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DISTRIBUTED EVENT-TRIGGERED CONSENSUS CONTROL 

FOR MULTI-AGENT SYSTEMS 

Fang QIU1 

This paper studies the consensus problem for a class of multi-agent systems with 

single-integrator. The controller updating is event-driven and depend on the measurement 

error with the norm of state function and neighboring agent’s state. It is shown that the 

controller updating for each agent only triggers at its own event time instants. Then, one 

distributed event-triggered control scheme is derived, which can reduce the frequency of 

the controller updating and the communication load. The proposed control protocols 

guarantee convergence to a ball centered at the average consensus, and events cannot 

exhibit Zeno behavior. Finally, a simulation example is demonstrated to verify the 

theoretical result. 

Keywords: Multi-agent Systems, Event-triggered Control, Distributed Control, 

Consensus. 

1. Introduction 

Multi-agent systems have been used to solve a variety of problems efficiently, 

such as flocking, distributed sensor networks, unmanned aerial vehicle formation [1]–

[5]. The consensus is one of the most fundamental research topic in multi-agent 

control community. In the recent decades, many excellent consensus methods have 

been reported, such as continuous control [6, 7] and periodic sampling control [8-10]. 

The consensus problem has been investigated extensively in the literature [6-31] and 

many references therein. 

Considerable efforts have been made to achieve various kinds of cooperative 

behaviors by designing appropriate time-driven control protocols [11-13]. However, 

this mechanism requires high communication cost and expensive control action. In 

order to lower the cost, in recent years, the event-triggered mechanism has gradually 

caused extensive concern due to its advantage of saving unnecessary usage of energy 

[14]–[30]. The basic idea of event-triggered control is that when a certain control 

performance is still satisfactory then the execution of control tasks can be skipped and 

the transmission of the measured outputs or actuator signals can be cancelled. 

Following the thought of event-triggered control, in [18], a novel control strategy for 

multi-agent coordination with event-based broadcasting has been presented, which the 

trigger condition has a state-independent and exponentially decreasing threshold. In 
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[19], a simple event-triggered mechanism is proposed to stabilize control tasks, which 

leads to guaranteed performance and relaxes traditional periodic execution. In [20], a 

distributed event-triggered feedback scheme is introduced to NCS that can be applied 

to linear or nonlinear system. In [21, 22], the event-triggered average consensus 

problem for linear system was investigated, where a state-independent triggering 

condition is utilized for decrease network communication.  In [23-25], the authors 

studied event-based control strategies for multi-agent systems, where control updating 

depend on trigger condition which has a state-dependent threshold. In [26], the event-

triggered consensus problem of distributed multi-agent systems has been studied by 

using state-dependent trigger function. However, the proof of the inequality (15) in 

[26] is incorrect. Event-triggered approach is also applied to stochastic systems [27, 28] 

and deals with state estimation [29]. Then, the control is driven by requiring state-

dependent threshold of triggering condition for multi-agent systems. 

In this paper, the control updating will be designed based on the event-

triggered scheme for distributed multi-agent systems. The control updating of each 

agent are driven by properly defined events depending on the measurement error and 

the states of its neighboring agents. The primary contribution is that the sufficient 

condition requires reduced control efforts with continuous communication between 

neighboring agents. Using this strategy, an analytical method is proposed to guarantee 

the consensus for multi-agent systems and the exclusion of Zeno behavior. 

The rest of this paper is organized as follows. Section 2 gives some basic 

theory on graphs and matrices. A novel event-triggered scheme is introduced in 

Section 3 to guarantee the exponential consensus. In Section 4, the simulation result is 

presented to illustrate the analysis results. Finally, Section 5 discusses conclusions.  

2. Problem Statement 

2.1 Basic Theory on Graphs and Matrices 

An undirected graph ( , )G V E=  consists of a node set  = 1,2, ,V N  

representing N  agents, and a set of edges E V V   corresponding to the 

communication links between agents.  The adjacency matrix ( )ijA a=  is defined by 

=1ija  if and only if there is an edge ( ),i j E  inG ; otherwise, =0ija . In undirected 

graph, one has ( ) ( ), ,i j E j i E   . Then the adjacency matrix A  is a symmetric 

matrix. If there is a path between any two nodes in an undirected graph G , G  is called 

connected. The set ( ) : ,iN j V i j E=    includes all neighbors of node i . Then, the 

degree D  is a diagonal matrix  1 2, , , ndiag d d d  in G , where id  is the cardinality of 

agent 'i s neighbor set iN . The Laplacian matrix ( )ijL l=  for the undirected graph G is 
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defined as L D A= − . For undirected graphs, the Laplacian matrix L  is symmetric and 

positive semi-definite, that is, 0TL L=  . Then, its eigenvalues are real and it have 

exactly one zero eigenvalue which can be ordered as 
1 20 ( ) ( ) ( )NG G G  =    , 

where
2 ( )G  is the smallest nonzero eigenvalue. The vector 1 , with all entries equal to 

1, is an eigenvector of L  associated with eigenvalue 0, i.e. L =1 0 . 

The following definition and lemma will be very useful in the remainder of this 

paper. 

Definition 1.  A hybrid system H  is Zeno, if for some execution  of H , there 

exists a finite constant     such that ( )lim i i i
i

i

   


+ 
→

=

= − = 1

0

. The execution ε is 

called a Zeno execution.  

Remark 1. The definition of a Zeno execution results in the types of Zeno 

behavior. For an execution   that is Zeno,  is Chattering Zeno: If there exists a finite 

C  such that i i + − 1 0  for all i C . 

Lemma 1([30]). Suppose L  is the Laplacian matrix of an undirected and 

connected graph G . Then, for all 0t   and all vectors
nR  , the following holds true 

                                                            2 ( )
.

G tLte e
 −−  −  

2.2 Problem formulation 

The dynamics associated with each agent  = 1,2, ,i V N  is described by the 

following equation: 

                                                   ( )= ( ),    ,i ix t u t i V                                            (1) 

 

where ( )ix t R  is the state and ( )iu t R  is the control input of the ith agent.  With the 

stack vectors ( )1 2( )= ( ), ( ), , ( )
T

Nx t x t x t x t  and ( )1 2( )= ( ), ( ), , ( )
T

Nu t u t u t u t , the 

multi-agent system (1) can be written as 0( )= ( ),    (0) .Nx t u t x x R=   

It is well known that the continuous distributed control law 

( )( )= ( ) ( ) ,
i

i i j

j N

u t x t x t


− −                                      (2) 

 

drives each agent of the system to asymptotically converge to the average of the 

agents’ initial conditions, i.e., 
1

( ) (0),i

i V

x t x
N 

→    as t → . The closed-loop system 

can be written as ( )= ( ).x t Lx t   Based on local information, agent i does not use its true 

state ( )ix t  but the last broadcast value ˆ ( )ix t  given by 1
ˆ ( )= ( ), [ , )i i i

i i k k kx t x t t t t + , and 
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0 1,i it t， is the sequence of event times of agent i . The next event-triggering instant i

kt  

is defined by the trigger function ( ), ( ), ( ) 0i i if t e t x t  , that is, 

( ) +1=inf : , , ( ), ( ) 0 , 0,1, ,i i

k k i i it t t t f t e t x t k  =  .            (3) 

 

For each i V and 0t  ,   the measurement error is defined as 

                                                              ˆ( )= ( ) ( )i i ie t x t x t− .                                   (4) 

   

Then, this can be expressed by 
ˆ( )= ( ) ( ( ) ( ))x t Lx t L x t e t− = − +                               (5) 

   

with ( )1 2( )= ( ), ( ), , ( )
T

Ne t e t e t e t .  

Let 
1

1
( )= ( )

N

i

i

a t x t
N =

  be the average of all states. Then, the derivative of ( )a t  is 

( )= ( )= ( )= ( )
N N N

T T

i i i

i i i

a t x t x t Lx t
N N N= = =

− =  
1 1 1

1 1 1
1 1 0. 

Thus, ( )= (0)a t a a=  for all 0t   and the state ( )x t  can be decomposed  

                             ( )= ( ),x t a t+1                               (6) 

  

where ( )t  is the disagreement vector of the multi-agent system,  that is,  ( )T t =1 0 . 

From (6), we can get ( )= ( )t x t a − 1  that  

          ( ) ( ) ( ( ) ( )) ( ) ( ).t x t L x t e t Le t L t = = − + = − −     (7)  

  

Then, it follows that 

 
( )

0
( ) (0) ( ) ,

t
Lt L tt e Le e d   − − −= −                 (8) 

  

where (0)  is the initial value of the disagreement vector. 

3. Consensus Analysis  

Next, a sufficient condition on the consensus is presented with triggering 

condition where continuous communications between neighboring agents are required. 

Theorem 1. Consider the multi-agent systems (1) with control strategy (2) and the 

event-triggering instants determined by (3). Suppose the triggering function is 

designed as    
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2

0( , ( ), ( )) ( ) ( ) ( )
i

i i i i j i

j N

f t e t x t e t c x t x t


= − −                            (9) 

 

 with 2
0 3

( )
0,

2( )

G
c

L

 
 
 
 

.  Then, for all initial conditions (0) Nx R  , the 

disagreement vector ( )t  of the closed-loop system will achieve exponential 

convergence to a ball centered at the rendezvous with radius  , where 

( )

( )

3

0

3

2 0

2

( ) 2

c L N a

G c L

 =

−

. Furthermore, the closed-loop system does not exhibit Zeno 

behavior. 

Proof. From the triggering condition (9), the upper bound of measurement 

error ( )e t  is given by 

                                      
22

0

1 1

( ) ( ) ( ) ( )
i

N N

i j i

i i j N

e t e t c x t x t
= = 

=  −   

                                                 
0 02 ( ) ( ) 2 ( )Tc x t Lx t c L x t=            

     ( )02 ( ) +c L t N a  .                                       (10) 

 

It follows from Eq. (8) and Lemma 1 that the disagreement vector is bounded by 

( )

0
( ) (0) ( )

t
Lt L tt e e Le d   − − −= +   

2 2( ) ( )( )

0
(0) ( )

t
G t G t

e e Le d
    − − −

 +   

( )2 2( ) ( )( )3

0
0

(0) 2 ( ) ( )
t

G t G t
e c L e N a d

     − − −
 + +  

2 2( ) ( )( )3

0
0

(0) 2 ( ) ( )
t

G t G t
e c L e d

     − − −
 +   

   2 ( )( )3

0
0

+ 2 ( )
t

G t
c L N a e d

  − −

 .                           (11) 

 

Let ( ) ( )
3 3

0 02 , 2c L A c L N a B= = . Then, from (11), we can derive 

2 2 2( ) ( )( ) ( )( )

0 0
( ) (0) ( )

t t
G t G t G t

t e A e d B e d
         − − − − −

 + +  .         (12) 
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Since 2
0 3

( )
0,

2( )

G
c

L

 
 
 
 

, we have 
2

1
( )

A

G
 . Therefore, there is a positive 

constant 
2(0, ( ))G   such that 

2

1
( )

A

G 


−
. Hence, we can claim that 

( ) (0) tt e   − +  ,                       (13) 

 

where 
( )

( )

3

0

3

2 0

2

( ) 2

c L N a

G c L

 =

−

. 

In order to prove (13), for any 1   and 0t  , we first show that the following 

inequality is true  

( ) (0) = ( )tt e t   − +  .                    (14) 

 

Otherwise, there will be a 0t *
 such that * *( ) = ( )t t  and ( ) ( )t t  for *(0, )t t . 

From (12), we have 

* *( ) ( )t t =
* *

* * *
2 2 2( ) ( )( ) ( )( )

0 0
(0) ( )

t t
G t G t G t

e A e d B e d
        − − − − −

 + +   

( )
*

* * *
2 2 2( ) ( )( ) ( )

0
2 2

= (0) (0)
( ) ( )

t
G t G t G tB B

e A e e d e
G G

      
 

− − − −−+ +  + −                 

( )( )
** *

22 2
( )( ) ( )

2

(0)
= (0) 1

( )

G tG t G t
A

e e e
G

   


 

−− −
+ −

−
 

            ( )
*

2 ( )

2 2

1
( ) ( )

G tA B
e

G G



 

− 
+ + − 
 

 

( )
* **

2 2( ) ( )

2

(0)
( )

G t G ttA
e e e

G

  
 

− −− 
 + − 

− 
 

( )
*

2 ( )

2 2

1
( ) ( )

G tA B
e

G G



 

− 
+ + − 
 

 

                   
*

2

(0)
( )

t A B
e

G

 


−  +
 +  

* *(0) ( )te t  − + = .                                                              (15) 
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Obviously, this is a contradiction which implies the inequality (14) holds for any 

1  . Then, the inequality (13) holds by denoting 1 → . Since 2
0 3

( )
0,

2( )

G
c

L

 
 
 
 

, 

we get 3

2 ( ) 2( ) 0G L −  . Then, it follows that 0.    Consequently, 

( )t converges exponentially to a ball with radius   as t → . Then, the state of 

multi-agent systems can converge exponentially to a ball centered at the average 

consensus. 

In order to exclude Zeno behavior, we need to show that the inter-event times 

are lower-bounded by a strictly positive time . For undirected and connected graph 

G , Laplacian matrix L  is symmetric and positive semi-definite. Then, there exists a 

matrix P such that TL P P= [32]. Thus, we can derive 

 

          
2

( ) 2 ( ) ( ) 2( ( )) ( )
( ) ( )

( ) ( ) 2 ( )

( )

T Te t e t e t Px t Px t
d Px t e t

Px t e t Px t

dt Px t

 
− 

  =   

2 3

( ) ( ) ( ) ( ) ( ( )) ( )

( ) ( ) ( )

T Te t e t Px t e t Px t Px t

Px t e t Px t
= −  

3

( ) ( ( )) ( )( ) ( )

( ) ( ) ( )

TT e t Px t Px te t x t

Px t e t Px t

−
= −  

3

( ) ( ) ( ) ( ) ( )
+

( ) ( ) ( )

e t x t e t Px t P x t

Px t e t Px t
        

( ) ( )
= 1+

( ) ( )

e t P x t

Px t Px t

 
  
 

( )( ) ( )( )
= 1+

( ) ( )

L x t e te t P

Px t Px t

+ 
  
 

          

( )( ) ( )( )
= 1+

( ) ( )

TP P x t e te t P

Px t Px t

+ 
  
 

 

2

( )
= 1+

( )

e t
P P

Px t

 
  
 

.                                    (16)  

Let 
( )

( )=
( )

e t
y t

Px t
. Then, we have ( )

2

( ) 1 ( )y t P P y t +  so that ( )y t  satisfies the 

bound 0( ) ( , )y t t   , where 0 0= (0, )   and 0( , )t   is the solution of 
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( )
2

0( , )= 1 ( )t P P y t  +                         (17) 

  

Hence the inter-event times 
1i it t+ −  are bounded from below by the time    that 

satisfies   
2

( ,0)
1

P

P


 


=

−
. On the other hand, the event is triggered as soon as (9) 

crosses zero. Therefore, one has 

0 0 0( ) = 2 ( ) ( ) 2 ( ( )) ( ) 2 ( )T Te t c x t Lx t c Px t Px t c Px t= =       (18) 

 

Then, the triggering condition can be rewritten as 

0

( )
( )= 2

( )

e t
y t c

Px t
              (19) 

      

Thus, one can obtain 0( ,0) 2c  = . So, from 
02

2
1

P
c

P




=

−
, we can get a 

lower bound on the inter-event times 0

2

0

2
=

2

c

P c P


+
, which implies that agent i  

will not exhibit Zeno-behavior. The proof of Theorem 1 is thus completed. 

Remark 1. Theorem 1 has proposed novel event-triggered communication and control 

strategies for the multi-agent average consensus problem.  In [21], the consensus 

problem of a class of multi-agent systems with single-integrator is investigated. But 

the proof of the inequality (15) in [21] is incorrect which can be seen in the following 

                       ( ) 2

3
( )( )

2 0
0

( ) ( )
t

G t
G c L L e d

    − − 
− − 

 
  

( ) ( )2

3 3
( )

2 2 0 0

2

( ) ( ) ( ) (0)

( )

G
G t G c L N a e c L N a

G

   



− 
− + + 
  . 

Obviously, ( )
3

2 0( ) 0G c L L − −   implies 

                  2 ( )( )

0
( )

t
G t

e d
    − −

  

( ) ( )

( )

2

3 3
( )

2 2 0 0

3

2 2 0

( ) ( ) ( ) (0)

( ) ( )

G
G t G c L N a e c L N a

G G c L L

   

 

− 
− + + 
 

 
− − 

 

. 
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Then, the inequality (15) in [21] is incorrect which results in the following 

conclusion to be wrong. In this paper, this error has been corrected and the ideal result 

is obtained to guarantee the consensus for multi-agent systems. 

4. Simulation Example 

In this section, a simulation example is provided to illustrate the effectiveness 

of theoretical result.  

 Example. Consider a network of four agents whose Laplacian matrix is given by                                                                                                                                      

 

1 1 0 0

1 3 1 1

0 1 2 1

0 1 1 2

L

− 
 
− − −
 =
 − −
 

− − 

                                     (20) 

 

According to the control strategy proposed in Theorem 1, we give 
0 0.08c =   

satisfying 0 (0,0.0884)c  . By using controller (2) and the triggering function (9), the 

four agents will achieve consensus which can be shown in Fig.1.  

 
Fig.1 State trajectories of all agents with event-triggered control 

Fig.2 shows the evolution of the error norm of each agent which embodies the 

distributed event-triggered scheme. When the error norm will reach the 

threshold
2

0 ( ) ( )
i

j i

j N

c x t x t


− , the error norm of each agent is reset to 0 .  
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Fig.2 Evolution of the error norm of agent 1-agent 4 

 
Fig.3 Event time of the four agents with 0 0.08c = . 

Fig.3 shows the event-triggered time instant for each agent during [0, 2.5]. The 

distributed event-triggered scheme reduces the frequency of information transmission 

and control updating. 
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5. Conclusion 

This paper studies the event-based consensus of distributed multi-agent 

systems by using the algebraic graph theory and matrix theory. One sufficient 

condition has been presented to guarantee the consensus under the trigger function. 

The trigger condition can reduce the number of controller updating with continuous 

communication between neighboring agents. Finally, the simulation result is presented 

to support the effectiveness of the theoretical result. 
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