled the robot to temporarily remember the uncovered areas 

covered by obstacles. These variables are defined in Table 1. Here, the proposed 

algorithm calculated length for the uncovered area by computing the product W*T. 

Based on this information, the robot moved to a suitable position, as illustrated in 

Fig. 5. 
 

Table 1 

The definitions of variables 

Variable Definition Initial value 

Φ Robot diameter 32cm 

W Robot cleaning mouth width 16cm 

T Robot turning times 0cm 

D The distance the robot now travels 0cm 

Prev-D The last time the robot traveled 0cm 

(1) Sweeping path planning 

The autonomous path planning exploration strategy for the robot starts from the 

initial point and sweeps from left to right. When the front ultrasonic sensor detects 

a wall, the robot stops moving and records the current distance traveled as D. It 

should be noted that at this point, the previous distance traveled by the robot, Prev-

D, is equal to the current distance D. After turning and moving forward by a 

cleaning width W, the robot turns again to proceed with the next path sweep, while 

recording the current number of turns T. Fig.5 illustrates the robot freely planning 

and sweeping in space according to this path strategy.  
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Fig.5 Robot sweeping path planning  

The pseudo-code for sweeping path planning is as follows:   

1:  while true do 

2:    move_forward 

3:    if ultrasonic = trigger then   

4:    D = moved_distance 

5:    turn 

6:    move distance W 

7:      turn 

8:      T = T + 1 

9:  ……do something 

10:      Prev-D = D 
11:  end 

12:   end 

Obstacle Uncovered Area Length Calculation and Avoidance:   

Case 1: D = Prev-D, where the current distance D traveled by the robot is 

equal to the previous distance, indicating that the robot is in a parallel passage 

(Fig.6(a)). The turn count T is incremented and recorded. 

Case 2: D + Φ < Prev-D, where the current distance D traveled by the robot 

plus the robot’s diameter Φ is less than the previous distance Prev-D. This indicates 

that the robot has encountered an obstacle. In this case, the turn count T is reset and 

counting starts again (Fig.6(b)). The robot then turns and continues sweeping 

according to the cleaning path.  

 

Scenario 1: Parallel passage                Fig.6(b) Scenario 2: Obstacle 
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Case 3: D -Φ > Prev-D, the distance of the current robot moving D minus the 

diameter of the robot Φ is greater than the distance of the last movement Prev-D, 

indicating that the robot has stepped out of the obstacle Fig.7. At this time, the 

length of the uncovered area of the obstacle is obtained by the steering number T 

and the cleaning width W. 

 
Fig. 7. The robot encountering two different obstacles. (a) Obstacle 1. (b) Obstacle 2. 

 

After obtaining the length of the obstacle uncovered area in Scenario 3, the 

robot moves in the opposite direction by that length, reaches the uncovered area, 

and performs cleaning. This approach achieves full coverage and eliminates issues 

such as multiple cleaning of the same area. 

Pseudo-code for obstacle uncovered area length calculation is as follows: 

1 Sweeping path planning… 

2: if D = Prev-D then 

3:   T = T + 1 

4:       end 

5:  if D +Φ < Prev-D then 

6:    

7:  

  T = 0 

end 

8:  if D -Φ > Prev-D then 

10:      Length = W * T 

11:      end 

 

Program logic flow chart of the proposed improved intelligent obstacle 

avoidance algorithm based on traditional algorithm is illustrated in Fig. 8. 
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Fig.8 The flow chart of the proposed algorithm. 

3.3 Motion Path Tracking Control Algorithm 

The robot uses linear motion trajectories and rotational motion to complete the 

entire cleaning path during the cleaning process (Fig.9). The robot always moves 

in a fixed horizontal direction and stops moving and rotates 90° when it detects a 

wall before proceeding with the next linear trajectory. 
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Fig.9 Robot cleaning path 

(2) Closed-loop control algorithm 

PID controller is a negative feedback control algorithm, the output quantity 

composed of proportional, integral, differential linear combination. PID is 

commonly used in industrial process control, has a simple structure, robustness and 

other characteristics, PID control algorithms can usually be composed of a P 

controller, PI controller, PD controller and PID controller, Fig.10. 

 

 

Fig.10 PID Control algorithm block diagram 

 

PID control algorithm:  
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Where: r(t) is the set value and u(t) is the output. 
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(3) Closed-loop control of rotary motion 

The symbols are defined below: 
 

Variable Definition Initial value 

）t（fb  Robot yaw angle at time t  

set  Setting the robot yaw angle  

）t（
•

  
The robot's linear velocity z at time t  

Use the current robot attitude as a feedback value to set the angle at which the 

robot needs to rotate.(90°,-90°…)The angular velocity of the robot rotating around 

the z-axis is calculated by the PD control algorithm (Eq. 1) ）t（
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(4) Linear point-to-point control algorithm 

Given the target coordinates of the robot, combine the robot coordinates with 

the feedback to calculate the robot's linear velocity, and set the target coordinates 

in the x-direction to infinity to make the robot always move forward during the 

sweeping movement. 

 

Symbol Definition: 

Variable Definition Initial value 
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 Ty  xset =  Target coordinate  
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(5) Velocity Smoothing Algorithm 

When the robot encounters an obstacle or a wall and stops during the cleaning 

process, the acceleration limiting algorithm combined with the first-order low-pass 

filtering algorithm is used to filter the linear velocity, which ensures smooth motion 
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speed and reduces the positional projection error due to slippage. The details are 

shown in Figure 11 below. 

 

Fig. 11 Velocity smoothing method 

 

Symbol Definition: 

Variable Definition Initial value 

v(t) Current speed at time t  

maxacc  maximum acceleration  

)(a tcc  Current acceleration at time t  

fiterv(t)  Current filtered velocity at time t  

lowpassk  Low-pass filtering factor  

Algorithmic step:  
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end
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Recalculate the velocity that satisfies the maximum acceleration constraint

)1()()(vfilter −+= tvdttacct
 

The comparison before and after speed smoothing is shown below:  

 

(a) Raw speed                         (b) Speed after smoothing 

Fig.12  Comparison before speed smoothing 

4.  The design of experiment platform  

We used a conventional sweeping robot for the evaluation of the developed 

algorithm. Fig. 13(a) shows a conventional sweeping robot. This robot used infrared 

and ultrasonic sensors to detect obstacles. In addition, this robot was equipped with 

a gyroscope MPU6050 to calculate rotation angle [28].  

The robot adjusted the direction based on the path planning function of the 

code plate and gyroscope to ensure trajectory accuracy. Robot motion control was 

handled by MPU6050 module. This was a 6-axis module and used sensors such as 

gyroscopes. MPU6050 module was able to accurately calculate parameters such as 

wheel speed, providing a reference basis for robot path planning. 

Conventional sweeping robots have a 16V battery with the capacity of 

9000mAh. This battery provided the necessary power to drive the motor. The robots 

also had another battery of 5V which was used to power up the control unit.  

STM32F429IGT6 was applied as control chip. This chip comprised a 

floating-point unit (FPU) which had high performance and low power consumption 

[29]. It processed the real-time data collected by MPU6050 sensor [30]. L298N 

motor driving chip was used which realized the driving control of the motor used 
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for robot motion.  Throughout the entire control process, the main control unit 

played the most important roles, such as controlling robot motion, driving robot 

wheels, etc. 

The hardware control scheme of the entire robot is illustrated in Fig. 13(b). 
 

 

 

Fig.13. Design principle of the experimental system used in this work for evaluation. (a) 

Experiment platform. (b) Hardware control system. 

5.  Experimental results  

As described in this section, several experiments were conducted to verify 

the performance of the proposed algorithm. On the one hand, the practicality of path 

planning methods for robots, especially the accuracy of algorithms, needed to be 

verified through experiments. On the other hand, handling the missing areas is also 

an important task for robots. In addition, robots functions in indoor environments 

also needed to be verified.  

The operating system used in the experiment is Windows 10, and the 

software is programmed using C++ language. 

We calculated the search range of robots using the following expression. 
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where dn is the distance passed by the robot in each horizontal movement, 

S denotes target cleaning area, and SO is obstacles area. 

It is noteworthy that, in real-world scenarios, a cover exists among different 

robot paths, thus rendering Eq. (8) inappropriate. In order to address this problem, 

the search range was changed to SC which should include areas that had not been 

processed previously. In this case, Rc was calculated by using the following 

equation. 
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5.1. Testing of U-shaped path algorithm  

During the experiment, it was necessary to fully consider robot hardware, 

especially its control system. The motor used to control robot motion could reach a 

maximum speed of over 30cm/s. Considering robot motion safety, only 20cm/s was 

taken here. Throughout the entire experiment, the robot followed a U-shaped route, 

as illustrated in Fig. 14. 
 

 

Fig. 14. U-shaped route followed by the robot in this experiment.  

By repeating the same experiment multiple times, robot motion stability 

could be better examined. Based on this testing method, the robot was allowed to 

take 7 U-shaped routes during its motion and then examine the deviations occurring 

in each action. The corresponding results are illustrated in Fig. 9. 

It was seen from the figure that the robot experienced cumulative errors 

during the process of continuously repeating the path, with a maximum cumulative 

cost of 7mm after 7 iterations. The reason for this deviation was related to robot 

hardware control error. 

 

Fig.15. Offset in the distance computed after the completion of 7 cycles. 

5.2. Improved intelligent obstacle avoidance algorithm test 

In this research, we evaluated the proposed algorithm under two different 

obstacle situations. 
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We conducted five experiments to evaluate the first case and calculated 

coverage rate. Fig. 10 shows the route followed by the robot during this experiment. 

Please note that the box in the hallway presented in Fig. 16 covered 0.4 m2. On the 

other hand, the area of the test field was about 4 m2. Corresponding results are 

summarized in Table 1. The error depicted in the results was a cumulative offset 

due to multiple repeated motion processes. 

Then, five repeated experiments were performed again to verify the 

coverage of the search method, as illustrated in Fig. 11. Based on the statistical 

results given in Table 2, it was seen that the coverage obtained from the five 

repeated experiments fluctuated around 94%. 
 

 

Fig. 16. The route followed by the robot in case 1.  

Table 2 

The results of coverage tests for case 1 

Test No. 1 No. 2 No. 3 No. 4 No. 5 

S-SC 3.659 3.588 3.686 3.621 3.607 

S 3.837 

Rc 95.36% 93.57% 96.08% 94.38% 94.11% 

 

Fig. 17. The route followed by the robot in case 2. 
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5.3. Comprehensive Test 

We performed the final test to evaluate and compare the U-shaped path and 

proposed algorithms. This experiment aimed to examine the level that the proposed 

method could achieve for robot motion in indoor environments, especially in 

complex situations. 

Fig. 18 illustrates the route followed by the robot during this test. It was seen 

that the coverage rate in this experiment was 94.61%. 

When the robot detected the wall, which indicated that the robot could not 

go further, the cleaning task was ended. 

 

 
 

Fig. 18. The route followed by the robot during the comprehensive test. 

6.  Conclusions 

According to the analysis of sweeping robot motion model, in this work, we 

proposed a new method for sweeping robot motion. Also, U-shaped path was 

applied as the reference path for robot motion. Robot route was mainly based on U-

shaped route. It is noteworthy that, based on the proposed algorithm, the robot 

memorized the area behind the obstacle by comparing the existing state with 

previous state. It also remembered the area that was cleaned in order to avoid 

repeated cleaning. During the experiment, random programming was adopted as 

the reference method. Compared to this method, the proposed method enabled the 

robot to achieve 94.61% coverage of cleaning area. This experiment showed that 

the proposed method had significantly improved robot efficiency. The experimental 

results of stability also confirmed that the maximum cumulative offset of the 

proposed method was 7mm. These results indicated that the robot using the 

proposed algorithm had good path-keeping ability. The proposed algorithm was 

evaluated for two types of obstacles to show that it had the ability to control the 

robot during cleaning process behind the obstacles and enabled it to return to the 

main path after cleaning. In order to comprehensively test the proposed algorithm, 

we set up a complex experimental environment to test whether the robot could work 

in this environment. The experimental results fully confirmed that the proposed 
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method enabled robots to have better adaptability, especially for complex 

environments where cleaning work could be completed. In future research, we will 

examine algorithm performance improvement from different perspectives to further 

enhance robot motion performance. 
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