
U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 2, 2024 ISSN 2286-3540

A NEW ALGORITHM ON PATH PLANNING FOR ROBOTICS

Hongqiang LI1,*, Weimin KUANG2, Zhijia CHEN3

Path planning process using sweeping robots has been a hot spot in the

research community. It is noteworthy that conventional robots adopt random collision

and infrared detection to avoid obstacles, which results in high repetition and low

coverage of the cleaning area. In this research, we have proposed an intelligent

obstacle avoidance area recovery algorithm. This algorithm was built on U-shaped

trajectory. However, unlike conventional obstacle avoidance algorithms, the

developed algorithm established a mechanism to allow the robots to remember the

processed areas in order to avoid the cleaning of the same area again. Second, based

on the kinematics analysis of the sweeping robot, the front side of the robot adopted

universal wheels to address the limitation of incomplete linear motion and realize

omni-directional motion. Experimental results of robots operating using the proposed

algorithm revealed that 94.61% of the total area was covered, which was higher than

those of robots using random cleaning technique. Furthermore, compared with

conventional robots, those using the proposed algorithm consumed less power and

presented high efficiencies.

Keywords: Sweeping robot; Coverage path planning; Kinematic analysis;

Navigation

1. Introduction

In robotics, sweeping robots have been a hot spot in the research community

[1]. The aim of developing a sweeping robot was to replace manual ground

cleaning. Path planning and path keeping abilities are major topics in the research

on sweeping robots [2]. It is noteworthy that complete area path planning requires

the robots to cover every part of the workspace, which is a critical issue in cleaning

robots [3]. Recently, with the development of intelligent houses, sweeping robots

are greatly becoming research hot spot [4], but they are still not widely popularized.

The factors limiting the development of sweeping robots include hardware-

based and software-based restrictions. Regarding hardware-based restrictions,

traditional sweeping robots generally employ a single infrared [5] or ultrasonic

sensor for obstacle avoidance. Walking mode is random reciprocating due to which

cleaning robots cannot completely clean the target surface, thus making the process

1 Guangzhou Industry and Trade Technician College, Guangzhou, China, e-mail:

471918248@qq.com
2 Guangzhou Industry and Trade Technician College, Guangzhou, China
3 Guangzhou Industry and Trade Technician College, Guangzhou, China

298 Hongqiang Li, Weimin Kuang, Zhijia Chen

less efficient and highly repetitive [6]. Therefore, it is difficult to develop an

intelligent planning and obtain orderly cleaning. Fig. 1 illustrates this process. It

should be noted that although internal spiral route cleaning had comprehensive

coverage and low repetition rate, its cleaning time was longer, power consumption

was higher and path planning was not optimal in the presence of obstacles [7].

Consequently, robots were unable to meet the requirements of the user. High-end

sweeping robots, such as L10 PRO launched by Chomie, used double line laser to

avoid obstacles during navigation [8]. Fig. 2 depicts this process. These sweeping

robots had high precision; however, they were not cost effective. In terms of

software, map construction (SLAM) [9] and path planning of sweeping robots

involved operating system, deep learning, communication transmission and several

other software features required for robot operation. These complex control

algorithms have a variety of technical bottlenecks. Hence, the scavenging efficiency

of current floor sweeping robots was not efficient. In addition, SLAM relied on lidar

sensors, most of which were not cost effective and continuous rotation seriously

affected their service life.

Although sweeping robots usually maneuver their actuators along a

predetermined path to reach a target location or to cover a designated target area,

this approach is not optimized to avoid static or dynamic obstacles in the path space

domain. Therefore, autonomous robots must overcome the obstacles of interacting

in complex environments by solving the covered path planning (CPP)

problem[1][2]. The goal of the CPP algorithm is to compute optimal paths and

project collision-free trajectories to ensure that the robot completely covers the area

of interest (AOI) within a certain period of time. The robustness and performance

of CPP efficiency is based on several parameters such as percentage of area

covered, travel time, path overlap rate, and energy consumption of the robot.

CPP is the core of processing area coverage optimization in mobile robot

exploration. Area coverage is generalized by robots as a fully or partially enclosed

area with non-overlapping paths. According to the prior knowledge of the

surrounding environment by airborne sensors, CPP algorithms can be divided into

offline algorithms [3] [4]and online algorithms[5]. Offline algorithms allow mobile

robots to perform coverage in static, known environments. CPP is generally based

on global sequential point-to-point coverage, where the robot travels along a route

on a given map and avoids obstacles[6][7]. However, in practice, robots need to

deal with unknown or partially known environments[8][9]. Therefore, online

algorithms are preferred to optimize the exploration strategy and explore unknown

areas within the area of interest while the robot are moving in the environment. The

robot will choose a suitable path by acquiring real-time data from local sensors and

extracting unique features in the dynamic environment[10]. Finally, the robot must

create a limited mapping of the probed environment using CPP techniques [11].

A new algorithm on path planning for robotics 299

Current CPP algorithms mainly focus on classical algorithms and heuristic

algorithms for solving optimization problems[12]. Collision-free paths[13],

covering cost functions [14] (shortest paths and smooth paths) and covering

sequences (set covering problem, SCP and traveling salesman problem, TSP) are

directly related to the CPP problem, in which the optimization problem is

considered. It also includes the characteristics of the CPP optimization algorithm,

as well as various technical characteristics, namely, search time, path optimality,

dynamic performance, convergence speed, and computational complexity. CPP

remains an open problem in the field of robotics in improving the efficiency of

planning optimal paths covering target areas and generating collision-free paths

with less computational effort. The generated coverage paths should be optimal to

ensure minimal logistical costs such as overlap, number of turns, travel time, and

energy consumption [15]. CPP problems include potential uncertain failures,

unknown obstacles in complex environments, and path optimality, which are

considered major challenges in robotics.

SLAM is challenging in real-world applications. It requires to estimate the

robot’s motion and the state of its surroundings from the sensor data and construct

an accurate map at the same time. This process requires processing a large amount

of data and needs to take into account sensor errors as well as the complexity of the

environment[16]. In addition, the practical application of SLAM involves a variety

of complex factors. For example, robots need to adapt to different sensors and

algorithms in different environments. There are lots of issues such as dynamic

obstacles, light changes, and sensor failures which needs to be taken into account

in different environments. These factors increase the difficulty and complexity of

SLAM implementation. In addition, practical applications of SLAM also should

consider issues such as efficiency and real-time performance. In some cases, robots

cannot construct maps and localize themselves in dynamic environments. In

summary, SLAM is a hard to apply in practice.

Deep learning is a powerful tool in a wide range of applications. However,

for path planning problems, deep learning may not be the best choice. First of all,

deep learning requires a large amount of data to train the model. For path planning

problems, big data may lead to increased difficulty and cost of data collection and

processing [17]. In addition, it would be impractical to collect all the map data.

Secondly, deep learning models usually require long training time and expensive

computing resources. In path planning problems, real-time response and fast

calculation of paths are required, which requires the model to be able to make

accurate decisions in a short period of time. The training and prediction time of

deep learning models is long, which is difficult to meet the real-time demand. In

addition, path planning problems usually need to consider multiple factors, such as

scene conditions, obstacle restrictions, and driving distances. These factors are

often not simple features but need to consider the interaction between multiple

300 Hongqiang Li, Weimin Kuang, Zhijia Chen

factors. Deep learning models have difficulty dealing with such complex

interactions, which may lead to inaccurate or uninterpretable predictions from the

model. Therefore, although deep learning has a wide range of applications in many

fields, it may not be the best choice in path planning problems.

Fig. 1. The paths finding performance of random collision and path planning robots.

Fig. 2. A seeping robot with SLAM.

In this research, we improved traditional sweeping robots. We carried out

kinematics analyses on robots based on U-shaped paths. This was accomplished by

combining dead reckoning and gyroscope positioning schemes [10]. We employed

infrared sensors, ultrasonic sensors, and photoelectric encoders to construct cost

effective hardware, which effectively implemented path planning. The designed

robot was cost effective and highly efficient. Also, it had low repetition rate and

covered the complete area while successfully avoiding obstacles.

2. Kinematics analysis of sweeping robots

The kinematics analysis and trajectory planning of robots are the most

crucial processes for robot controlling, managing robot motion, and path planning

[9,13,20].

2.1. Motion model analysis

Sweeping robot model was developed using a two-wheel robot. A simplified

sweeping robot model is illustrated as Fig. 3(a).

A new algorithm on path planning for robotics 301

Fig. 3. The schematic diagram of robot motion model. (a) kinematic model for sweeping robot and

(b) positional relationship.

XOY in Fig. 3(a) represents world coordinates. World coordinate described

robots in their current environment. Generally, robot cleaning starting point is

denoted by world coordinate origin O. In Fig. 3(a), X'O'Y' is robot body coordinates.

The central position O'' of the axes of the two wheels of the robot denoted the origin

of local coordinate. Then, we established the relationship between the position (x,y)

in global coordinates and position (x’,y’) in body coordinates. Local coordinates

was assumed to be (x0,y0) and relative rotation angle between two coordinate

systems was taken as α. Then, according to the rotation matrix, it could be expressed

that:

0

0

cos sin '
()

sin cos '

xx x

yy y

 

 

−     
=  +     

     
 (1)

Robot position was represented by axis midpoint and yaw angle theta.

Sweeping robot position was described by the coordinate vector A=(x,y,θ)T in the

global coordinate system, where (x,y) denotes robot coordinates and θ is the angle

between travel direction of robot and positive direction of X axis; i.e., yaw angle.

When the sliding of the driving wheel of the robot was neglected, kinematics model

was stated as the following matrices.

cos 0

sin 0

0 1

x
v

y








   
    

=     
    

   

 (2)

2.2. Positioning model analysis

In simplified robot motion control, the center of mass of the robot was

considered to coincide with its geometric center. Considering this premise, the three

most common robot motions were as follows [21]:

302 Hongqiang Li, Weimin Kuang, Zhijia Chen

(1) Forward and backward motion: maintaining similar speeds for both side

motors in the same direction.

(2) Circular motion of any radius: allowing both side motors with different speeds

along the same or opposite directions.

(3) Zero radius circular motion: allowing both side motors with the same speed

and in opposite directions.

Considering the right wheel as an example, wheel diameter was D, encoder line

number was n, and record pulse readings was Nr. During time Δt, the distance

traveled by the right wheel was ΔSr. This was formulated as:

 r

n
r

DN
S


 = (3)

During time Δt, the distances covered by the left and right wheels were ΔSl

and ΔSr, respectively. Then, the distance ΔS and angle Δθ of the rotation of the

robot (with O ' as reference point) were mathematically stated as:

1/ 2 1/ 2

=
1/ 1/

r

l

SS

SB B

     
    
 −     

 (4)

Figs. 3(a)-(b) illustrate the positional analysis of the sweeping robot. At first,

the robot was in the position presented as A0(x(k), y(k), θ(k)). In time Δt (sampling

period) of the control system, the robot moved from point A0(x(k), y(k), θ(k)) to point

A1(x(k+1), y(k+1), θ(k+1)) where, Δx(k), Δy(k), and dθ(k) denoted increment along

horizontal direction, increment along vertical direction, and yaw angle of the robot,

respectively. It should be noted that yaw angle represented the angle between

horizontal axis as the starting position and counterclockwise direction as the

positive direction. ΔS(k) represents robot movement along the curved path from

point A0 to point A1 and R(k) is the arc radius of the curved track during this time.

Therefore, Δx(k), Δy(k), and dθ(k) were computed using the following equation.

0 1

0 1

() () () ()

() () () ()

() () () ()

() () () ()

cos() [sin() /) cos()
2 2 2 2

sin() [sin() /) sin()
2 2 2 2

k k k k

k A A k k k

k k k k

k A A k k k

d d d d
x l S

d d d d
y l S

   
 

   
 

 =  + =    +

 =  + =    +

(5)

Due to positioning calculation, the control system of Δt (sampling period)

was small; therefore, dθ(k) was smaller. At this time,

()

()

()

sin() / 2
0, lim 1

/ 2

k

k

k

d





→ = (6)

Then, the pose at moment k was calculated using (5). The current pose

information was expressed as:

A new algorithm on path planning for robotics 303

()

(1) () () ()

()

(1) () () ()

1) () ()

cos()
2

sin();
2

k

k k k k

k

k k k k

k k k

d
x x S

d
y y S

d







  

+

+

+

= +   +

= +   +

= +（

；

；

 (7)

3. Algorithm design

In this research, we presented an improved intelligent obstacle avoidance

region recovery algorithm based on traditional U-shaped route [23,24]. The

proposed algorithm aimed to increase cleaning range while minimizing the cost.

However, unlike traditional obstacle avoidance algorithms, the proposed algorithm

provided a mechanism which allowed the robot to memorize swept area by setting

the variable Time-Swerve. The developed algorithm prevented robot from cleaning

any certain area multiple times. This also ensured that the cleaning robot cleaned

all target surfaces.

3.1. Traditional U-shaped trajectory path algorithm

Cleaning robots use yaw angle as reference angle. The robot int his research

moved along forward direction and adjusted yaw direction based on reference

direction. This was done to ensure that the robot did not deviate from its original

direction [25,26,27]. When sensors detected an obstacle, the cleaning robot reduced

its speed, rotated 90°, and then kept moving unless the width limit of the seeping

area was reached. Then, the robot rotated 90° again and moved forward. Thus, the

robot kept moving in the same fashion following a rotational trend. Fig. 4 illustrates

this process.

Fig. 4. The traditional U-shaped motion trajectory .

It is noteworthy that the proposed algorithm worked effectively in a simple

environment. In a slightly complex environment comprising obstacles, the robot

could get trapped in a particular place [22,27].

304 Hongqiang Li, Weimin Kuang, Zhijia Chen

3.2. Improved intelligent obstacle avoidance algorithm based on

traditional algorithm

In real-world environments, there are different obstacle types. We ignored

the irregular shape of obstacles and assumed their shape to be rectangular. Due to

the obstruction caused by obstacles, traditional path algorithms might not be able

to completely cover the sweeping area. Hence, improved intelligent algorithms

were applied to clean the areas missed by the traditional algorithms.

The improved algorithm developed in this research introduced additional

variables into traditional U-shaped path algorithm, namely W, T, D, Prev-D, and Φ.

These variables enabled the robot to temporarily remember the uncovered areas

covered by obstacles. These variables are defined in Table 1. Here, the proposed

algorithm calculated length for the uncovered area by computing the product W*T.

Based on this information, the robot moved to a suitable position, as illustrated in

Fig. 5.

Table 1

The definitions of variables

Variable Definition Initial value

Φ Robot diameter 32cm

W Robot cleaning mouth width 16cm

T Robot turning times 0cm

D The distance the robot now travels 0cm

Prev-D The last time the robot traveled 0cm

(1) Sweeping path planning

The autonomous path planning exploration strategy for the robot starts from the

initial point and sweeps from left to right. When the front ultrasonic sensor detects

a wall, the robot stops moving and records the current distance traveled as D. It

should be noted that at this point, the previous distance traveled by the robot, Prev-

D, is equal to the current distance D. After turning and moving forward by a

cleaning width W, the robot turns again to proceed with the next path sweep, while

recording the current number of turns T. Fig.5 illustrates the robot freely planning

and sweeping in space according to this path strategy.

A new algorithm on path planning for robotics 305

Fig.5 Robot sweeping path planning

The pseudo-code for sweeping path planning is as follows:

1: while true do

2: move_forward

3: if ultrasonic = trigger then

4: D = moved_distance

5: turn

6: move distance W

7: turn

8: T = T + 1

9: ……do something

10: Prev-D = D
11: end

12: end

Obstacle Uncovered Area Length Calculation and Avoidance:

Case 1: D = Prev-D, where the current distance D traveled by the robot is

equal to the previous distance, indicating that the robot is in a parallel passage

(Fig.6(a)). The turn count T is incremented and recorded.

Case 2: D + Φ < Prev-D, where the current distance D traveled by the robot

plus the robot’s diameter Φ is less than the previous distance Prev-D. This indicates

that the robot has encountered an obstacle. In this case, the turn count T is reset and

counting starts again (Fig.6(b)). The robot then turns and continues sweeping

according to the cleaning path.

Scenario 1: Parallel passage Fig.6(b) Scenario 2: Obstacle

306 Hongqiang Li, Weimin Kuang, Zhijia Chen

Case 3: D -Φ > Prev-D, the distance of the current robot moving D minus the

diameter of the robot Φ is greater than the distance of the last movement Prev-D,

indicating that the robot has stepped out of the obstacle Fig.7. At this time, the

length of the uncovered area of the obstacle is obtained by the steering number T

and the cleaning width W.

Fig. 7. The robot encountering two different obstacles. (a) Obstacle 1. (b) Obstacle 2.

After obtaining the length of the obstacle uncovered area in Scenario 3, the

robot moves in the opposite direction by that length, reaches the uncovered area,

and performs cleaning. This approach achieves full coverage and eliminates issues

such as multiple cleaning of the same area.

Pseudo-code for obstacle uncovered area length calculation is as follows:

1 Sweeping path planning…

2: if D = Prev-D then

3: T = T + 1

4: end

5: if D +Φ < Prev-D then

6:

7:

 T = 0

end

8: if D -Φ > Prev-D then

10: Length = W * T

11: end

Program logic flow chart of the proposed improved intelligent obstacle

avoidance algorithm based on traditional algorithm is illustrated in Fig. 8.

A new algorithm on path planning for robotics 307

Fig.8 The flow chart of the proposed algorithm.

3.3 Motion Path Tracking Control Algorithm

The robot uses linear motion trajectories and rotational motion to complete the

entire cleaning path during the cleaning process (Fig.9). The robot always moves

in a fixed horizontal direction and stops moving and rotates 90° when it detects a

wall before proceeding with the next linear trajectory.

308 Hongqiang Li, Weimin Kuang, Zhijia Chen

Fig.9 Robot cleaning path

(2) Closed-loop control algorithm

PID controller is a negative feedback control algorithm, the output quantity

composed of proportional, integral, differential linear combination. PID is

commonly used in industrial process control, has a simple structure, robustness and

other characteristics, PID control algorithms can usually be composed of a P

controller, PI controller, PD controller and PID controller, Fig.10.

Fig.10 PID Control algorithm block diagram

PID control algorithm:





++=









++=

t

dip

d

t

i

p

dt

tde
KdtteKteK

dt

tde
Tdtte

T
teKt

0

0

)(
)()(

)(
)(

1
)()(u

(1)

Where: r(t) is the set value and u(t) is the output.

A new algorithm on path planning for robotics 309

(3) Closed-loop control of rotary motion

The symbols are defined below:

Variable Definition Initial value

）t（fb Robot yaw angle at time t

set Setting the robot yaw angle

）t（
•


The robot's linear velocity z at time t

Use the current robot attitude as a feedback value to set the angle at which the

robot needs to rotate.(90°,-90°…)The angular velocity of the robot rotating around

the z-axis is calculated by the PD control algorithm (Eq. 1) ）t（
•

 。

)
)1()(

()()(

)()(set

dt

tete
TKteKt

tte

dpp

fb

−−
+=

−=

•





(2)

(4) Linear point-to-point control algorithm

Given the target coordinates of the robot, combine the robot coordinates with

the feedback to calculate the robot's linear velocity, and set the target coordinates

in the x-direction to infinity to make the robot always move forward during the

sweeping movement.

Symbol Definition:

Variable Definition Initial value

310 Hongqiang Li, Weimin Kuang, Zhijia Chen

 Ty  xset = Target coordinate

 TR yx  =
•

 Linear velocity of the robot's reference coordinate system

 Tyx  =I Current machine position (global reference coordinate system)

Calculate target position point

















−

−

−+−

=







=

)
..

..
tan(arc

)..()..(
r

22

xx

yy

yyxx

Iset

Iset

IsetIset










Calculate the target position point, calculated using the PD control algorithm,

with a set value of 0 i.e. the expected straight-line distance between the two points

before is equal to 0.

𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐛𝐢𝐚𝐬
𝒆(𝒕) = 𝟎 − 𝝆. 𝒓
𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞 𝐨𝐮𝐭𝐩𝐮𝐭

𝒗𝒔𝒖𝒎(𝒕) = 𝑲𝒑 ⋅ 𝒆(𝒕) + (𝑲𝒑 ⋅ 𝑻𝒅 ⋅
𝒆(𝒕) − 𝒆(𝒕 − 𝟏)

𝒅𝒕
)

 Calculate the angular velocity z of the robot using the PD algorithm
•

 。

𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐛𝐢𝐚𝐬
𝒆(𝒕) = 𝝆. 𝜽 − 𝜺𝑰. 𝜽
𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞 𝐨𝐮𝐭𝐩𝐮𝐭

𝜽
•

= 𝑲𝒑 ⋅ 𝒆(𝒕) + (𝑲𝒑 ⋅ 𝑻𝒅 ⋅
𝒆(𝒕) − 𝒆(𝒕 − 𝟏)

𝒅𝒕
)

Transforms the closing speed to the linear speed in the robot's reference coordinate

system.
•

R







































−=
•

•











).(sin

).(cos

100

0).cos().sin(

0).sin().cos(

R sum

sum

II

II

v

v

(5) Velocity Smoothing Algorithm

When the robot encounters an obstacle or a wall and stops during the cleaning

process, the acceleration limiting algorithm combined with the first-order low-pass

filtering algorithm is used to filter the linear velocity, which ensures smooth motion

A new algorithm on path planning for robotics 311

speed and reduces the positional projection error due to slippage. The details are

shown in Figure 11 below.

Fig. 11 Velocity smoothing method

Symbol Definition:

Variable Definition Initial value

v(t) Current speed at time t

maxacc maximum acceleration

)(a tcc Current acceleration at time t

fiterv(t) Current filtered velocity at time t

lowpassk Low-pass filtering factor

Algorithmic step:

Low-pass smoothing filtering for current input speeds

)()1()k-1（(t)vlowpass tvktv lowpasslowpass +−=

included among these:]1,0[klowpass 

Calculate current acceleration

dt

tvtv

dt

v
tcc

)1()(d
)(a

−−
==

Magnitude limiting of acceleration

312 Hongqiang Li, Weimin Kuang, Zhijia Chen

end

acctaccsigtcc

thenacctaccif

max

max

))(()(a

)(

=



Recalculate the velocity that satisfies the maximum acceleration constraint

)1()()(vfilter −+= tvdttacct

The comparison before and after speed smoothing is shown below:

(a) Raw speed (b) Speed after smoothing

Fig.12 Comparison before speed smoothing

4. The design of experiment platform

We used a conventional sweeping robot for the evaluation of the developed

algorithm. Fig. 13(a) shows a conventional sweeping robot. This robot used infrared

and ultrasonic sensors to detect obstacles. In addition, this robot was equipped with

a gyroscope MPU6050 to calculate rotation angle [28].

The robot adjusted the direction based on the path planning function of the

code plate and gyroscope to ensure trajectory accuracy. Robot motion control was

handled by MPU6050 module. This was a 6-axis module and used sensors such as

gyroscopes. MPU6050 module was able to accurately calculate parameters such as

wheel speed, providing a reference basis for robot path planning.

Conventional sweeping robots have a 16V battery with the capacity of

9000mAh. This battery provided the necessary power to drive the motor. The robots

also had another battery of 5V which was used to power up the control unit.

STM32F429IGT6 was applied as control chip. This chip comprised a

floating-point unit (FPU) which had high performance and low power consumption

[29]. It processed the real-time data collected by MPU6050 sensor [30]. L298N

motor driving chip was used which realized the driving control of the motor used

A new algorithm on path planning for robotics 313

for robot motion. Throughout the entire control process, the main control unit

played the most important roles, such as controlling robot motion, driving robot

wheels, etc.

The hardware control scheme of the entire robot is illustrated in Fig. 13(b).

Fig.13. Design principle of the experimental system used in this work for evaluation. (a)

Experiment platform. (b) Hardware control system.

5. Experimental results

As described in this section, several experiments were conducted to verify

the performance of the proposed algorithm. On the one hand, the practicality of path

planning methods for robots, especially the accuracy of algorithms, needed to be

verified through experiments. On the other hand, handling the missing areas is also

an important task for robots. In addition, robots functions in indoor environments

also needed to be verified.

The operating system used in the experiment is Windows 10, and the

software is programmed using C++ language.

We calculated the search range of robots using the following expression.

O

nn
c

SS

WdWdWdWd
R

−

++++
=

− 12 1
 (8)

where dn is the distance passed by the robot in each horizontal movement,

S denotes target cleaning area, and SO is obstacles area.

It is noteworthy that, in real-world scenarios, a cover exists among different

robot paths, thus rendering Eq. (8) inappropriate. In order to address this problem,

the search range was changed to SC which should include areas that had not been

processed previously. In this case, Rc was calculated by using the following

equation.

S

SS
R

C−
=c

 (9)

314 Hongqiang Li, Weimin Kuang, Zhijia Chen

5.1. Testing of U-shaped path algorithm

During the experiment, it was necessary to fully consider robot hardware,

especially its control system. The motor used to control robot motion could reach a

maximum speed of over 30cm/s. Considering robot motion safety, only 20cm/s was

taken here. Throughout the entire experiment, the robot followed a U-shaped route,

as illustrated in Fig. 14.

Fig. 14. U-shaped route followed by the robot in this experiment.

By repeating the same experiment multiple times, robot motion stability

could be better examined. Based on this testing method, the robot was allowed to

take 7 U-shaped routes during its motion and then examine the deviations occurring

in each action. The corresponding results are illustrated in Fig. 9.

It was seen from the figure that the robot experienced cumulative errors

during the process of continuously repeating the path, with a maximum cumulative

cost of 7mm after 7 iterations. The reason for this deviation was related to robot

hardware control error.

Fig.15. Offset in the distance computed after the completion of 7 cycles.

5.2. Improved intelligent obstacle avoidance algorithm test

In this research, we evaluated the proposed algorithm under two different

obstacle situations.

A new algorithm on path planning for robotics 315

We conducted five experiments to evaluate the first case and calculated

coverage rate. Fig. 10 shows the route followed by the robot during this experiment.

Please note that the box in the hallway presented in Fig. 16 covered 0.4 m2. On the

other hand, the area of the test field was about 4 m2. Corresponding results are

summarized in Table 1. The error depicted in the results was a cumulative offset

due to multiple repeated motion processes.

Then, five repeated experiments were performed again to verify the

coverage of the search method, as illustrated in Fig. 11. Based on the statistical

results given in Table 2, it was seen that the coverage obtained from the five

repeated experiments fluctuated around 94%.

Fig. 16. The route followed by the robot in case 1.

Table 2

The results of coverage tests for case 1

Test No. 1 No. 2 No. 3 No. 4 No. 5

S-SC 3.659 3.588 3.686 3.621 3.607

S 3.837

Rc 95.36% 93.57% 96.08% 94.38% 94.11%

Fig. 17. The route followed by the robot in case 2.

316 Hongqiang Li, Weimin Kuang, Zhijia Chen

5.3. Comprehensive Test

We performed the final test to evaluate and compare the U-shaped path and

proposed algorithms. This experiment aimed to examine the level that the proposed

method could achieve for robot motion in indoor environments, especially in

complex situations.

Fig. 18 illustrates the route followed by the robot during this test. It was seen

that the coverage rate in this experiment was 94.61%.

When the robot detected the wall, which indicated that the robot could not

go further, the cleaning task was ended.

Fig. 18. The route followed by the robot during the comprehensive test.

6. Conclusions

According to the analysis of sweeping robot motion model, in this work, we

proposed a new method for sweeping robot motion. Also, U-shaped path was

applied as the reference path for robot motion. Robot route was mainly based on U-

shaped route. It is noteworthy that, based on the proposed algorithm, the robot

memorized the area behind the obstacle by comparing the existing state with

previous state. It also remembered the area that was cleaned in order to avoid

repeated cleaning. During the experiment, random programming was adopted as

the reference method. Compared to this method, the proposed method enabled the

robot to achieve 94.61% coverage of cleaning area. This experiment showed that

the proposed method had significantly improved robot efficiency. The experimental

results of stability also confirmed that the maximum cumulative offset of the

proposed method was 7mm. These results indicated that the robot using the

proposed algorithm had good path-keeping ability. The proposed algorithm was

evaluated for two types of obstacles to show that it had the ability to control the

robot during cleaning process behind the obstacles and enabled it to return to the

main path after cleaning. In order to comprehensively test the proposed algorithm,

we set up a complex experimental environment to test whether the robot could work

in this environment. The experimental results fully confirmed that the proposed

A new algorithm on path planning for robotics 317

method enabled robots to have better adaptability, especially for complex

environments where cleaning work could be completed. In future research, we will

examine algorithm performance improvement from different perspectives to further

enhance robot motion performance.

R E F E R E N C E

[1]. Miao X, Lee H S, Kang B Y. Multi-cleaning robots using cleaning distribution method based

on map decomposition in large environments. IEEE Access, 2020, 8: 97873-97889.

[2]. Sharma G, Dutta A, Kim J H. Optimal online coverage path planning with energy

constraints//Proceedings of the 18th international conference on autonomous agents and

multiagent systems. 2019: 1189-1197.

[3]. Sung I, Choi B, Nielsen P. On the training of a neural network for online path planning with

offline path planning algorithms. International Journal of Information Management, 2021, 57:

102142.

[4]. Wang L, Liu L, Qi J, et al. Improved quantum particle swarm optimization algorithm for offline

path planning in AUVs. IEEE Access, 2020, 8: 143397-143411.

[5]. Schmid L, Pantic M, Khanna R, et al. An efficient sampling-based method for online

informative path planning in unknown environments. IEEE Robotics and Automation Letters,

2020, 5(2): 1500-1507.

[6]. Laghmara H, Boudali M T, Laurain T, et al. Obstacle avoidance, path planning and control for

autonomous vehicles//2019 IEEE intelligent vehicles symposium (IV). IEEE, 2019: 529-534.

[7]. Wang P, Gao S, Li L, et al. Obstacle avoidance path planning design for autonomous driving

vehicles based on an improved artificial potential field algorithm. Energies, 2019, 12(12): 2342.

[8]. Chang L, Shan L, Jiang C, et al. Reinforcement based mobile robot path planning with

improved dynamic window approach in unknown environment. Autonomous Robots, 2021,

45: 51-76.

[9]. Schmid L, Pantic M, Khanna R, et al. An efficient sampling-based method for online

informative path planning in unknown environments. IEEE Robotics and Automation Letters,

2020, 5(2): 1500-1507.

[10]. Qi J, Yang H, Sun H. MOD-RRT*: A sampling-based algorithm for robot path planning in

dynamic environment. IEEE Transactions on Industrial Electronics, 2020, 68(8): 7244-7251.

[11]. Lluvia I, Lazkano E, Ansuategi A. Active map** and robot exploration: A survey. Sensors,

2021, 21(7): 2445.

[12]. Ab Wahab M N, Nefti-Meziani S, Atyabi A. A comparative review on mobile robot path

planning: Classical or meta-heuristic methods?. Annual Reviews in Control, 2020, 50: 233-

252.

[13]. Shin H, Chae J. A performance review of collision-free path planning algorithms. Electronics,

2020, 9(2): 316.

[14]. Cabreira T M, Brisolara L B, Paulo R F J. Survey on coverage path planning with unmanned

aerial vehicles. Drones, 2019, 3(1): 4.

[15]. Wai R J, Prasetia A S. Adaptive neural network control and optimal path planning of UAV

surveillance system with energy consumption prediction. Ieee Access, 2019, 7: 126137-

126153.

318 Hongqiang Li, Weimin Kuang, Zhijia Chen

[16]. Lutz P, Schuster M J, Steidle F. Visual-inertial SLAM aided estimation of anchor poses and

sensor error model parameters of UWB radio modules//2019 19th International Conference on

Advanced Robotics (ICAR). IEEE, 2019: 739-746.

[17]. Gao J, Ye W, Guo J, et al. Deep reinforcement learning for indoor mobile robot path planning.

Sensors, 2020, 20(19): 5493.

