U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 2, 2024 ISSN 2286-3540

A NEW ALGORITHM ON PATH PLANNING FOR ROBOTICS
Honggiang L1¥*, Weimin KUANG?, Zhijia CHEN?®

Path planning process using sweeping robots has been a hot spot in the
research community. It is noteworthy that conventional robots adopt random collision
and infrared detection to avoid obstacles, which results in high repetition and low
coverage of the cleaning area. In this research, we have proposed an intelligent
obstacle avoidance area recovery algorithm. This algorithm was built on U-shaped
trajectory. However, unlike conventional obstacle avoidance algorithms, the
developed algorithm established a mechanism to allow the robots to remember the
processed areas in order to avoid the cleaning of the same area again. Second, based
on the kinematics analysis of the sweeping robot, the front side of the robot adopted
universal wheels to address the limitation of incomplete linear motion and realize
omni-directional motion. Experimental results of robots operating using the proposed
algorithm revealed that 94.61% of the total area was covered, which was higher than
those of robots using random cleaning technique. Furthermore, compared with
conventional robots, those using the proposed algorithm consumed less power and
presented high efficiencies.

Keywords: Sweeping robot; Coverage path planning; Kinematic analysis;
Navigation

1. Introduction

In robotics, sweeping robots have been a hot spot in the research community
[1]. The aim of developing a sweeping robot was to replace manual ground
cleaning. Path planning and path keeping abilities are major topics in the research
on sweeping robots [2]. It is noteworthy that complete area path planning requires
the robots to cover every part of the workspace, which is a critical issue in cleaning
robots [3]. Recently, with the development of intelligent houses, sweeping robots
are greatly becoming research hot spot [4], but they are still not widely popularized.

The factors limiting the development of sweeping robots include hardware-
based and software-based restrictions. Regarding hardware-based restrictions,
traditional sweeping robots generally employ a single infrared [5] or ultrasonic
sensor for obstacle avoidance. Walking mode is random reciprocating due to which
cleaning robots cannot completely clean the target surface, thus making the process

1 Guangzhou Industry and Trade Technician College, Guangzhou, China, e-mail:
471918248@qg.com

2 Guangzhou Industry and Trade Technician College, Guangzhou, China

3 Guangzhou Industry and Trade Technician College, Guangzhou, China

298 Honggiang Li, Weimin Kuang, Zhijia Chen

less efficient and highly repetitive [6]. Therefore, it is difficult to develop an
intelligent planning and obtain orderly cleaning. Fig. 1 illustrates this process. It
should be noted that although internal spiral route cleaning had comprehensive
coverage and low repetition rate, its cleaning time was longer, power consumption
was higher and path planning was not optimal in the presence of obstacles [7].
Consequently, robots were unable to meet the requirements of the user. High-end
sweeping robots, such as L10 PRO launched by Chomie, used double line laser to
avoid obstacles during navigation [8]. Fig. 2 depicts this process. These sweeping
robots had high precision; however, they were not cost effective. In terms of
software, map construction (SLAM) [9] and path planning of sweeping robots
involved operating system, deep learning, communication transmission and several
other software features required for robot operation. These complex control
algorithms have a variety of technical bottlenecks. Hence, the scavenging efficiency
of current floor sweeping robots was not efficient. In addition, SLAM relied on lidar
sensors, most of which were not cost effective and continuous rotation seriously
affected their service life.

Although sweeping robots usually maneuver their actuators along a
predetermined path to reach a target location or to cover a designated target area,
this approach is not optimized to avoid static or dynamic obstacles in the path space
domain. Therefore, autonomous robots must overcome the obstacles of interacting
in complex environments by solving the covered path planning (CPP)
problem[1][2]. The goal of the CPP algorithm is to compute optimal paths and
project collision-free trajectories to ensure that the robot completely covers the area
of interest (AOI) within a certain period of time. The robustness and performance
of CPP efficiency is based on several parameters such as percentage of area
covered, travel time, path overlap rate, and energy consumption of the robot.

CPP is the core of processing area coverage optimization in mobile robot
exploration. Area coverage is generalized by robots as a fully or partially enclosed
area with non-overlapping paths. According to the prior knowledge of the
surrounding environment by airborne sensors, CPP algorithms can be divided into
offline algorithms [3] [4]and online algorithms[5]. Offline algorithms allow mobile
robots to perform coverage in static, known environments. CPP is generally based
on global sequential point-to-point coverage, where the robot travels along a route
on a given map and avoids obstacles[6][7]. However, in practice, robots need to
deal with unknown or partially known environments[8][9]. Therefore, online
algorithms are preferred to optimize the exploration strategy and explore unknown
areas within the area of interest while the robot are moving in the environment. The
robot will choose a suitable path by acquiring real-time data from local sensors and
extracting unique features in the dynamic environment[10]. Finally, the robot must
create a limited mapping of the probed environment using CPP techniques [11].

A new algorithm on path planning for robotics 299

Current CPP algorithms mainly focus on classical algorithms and heuristic
algorithms for solving optimization problems[12]. Collision-free paths[13],
covering cost functions [14] (shortest paths and smooth paths) and covering
sequences (set covering problem, SCP and traveling salesman problem, TSP) are
directly related to the CPP problem, in which the optimization problem is
considered. It also includes the characteristics of the CPP optimization algorithm,
as well as various technical characteristics, namely, search time, path optimality,
dynamic performance, convergence speed, and computational complexity. CPP
remains an open problem in the field of robotics in improving the efficiency of
planning optimal paths covering target areas and generating collision-free paths
with less computational effort. The generated coverage paths should be optimal to
ensure minimal logistical costs such as overlap, number of turns, travel time, and
energy consumption [15]. CPP problems include potential uncertain failures,
unknown obstacles in complex environments, and path optimality, which are
considered major challenges in robaotics.

SLAM is challenging in real-world applications. It requires to estimate the
robot’s motion and the state of its surroundings from the sensor data and construct
an accurate map at the same time. This process requires processing a large amount
of data and needs to take into account sensor errors as well as the complexity of the
environment[16]. In addition, the practical application of SLAM involves a variety
of complex factors. For example, robots need to adapt to different sensors and
algorithms in different environments. There are lots of issues such as dynamic
obstacles, light changes, and sensor failures which needs to be taken into account
in different environments. These factors increase the difficulty and complexity of
SLAM implementation. In addition, practical applications of SLAM also should
consider issues such as efficiency and real-time performance. In some cases, robots
cannot construct maps and localize themselves in dynamic environments. In
summary, SLAM is a hard to apply in practice.

Deep learning is a powerful tool in a wide range of applications. However,
for path planning problems, deep learning may not be the best choice. First of all,
deep learning requires a large amount of data to train the model. For path planning
problems, big data may lead to increased difficulty and cost of data collection and
processing [17]. In addition, it would be impractical to collect all the map data.
Secondly, deep learning models usually require long training time and expensive
computing resources. In path planning problems, real-time response and fast
calculation of paths are required, which requires the model to be able to make
accurate decisions in a short period of time. The training and prediction time of
deep learning models is long, which is difficult to meet the real-time demand. In
addition, path planning problems usually need to consider multiple factors, such as
scene conditions, obstacle restrictions, and driving distances. These factors are
often not simple features but need to consider the interaction between multiple

300 Honggiang Li, Weimin Kuang, Zhijia Chen

factors. Deep learning models have difficulty dealing with such complex
interactions, which may lead to inaccurate or uninterpretable predictions from the
model. Therefore, although deep learning has a wide range of applications in many
fields, it may not be the best choice in path planning problems.

|
|
]
]

o—

Fig. 1. The paths finding performance of random collision and path planning robots.

Fig. 2. A seeping robot with SLAM.

In this research, we improved traditional sweeping robots. We carried out
kinematics analyses on robots based on U-shaped paths. This was accomplished by
combining dead reckoning and gyroscope positioning schemes [10]. We employed
infrared sensors, ultrasonic sensors, and photoelectric encoders to construct cost
effective hardware, which effectively implemented path planning. The designed
robot was cost effective and highly efficient. Also, it had low repetition rate and
covered the complete area while successfully avoiding obstacles.

2. Kinematics analysis of sweeping robots

The kinematics analysis and trajectory planning of robots are the most
crucial processes for robot controlling, managing robot motion, and path planning
[9,13,20].

2.1. Motion model analysis

Sweeping robot model was developed using a two-wheel robot. A simplified
sweeping robot model is illustrated as Fig. 3(a).

A new algorithm on path planning for robotics 301

(a) (b)

A Y (North)

0(, 0) X{East) x(f)

Fig. 3. The schematic diagram of robot motion model. (a) kinematic model for sweeping robot and
(b) positional relationship.

XQOY in Fig. 3(a) represents world coordinates. World coordinate described
robots in their current environment. Generally, robot cleaning starting point is
denoted by world coordinate origin O. In Fig. 3(a), X'O"Y" is robot body coordinates.
The central position O" of the axes of the two wheels of the robot denoted the origin
of local coordinate. Then, we established the relationship between the position (x,y)
in global coordinates and position (x’y’) in body coordinates. Local coordinates
was assumed to be (x0,y0) and relative rotation angle between two coordinate
systems was taken as o. Then, according to the rotation matrix, it could be expressed

that:

X) cosa -—sina (X' X
ot I

y Ssina Ccosa y Yo
Robot position was represented by axis midpoint and yaw angle theta.
Sweeping robot position was described by the coordinate vector 4=(x,y,0)" in the
global coordinate system, where (x,y) denotes robot coordinates and @ is the angle
between travel direction of robot and positive direction of X axis; i.e., yaw angle.

When the sliding of the driving wheel of the robot was neglected, kinematics model
was stated as the following matrices.

X cosd O

. . v

y|= sing 0 (w] (2)
7 0 1

2.2. Positioning model analysis

In simplified robot motion control, the center of mass of the robot was
considered to coincide with its geometric center. Considering this premise, the three
most common robot motions were as follows [21]:

302 Honggiang Li, Weimin Kuang, Zhijia Chen

(1) Forward and backward motion: maintaining similar speeds for both side
motors in the same direction.

(2) Circular motion of any radius: allowing both side motors with different speeds
along the same or opposite directions.

(3) Zero radius circular motion: allowing both side motors with the same speed
and in opposite directions.

Considering the right wheel as an example, wheel diameter was D, encoder line
number was n, and record pulse readings was Nr. During time A¢, the distance
traveled by the right wheel was 4S8r. This was formulated as:

AS, = ”2'\” 3)

During time Az¢, the distances covered by the left and right wheels were 4517

and 4Sr, respectively. Then, the distance 4S and angle 46 of the rotation of the
robot (with O " as reference point) were mathematically stated as:

ASY) (172 1/2) (AS,

[AHJ_[UB —1/B)[AS,])
Figs. 3(a)-(b) illustrate the positional analysis of the sweeping robot. At first,
the robot was in the position presented as Ao(X«), Yk @). In time A¢ (sampling
period) of the control system, the robot moved from point Ao(Xx), Y, 8q) to point
Ar(Xk+1), Yk+1), Ok+1) Where, AXx), Ayw), and dék denoted increment along
horizontal direction, increment along vertical direction, and yaw angle of the robot,
respectively. It should be noted that yaw angle represented the angle between
horizontal axis as the starting position and counterclockwise direction as the
positive direction. A4S represents robot movement along the curved path from
point Ao to point A1 and R is the arc radius of the curved track during this time.

Therefore, Ax«), 4y«), and d@) were computed using the following equation.

A _I 0 dg(k) — AS R dH(k) /dﬁ(k) 0 dg(k)
X(k) =l -COS((@"‘T)— (k).[SII’I(>) T).COS((k)+T)

. de . de deo . deo
AV =y s, -SING, +%) = AS, ~[sm(%)/%)«sm(6(k) + 2“‘)) ®)

Due to positioning calculation, the control system of A¢ (sampling period)
was small; therefore, d@) was smaller. At this time,

sin(@,,)/2
((k)) :1

dg,, — 0, lim
“’ 12

(6)

(k)
Then, the pose at moment k was calculated using (5). The current pose
information was expressed as:

A new algorithm on path planning for robotics 303

Xopy = Xy +AS, - €OS(6 +d0(k))-
() = ") (k) ORENPNS

. dég .
Yo = Yoo 88 -sIn(+ z(k‘))i)

Onazy = Oy + G5

3. Algorithm design

In this research, we presented an improved intelligent obstacle avoidance
region recovery algorithm based on traditional U-shaped route [23,24]. The
proposed algorithm aimed to increase cleaning range while minimizing the cost.
However, unlike traditional obstacle avoidance algorithms, the proposed algorithm
provided a mechanism which allowed the robot to memorize swept area by setting
the variable Time-Swerve. The developed algorithm prevented robot from cleaning
any certain area multiple times. This also ensured that the cleaning robot cleaned
all target surfaces.

3.1. Traditional U-shaped trajectory path algorithm

Cleaning robots use yaw angle as reference angle. The robot int his research
moved along forward direction and adjusted yaw direction based on reference
direction. This was done to ensure that the robot did not deviate from its original
direction [25,26,27]. When sensors detected an obstacle, the cleaning robot reduced
its speed, rotated 90°, and then kept moving unless the width limit of the seeping
area was reached. Then, the robot rotated 90° again and moved forward. Thus, the
robot kept moving in the same fashion following a rotational trend. Fig. 4 illustrates

this process.
[3 90°
) 90°

Fig. 4. The traditional U-shaped motion trajectory .

90

It is noteworthy that the proposed algorithm worked effectively in a simple
environment. In a slightly complex environment comprising obstacles, the robot
could get trapped in a particular place [22,27].

304 Honggiang Li, Weimin Kuang, Zhijia Chen

3.2. Improved intelligent obstacle avoidance algorithm based on
traditional algorithm

In real-world environments, there are different obstacle types. We ignored
the irregular shape of obstacles and assumed their shape to be rectangular. Due to
the obstruction caused by obstacles, traditional path algorithms might not be able
to completely cover the sweeping area. Hence, improved intelligent algorithms
were applied to clean the areas missed by the traditional algorithms.

The improved algorithm developed in this research introduced additional
variables into traditional U-shaped path algorithm, namely W, T, D, Prev-D, and @.
These variables enabled the robot to temporarily remember the uncovered areas
covered by obstacles. These variables are defined in Table 1. Here, the proposed
algorithm calculated length for the uncovered area by computing the product W*T.
Based on this information, the robot moved to a suitable position, as illustrated in
Fig. 5.

Table 1
The definitions of variables

'VariableDefinition Initial value

@ Robot diameter 32cm

W Robot cleaning mouth width 16cm

T Robot turning times Ocm

D The distance the robot now travelsOcm

Prev-D [The last time the robot traveled [0Ocm

(1) Sweeping path planning

The autonomous path planning exploration strategy for the robot starts from the
initial point and sweeps from left to right. When the front ultrasonic sensor detects
a wall, the robot stops moving and records the current distance traveled as D. It
should be noted that at this point, the previous distance traveled by the robot, Prev-
D, is equal to the current distance D. After turning and moving forward by a
cleaning width W, the robot turns again to proceed with the next path sweep, while
recording the current number of turns T. Fig.5 illustrates the robot freely planning
and sweeping in space according to this path strategy.

A new algorithm on path planning for robotics

305

A

The

wall {: H

{
N

ey

@

275

—a o

ﬁ w 3 tumn
S -

>

Datd . —— Linear movement

Starting-point

Fig.5 Robot sweeping path planning

The pseudo-code for sweeping path planning is as follows:

1
2
3
4:
5:
6.
7
8

9:
10:
11:
12:

while true do

end

move_forward
if ultrasonic = trigger then
D = moved_distance
turn
move distance W
turn
T=T+1
...... do something
Prev-D =D
end

Obstacle Uncovered Area Length Calculation and Avoidance:

Case 1: D = Prev-D, where the current distance D traveled by the robot is
equal to the previous distance, indicating that the robot is in a parallel passage
(Fig.6(a)). The turn count T is incremented and recorded.

Case 2: D + @ < Prev-D, where the current distance D traveled by the robot
plus the robot’s diameter @ is less than the previous distance Prev-D. This indicates
that the robot has encountered an obstacle. In this case, the turn count T is reset and
counting starts again (Fig.6(b)). The robot then turns and continues sweeping
according to the cleaning path.

The
wall

D = PrevD D+ < Prev-D
(>

o e = o

T vy o

nﬁr; ThT| ,‘ X nﬁr;

o wa gy, o

o 1D I - O A Prev-D
o (<
o Prev-D ‘~‘£' - A
® e ® &

Starting-point

Scenario 1: Parallel passage

Starting-point

Fig.6(b) Scenario 2: Obstacle

306 Honggiang Li, Weimin Kuang, Zhijia Chen

Case 3: D -® > Prev-D, the distance of the current robot moving D minus the
diameter of the robot @ is greater than the distance of the last movement Prev-D,
indicating that the robot has stepped out of the obstacle Fig.7. At this time, the
length of the uncovered area of the obstacle is obtained by the steering number T
and the cleaning width W.

(a) (b)

Uncovered area D Prev-D D-@ = Prev-D D-@ > Prev-D Prev-D

\ . \
Starting-point Starfing-point Uncovered area

Fig. 7. The robot encountering two different obstacles. (a) Obstacle 1. (b) Obstacle 2.

I_’J The
|—q— wall

=

The
wall

)
Y A A
A

After obtaining the length of the obstacle uncovered area in Scenario 3, the
robot moves in the opposite direction by that length, reaches the uncovered area,
and performs cleaning. This approach achieves full coverage and eliminates issues
such as multiple cleaning of the same area.

Pseudo-code for obstacle uncovered area length calculation is as follows:

Sweeping path planning...

if D = Prev-D then
T=T+1

end

if D +& < Prev-D then
T=0

end

if D -& > Prev-D then

0: Length=W*T

1. end

RgeoNoakrwNE

Program logic flow chart of the proposed improved intelligent obstacle
avoidance algorithm based on traditional algorithm is illustrated in Fig. 8.

A new algorithm on path planning for robotics 307

Gets the yaw

Angle

v

Start moving
and record the |-
distanceas D

v

Read ultrasonic
sensor data until
ithits an obstacle

D+P < Prev-D D-d > Prev-D Right turn 90°, go
=0 —————— | straight on W*T or
hit an obstacle
Yes
Turn right again
until it hits the
obstacle
Y
Prev-D=D, slow W goes
down and turn left - forward
90° forward W once, T+
¢ L
W goes Turn 90° to the left
forward until you hit the
once, T+1 obstacle

D+P < Prev-D Turn left 902 and
advance W*T or hit

an obstacle

Prev-D=D, Turn W goes
- right 90° and forward
advance W once, T+

Y

Turn right
gp°

Fig.8 The flow chart of the proposed algorithm.
3.3 Motion Path Tracking Control Algorithm

The robot uses linear motion trajectories and rotational motion to complete the
entire cleaning path during the cleaning process (Fig.9). The robot always moves
in a fixed horizontal direction and stops moving and rotates 90° when it detects a
wall before proceeding with the next linear trajectory.

308 Honggiang Li, Weimin Kuang, Zhijia Chen

{ } Rotary motion

— Linear motion

Cleaning track

Fig.9 Robot cleaning path
(2) Closed-loop control algorithm

PID controller is a negative feedback control algorithm, the output quantity
composed of proportional, integral, differential linear combination. PID is
commonly used in industrial process control, has a simple structure, robustness and
other characteristics, PID control algorithms can usually be composed of a P

controller, PI controller, PD controller and PID controller, Fig.10.

PID Controllers

‘ u(t) Exportation .

r(t) Set values + ®e(t)

Differentiation

__

Fig.10 PID Control algorithm block diagram

PID control algorithm:

u®) =](p[e(t) L fe(t)dt + 7, de(t)}
T % dt (1)

1

_ o) + K, [t + , 940

Where: r(t) is the set value and u(t) is the output.

A new algorithm on path planning for robotics 309

(3) Closed-loop control of rotary motion

The symbols are defined below:

\VariableDefinition Initial valug

6,,(t) |Robot yaw angle at time t
6

set

Setting the robot yaw angle

0(t) The robot's linear velocity z at time t

Use the current robot attitude as a feedback value to set the angle at which the
robot needs to rotate.(90°,-90°...)The angular velocity of thg robot rotating around
the z-axis is calculated by the PD control algorithm (Eqg. 1) 8 (t) .

e(t) = Hset - efb(t>
e(t) — et — 1))(2)

o) = K, - elt) + (K, - T, -
dt

(4) Linear point-to-point control algorithm

Given the target coordinates of the robot, combine the robot coordinates with
the feedback to calculate the robot's linear velocity, and set the target coordinates
in the x-direction to infinity to make the robot always move forward during the
sweeping movement.

X X
Ex €r

Target position Present position

&1
Global reference coordinate system

Symbol Definition:

\Variable Definition Initial value

310 Honggiang Li, Weimin Kuang, Zhijia Chen

£, = [X y Q]T Target coordinate

£, = [X y g]’ Linear velocity of the robot's reference coordinate system

g = [X ¥ g]’ Current machine position (global reference coordinate system)

\/(856,t.X —&,.x) + (g7 —&.y)

Calculate target position point p = = & v — &,
P 2] arc tan (Zset—_~1 7 L y)
EgoprX — E1.X

Calculate the target position point, calculated using the PD control algorithm,
with a set value of 0 i.e. the expected straight-line distance between the two points
before is equal to 0.

Calculation bias
et))=0—p.1r
Calculate output

Vsum(t) = Kp e(t) + (Kp Tq-

e(t)—e(t—1)
dt)

Calculate the angular velocity z of the robot using the PD algorithm 6 .
Calculation bias
e(t)=p.0—¢,.0
Calculate output

0=K, et)+ (K, Ty

e(t)—e(t—1)
dt)

Transforms the closing speed to the linear speed in the robot's reference coordinate

system. ¢,

. cos(g,.0) sin(g,.0) 0| |v,, - cos(p.6)

g = |—sin(g,.0) coslg,.0) 0-|v,, -sin(p.0)

sum
°

0 0 1 0
(5) Velocity Smoothing Algorithm
When the robot encounters an obstacle or a wall and stops during the cleaning

process, the acceleration limiting algorithm combined with the first-order low-pass
filtering algorithm is used to filter the linear velocity, which ensures smooth motion

A new algorithm on path planning for robotics

311

speed and reduces the positional projection error due to slippage. The details are

shown in Figure 11 below.

+4]

First-order low-
pass filtering

Velocity
acceleration limiter

Fig. 11 Velocity smoothing method

Symbol Definition:

\Variable

Definition

Initial valug

v(t)

Current speed at time t

acc

max

maximum acceleration

acc(t)

Current acceleration at time t

v(t)fitcr

Current filtered velocity at time t

lowpass

Low-pass filtering factor

Algorithmic step:
Low-pass smoothing filteri
(t) =A -k

Vlowpass lowpass

included among these: k...

) -

ng for current input speeds
vt — 1) + k, - v(t)

owpass

e [0,1]

Calculate current acceleration

dv v(t) — v(

t—1)

acc(t) = =
dt dt

Magnitude limiting of acceleration

312 Honggiang Li, Weimin Kuang, Zhijia Chen

ir Hacc(t)” > acc,, then
acc(t) = siglacc(t)) - acc,,
end

Recalculate the velocity that satisfies the maximum acceleration constraint
Veilter (t) = acct) - dt + vt = 1)

The comparison before and after speed smoothing is shown below:

............

(a) Raw speed (b) Speed after smoothing

Fig.12 Comparison before speed smoothing

4. The design of experiment platform

We used a conventional sweeping robot for the evaluation of the developed
algorithm. Fig. 13(a) shows a conventional sweeping robot. This robot used infrared
and ultrasonic sensors to detect obstacles. In addition, this robot was equipped with
a gyroscope MPUG6050 to calculate rotation angle [28].

The robot adjusted the direction based on the path planning function of the
code plate and gyroscope to ensure trajectory accuracy. Robot motion control was
handled by MPU6050 module. This was a 6-axis module and used sensors such as
gyroscopes. MPU6050 module was able to accurately calculate parameters such as
wheel speed, providing a reference basis for robot path planning.

Conventional sweeping robots have a 16V battery with the capacity of
9000mANh. This battery provided the necessary power to drive the motor. The robots
also had another battery of 5V which was used to power up the control unit.

STM32F4291GT6 was applied as control chip. This chip comprised a
floating-point unit (FPU) which had high performance and low power consumption
[29]. It processed the real-time data collected by MPUG050 sensor [30]. L298N
motor driving chip was used which realized the driving control of the motor used

A new algorithm on path planning for robotics 313

for robot motion. Throughout the entire control process, the main control unit
played the most important roles, such as controlling robot motion, driving robot

wheels, etc.
The hardware control scheme of the entire robot is illustrated in Fig. 13(b).

(2) (b)

—> L298N

STM32F4291GT6 :
—=> Dust collection

device

Fig.13. Design principle of the experimental system used in this work for evaluation. (a)
Experiment platform. (b) Hardware control system.

Iapoduy
0509ndIA

Josuas doxcy

£jddns amod
J10SUas patelyuy

c
=
2
<]
B
=
=]
2
=5
=
H
s
<]

5. Experimental results

As described in this section, several experiments were conducted to verify
the performance of the proposed algorithm. On the one hand, the practicality of path
planning methods for robots, especially the accuracy of algorithms, needed to be
verified through experiments. On the other hand, handling the missing areas is also
an important task for robots. In addition, robots functions in indoor environments
also needed to be verified.

The operating system used in the experiment is Windows 10, and the

software is programmed using C++ language.
We calculated the search range of robots using the following expression.

AixW +d2xW +---+ th-1xW + th xW
Re= ®)
S-S

where dn is the distance passed by the robot in each horizontal movement,
S denotes target cleaning area, and So is obstacles area.

It is noteworthy that, in real-world scenarios, a cover exists among different
robot paths, thus rendering Eq. (8) inappropriate. In order to address this problem,
the search range was changed to SC which should include areas that had not been

processed previously. In this case, Rc was calculated by using the following
equation.

S—Sc
S

Rc =)

314 Honggiang Li, Weimin Kuang, Zhijia Chen

5.1. Testing of U-shaped path algorithm

During the experiment, it was necessary to fully consider robot hardware,
especially its control system. The motor used to control robot motion could reach a
maximum speed of over 30cm/s. Considering robot motion safety, only 20cm/s was
taken here. Throughout the entire experiment, the robot followed a U-shaped route,
as illustrated in Fig. 14.

Fig. 14. U-shaped route followed by the robot in this experiment.

By repeating the same experiment multiple times, robot motion stability
could be better examined. Based on this testing method, the robot was allowed to
take 7 U-shaped routes during its motion and then examine the deviations occurring
in each action. The corresponding results are illustrated in Fig. 9.

It was seen from the figure that the robot experienced cumulative errors
during the process of continuously repeating the path, with a maximum cumulative
cost of 7mm after 7 iterations. The reason for this deviation was related to robot
hardware control error.

=== result of tests
12

10

offset (mm)

= I S RS = S]

number of cycles (time)

Fig.15. Offset in the distance computed after the completion of 7 cycles.
5.2. Improved intelligent obstacle avoidance algorithm test

In this research, we evaluated the proposed algorithm under two different
obstacle situations.

A new algorithm on path planning for robotics 315

We conducted five experiments to evaluate the first case and calculated
coverage rate. Fig. 10 shows the route followed by the robot during this experiment.
Please note that the box in the hallway presented in Fig. 16 covered 0.4 m2. On the
other hand, the area of the test field was about 4 m2. Corresponding results are
summarized in Table 1. The error depicted in the results was a cumulative offset
due to multiple repeated motion processes.

Then, five repeated experiments were performed again to verify the
coverage of the search method, as illustrated in Fig. 11. Based on the statistical
results given in Table 2, it was seen that the coverage obtained from the five
repeated experiments fluctuated around 94%.

Fig. 16. The route followed by the robot in case 1.

Table 2
The results of coverage tests for case 1
Test No. 1 No. 2 No. 3 No. 4 No. 5
S-Sc 3.659 3.588 3.686 3.621 3.607
S 3.837
Rc 95.36% 93.57% 96.08% 94.38% 94.11%

Fig. 17. The route followed by the robot in case 2.

316 Honggiang Li, Weimin Kuang, Zhijia Chen

5.3. Comprehensive Test

We performed the final test to evaluate and compare the U-shaped path and
proposed algorithms. This experiment aimed to examine the level that the proposed
method could achieve for robot motion in indoor environments, especially in
complex situations.

Fig. 18 illustrates the route followed by the robot during this test. It was seen
that the coverage rate in this experiment was 94.61%.

When the robot detected the wall, which indicated that the robot could not
go further, the cleaning task was ended.

Fig. 18. The route followed by the robot during the comprehensive test.
6. Conclusions

According to the analysis of sweeping robot motion model, in this work, we
proposed a new method for sweeping robot motion. Also, U-shaped path was
applied as the reference path for robot motion. Robot route was mainly based on U-
shaped route. It is noteworthy that, based on the proposed algorithm, the robot
memorized the area behind the obstacle by comparing the existing state with
previous state. It also remembered the area that was cleaned in order to avoid
repeated cleaning. During the experiment, random programming was adopted as
the reference method. Compared to this method, the proposed method enabled the
robot to achieve 94.61% coverage of cleaning area. This experiment showed that
the proposed method had significantly improved robot efficiency. The experimental
results of stability also confirmed that the maximum cumulative offset of the
proposed method was 7mm. These results indicated that the robot using the
proposed algorithm had good path-keeping ability. The proposed algorithm was
evaluated for two types of obstacles to show that it had the ability to control the
robot during cleaning process behind the obstacles and enabled it to return to the
main path after cleaning. In order to comprehensively test the proposed algorithm,
we set up a complex experimental environment to test whether the robot could work
in this environment. The experimental results fully confirmed that the proposed

A new algorithm on path planning for robotics 317

method enabled robots to have better adaptability, especially for complex
environments where cleaning work could be completed. In future research, we will
examine algorithm performance improvement from different perspectives to further
enhance robot motion performance.

[1].
[2].

[3].

[4].
[5].

[6].
[71.
[8].

[9].

[10].
[11].

[12].

[13].
[14].

[15].

REFERENCE

Miao X, Lee H S, Kang B Y. Multi-cleaning robots using cleaning distribution method based
on map decomposition in large environments. IEEE Access, 2020, 8: 97873-97889.

Sharma G, Dutta A, Kim J H. Optimal online coverage path planning with energy
constraints//Proceedings of the 18th international conference on autonomous agents and
multiagent systems. 2019: 1189-1197.

Sung I, Choi B, Nielsen P. On the training of a neural network for online path planning with
offline path planning algorithms. International Journal of Information Management, 2021, 57:
102142.

Wang L, Liu L, Qi J, et al. Improved quantum particle swarm optimization algorithm for offline
path planning in AUVs. IEEE Access, 2020, 8: 143397-143411.

Schmid L, Pantic M, Khanna R, et al. An efficient sampling-based method for online
informative path planning in unknown environments. IEEE Robotics and Automation Letters,
2020, 5(2): 1500-1507.

Laghmara H, Boudali M T, Laurain T, et al. Obstacle avoidance, path planning and control for
autonomous vehicles//2019 IEEE intelligent vehicles symposium (IV). IEEE, 2019: 529-534.

Wang P, Gao S, Li L, et al. Obstacle avoidance path planning design for autonomous driving
vehicles based on an improved artificial potential field algorithm. Energies, 2019, 12(12): 2342.

Chang L, Shan L, Jiang C, et al. Reinforcement based mobile robot path planning with
improved dynamic window approach in unknown environment. Autonomous Robots, 2021,
45:51-76.

Schmid L, Pantic M, Khanna R, et al. An efficient sampling-based method for online
informative path planning in unknown environments. IEEE Robotics and Automation Letters,
2020, 5(2): 1500-1507.

Qi J, Yang H, Sun H. MOD-RRT*: A sampling-based algorithm for robot path planning in
dynamic environment. IEEE Transactions on Industrial Electronics, 2020, 68(8): 7244-7251.
Lluvia I, Lazkano E, Ansuategi A. Active map** and robot exploration: A survey. Sensors,
2021, 21(7): 2445.

Ab Wahab M N, Nefti-Meziani S, Atyabi A. A comparative review on mobile robot path

planning: Classical or meta-heuristic methods?. Annual Reviews in Control, 2020, 50: 233-
252.

Shin H, Chae J. A performance review of collision-free path planning algorithms. Electronics,
2020, 9(2): 316.

Cabreira T M, Brisolara L B, Paulo R F J. Survey on coverage path planning with unmanned
aerial vehicles. Drones, 2019, 3(1): 4.

Wai R J, Prasetia A S. Adaptive neural network control and optimal path planning of UAV

surveillance system with energy consumption prediction. Ieee Access, 2019, 7: 126137-
126153.

318 Honggiang Li, Weimin Kuang, Zhijia Chen

[16]. Lutz P, Schuster M J, Steidle F. Visual-inertial SLAM aided estimation of anchor poses and
sensor error model parameters of UWB radio modules//2019 19th International Conference on
Advanced Robotics (ICAR). IEEE, 2019: 739-746.

[17]. Gao J, Ye W, Guo J, et al. Deep reinforcement learning for indoor mobile robot path planning.
Sensors, 2020, 20(19): 5493.

