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STRONG CONVERGENCE OF A MULTI-STEP ITERATIVE
PROCESS FOR RELATIVELY QUASI-NONEXPANSIVE
MULTIVALUED MAPPINGS AND EQUILIBRIUM PROBLEM IN
BANACH SPACES

M. Eslamian!, A.Abkar?

In this paper, we introduce a multi-step iterative process which converges
strongly to a common element of a set of common fized points of a finite family
of relatively quasi-nonexpansive multivalued mappings and the solution set of an
equilibrium problem in Banach spaces. Our results extend some important recent
results.
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1. Introduction

Let E be a real Banach space with norm ||.|| and let J be the normalized
duality mapping from E into 2F" given by
Jo={a" e E*: (z,2%) = |lz/[[|27], [l=]| = [[«"][}

for all x € E, where E* denotes the dual space of E and {(.,.) denotes the generalized
duality pairing between F and E*. A Banach space F is said to be strictly convex if
|22 < 1 for all 2,y € E with ||z| = [jy| = 1 and 2 # y. It is said to be uniformly
convex if lim, o ||2n, — yn|| = 0 for any two sequences {z,,} and {y,} in E such that
[2nll = [lyn] = 1 and limy, o0 | 223242 (| = 1. Let U = {z € E : ||lz|| = 1} be the unit
sphere of E. Then the Banach space F is said to be smooth provided that

eyl o]

t—0 t
exists for each x,y € U. It is also said to be uniformly smooth if the limit is attained
uniformly for z,y € E. It is well known that if £* is strictly convex then J is single
valued, and if F is uniformly smooth then J is uniformly continuous on bounded
subsets of E. Moreover, if E is a reflexive and strictly convex Banach space with a
strictly convex dual, then J! is single valued, one-to-one, surjective, and it is the
duality mapping from E* into E and thus JJ ! = Ig- and J~'J = Ip. We note
that in a Hilbert space H, J is the identity operator.
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Let F be a smooth Banach space and J be the normalized duality mapping
from F to E*. Alber [1] considered the following function ¢ : Ex E — [0, 00) defined
by

$(,y) = ] = 2(z, Jy) + |yl?,  zy€E.

It is obvious from the definition of function ¢ that

Uyl = ll=)* < d(z,9) < (lyll + ll=)* Yo,y € B. (1.1)

Observe that in a Hilbert space H, ¢(z,y) = ||z —y||?>, 2,y € H. Let E be a reflexive,
strictly convex and smooth Banach space and let C' be a nonempty closed and convex
subset of E. The generalized projection mapping, introduced by Alber [1], is a
mapping IIo : F — C, that assigns to an arbitrary point € E the minimum point
of the function ¢(y, x), that is, [Icx = T, where T is the solution to the minimization
problem

Lemma 1.1. (see [1]) Let C' be a nonempty closed and conver subset of a real
reflexive and strictly convex Banach space E and let x € E. Then there exists a
unique element xg € C such that ¢(xo,r) = infyec ¢(y, ).

Let C' be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E, and let T" be a mapping from C' into itself. We denote
by F(T) the set of fixed points of T. A point p € C' is said to be an asymptotic
[2] fixed point of T, if C' contains a sequence {z,} which converges weakly to p

such that lim, o ||zn, — Tx,|| = 0. The set of asymptotic fixed points of T will
be denoted by F(T'). A mapping T is said to be relatively nonexpansive [3, 4], if

F(T) = F(T) and ¢(p,Tz) < ¢(p,x) for all z € C and p € F(T). T is said to
be relatively quasi-nonexpansive ([5, 0]) if F(T) # 0 and ¢(p,Tz) < ¢(p,z) for
all x € C and p € F(T). The class of relatively quasi-nonexpansive mappings is
bigger than glg/class of relatively nonexpansive mappings which requires the strong
restriction: F(T') = F(T).

Let f be a bifunction from C' x C into R, where R is the set of real numbers.
The equilibrium problem for f: C' x C — R is to find « € C such that

f(z,y) >0, vy e C.

We shall denote the set of solutions of this equilibrium problem by EP(f). The
equilibrium problems include fixed point problems, optimization problems and vari-
ational inequality problems as special cases. Some methods have been proposed to
solve the equilbrium problem, see for example, [7-10].

Recently, many authors studied the problem of finding a common element
of the set of fixed points of nonexpansive or relatively nonexpansive single valued
mappings and the set of solutions of an equilibrium problem in the framework of
Hilbert or Banach spaces, respectively: see, for instance, [11-19] and the references
therein.

A subset C' C E is called proximinal if for each x € E, there exists an element
y € C such that

| z—y ||=dist(z,C) =inf{|z—z|: 2z € C}.
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We denote by N(C),CB(C) and P(C) the collection of all nonempty subsets,
nonempty closed bounded subsets and nonempty proximinal bounded subsets of
C, respectively. The Hausdorff metric H on CB(C) is defined by

H(A, B) := max{sup dist(x, B), sup dist(y, A)},

€A yeEB

for all A, B € CB(C).
Let T : E — N(FE) be a multivalued mapping. An element z € E is said to be a
fixed point of T', if z € T'z. The set of fixed points of T" will be denoted by F(T).

Definition 1.2. A multivalued mapping 7' : E — CB(F) is called
(i) nonexpansive if
H(Tz,Ty) <|lz —yl, zyek.
(ii) quasi-nonexpansive if
F(I)#£0 and H(Tz,Tp)<|z—-p|, z€E, peF(T).

In recent years, approximation of fixed points of nonexpansive multivalued
mappings by iteration has been studied by many authors, see [20-24]. The theory
of multivalued mappings has applications in control theory, convex optimization,
differential equations and economics.

In this paper we intend to modify the concept of relatively nonexpansivness
to incorporate the multivalued case as well. This will be done in the following
definition.

Definition 1.3. Let C be a closed convex subset of a smooth Banach space F, and
T:C — N(C) be a multivalued mapping. We set

®(Tx,Tp) = maz{sup inf ¢(y,q), sup inf ¢(y,q)}.
qeTpY€ETx yeTx 9€TP

We call T relatively quasi-nonexpansive multivalued mapping if F(T) # () and
®(Tz,Tp) < ¢(x,p),  Vpe F(T), Vrxel.

Remark : In a Hilbert space, ®(Tz, Ty) = H(Tx, Ty)?, and hence relatively quasi-
nonexpansivness is equivalent to quasi-nonexpansivness.

In this paper, a multi-step iterative process by hybrid method is constructed.
Strong convergence of the iterative process to a common element of the set of com-
mon fixed points of a finite family of relatively quasi-nonexpansive multivalued map-
pings and the solution set of an equilibrium problem in a uniformly convex real
Banach space which is also uniformly smooth is proved. Our results extend some
important recent results.

2. Preliminaries

Lemma 2.1. ([25, 26]) If E is a reflexive, strictly convex and smooth Banach space,
then for z,y € E, ¢(x,y) =0 if and only if x = y.

Lemma 2.2. ([27]) Let E be a uniformly convex and smooth Banach space and let
{zn} and {yn} be two sequences in E. If ¢(xpn,yn) — 0 and either {x,} or {yn} is
bounded, then x, — y, — 0.
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Lemma 2.3. ([1]) Let C be a nonempty closed convex subset of a smooth Banach
space B and x € E. Then xo = llcx if and only if

(xo —y, Jx — Jxg) > 0, Yy e C.

Lemma 2.4. ([l]) Let E be a reflexive, strictly convex and smooth Banach space,
Let C be a nonempty closed convex subset of E and let x € E. Then

o(y, ex) + ¢(Uoz, x) < d(y,z),  VyeC.

Lemma 2.5. Let C be a nonempty closed conver subset of a uniformly convex and
smooth Banach space E. Suppose T : C'— P(C) is a multivalued mapping such that
Pr is a relatively quasi-nonexpansive multivalued mapping where

Pr(z)={y €Tz : ||z —y|| = dist(xz,Tx)}.
If F(T) # 0, then F(T) is closed and conve.

Proof. Let {p,} be a sequence in F(T'), such that p,, — p as n — oco. Then we have
Pr(pn) = {pn}. Since Pr is relatively quasi-nonexpansive, we have

sup  @(pn, z) = ©(Pr(pn), Pr(p)) < é(pn, ).
2€Pr(p)

Hence for all z € Pp(p),
0 < ¢(p,2) = lim ¢(pn, 2) < lim é(pn,p) < é(p,p) =0.
This implies that p = z € Pr(p) C T(p). Therefore F'(T) is closed. Now, we show
that F/(T) is convex. Let p1,p2 € F(T), then Pr(p1) = {p1} and Pr(p2) = {p2}.
Take ¢t € (0,1), and put p = tp; + (1 — t)pe. Let w € Pr(p), then we have
6(p,w) = ||pll* = 2(p, Jw) + |||
= llpll* = 2{tp1 + (1 = t)p2, Jw) + [Jw]®
= [Ipll* = 2t(p1, Jw) — 2(1 — t){p2, Jw) + [[w]®
= [[plI* + t¢(pr, w) + (1 = t)p(p2, w) — tlpa]* — (1 — ) [|p2]®

=|pl*+t inf @(pr,w)+(1—1t) inf G(p2,w)—tlp1]* = (1 —)]Ip2l”
p1E€Pr(p1) p2€Pr(p2)

< |Ipll* + t@(Pr(p1), Pr(p)) + (1 — t)®(Pr(p2), Pr(p)) — tllp1]* — (1 — t)|Ip2|?
< lpll* + té(p1, p) + (1 — t)é(p2, p) — tllpa|* — (1 — t)[|p2?
= [lpll* = 2(tp1 + (1 — t)p2, Jp) + |Ipl?
= [lplI> = 2{p, Jp) + lIpllI* = ¢(p, p) = 0.

This implies, using Lemma 2.1, that p = w € Pr(p) C T(p), i.e., p € F(T). Hence
F(T) is convex. O

Similarly we can prove the following lemma.

Lemma 2.6. Let C be a nonempty closed conver subset of a uniformly convex and
smooth Banach space E. Suppose T : C — N(C) is a relatively quasi- nonexpansive
multivalued mapping. If F(T) # 0 and T(p) = {p} for all p € F(T), then F(T) is
closed and convez.
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Now we present an example of a multivalued mapping such that Pr is relatively
quasi-nonexpansive, but 7' is not relatively quasi-nonexpansive.
Example : Let I = [0,1], E=LP(I),l1<p<ocand C={f € E: f(z)>0,Vz €
I}. Let T : C — CB(C) be defined by

T(f)={9€C: flx) <glx) <3 f(x)}

Then we have

Pr(f)={9€T(f): g — flp = dist(T(f), )} = {f}
and hence

(I)(PT(fl)va(fQ))§¢(f1af2)7 Vfl,fQEC-
Therefore Pr is relatively quasi-nonexpansive. Now putting fi(z) = 0 and fo(z) =1
we have T'(f1) = 0 and T(f2) = {g € C : 1 < g(z) < 3}, hence ®(70,71) =
supyer1 ¢(0,9) = #(0,3). On the other hand ¢(0,1) = ||1H12) = 1 and ¢(0,3)
[13]|2 = 9, which shows that

®(T0,7T1) > ¢(0,1).
Hence T is not relatively quasi-nonexpansive.

Definition 2.7. A multivalued mapping 7' is called closed if z,, — w and lim,, o0 dist(zy, Tx,) =
0, then w € T(w).

Lemma 2.8. ([28]) Let E be a uniformly convex Banach space and let B,(0) = {z €
E || z ||[< r}, forr > 0. Then there exists a continuous, strictly increasing convex
function ¢ : [0,00) — [0, 00) with ¢(0) = 0 such that
Itz + (1 = O)yl* < tllzl* + 1 = Hllyl* — 1 = e (llz —yl)
for all z,y € B,(0).
For solving the equilibrium problem, let us assume that the bifunction f sat-
isfies the following conditions:

(A1) f(z,z) =0forall z € C,
(A2) f is monotone, i.e. f(z,y)+ f(y,x) <0 for any z,y € C,
(A3) f is upper-hemicontinuous, i.e. for each x,y,z € C,

limsup f(tz+ (1 —t)z,y) < f(x,y),
t—0t

(A4) f(z,.) is convex and lower semicontinuous for each = € C.

The following lemma was proved in [7].

Lemma 2.9. Let C be a nonempty closed convex subset of a smooth, strictly conver,
and reflexive Banach space E, let f be a bifunction of C' x C' into R satisfying
(A1) — (A4). Let r >0 and x € E. Then, there exists z € C such that
1
fzy)+—-(y—2z,Jz—Jx) >0 Yy € C.
r

The following lemma was given in [12].
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Lemma 2.10. Let C be a nonempty closed convex subset of a smooth, strictly con-
vex, and reflexive Banach space E, let f be a bifunction of C x C into R satisfying
(A1) — (A4). Letr > 0 and x € E. Define a mapping T, : E — C as follows:

1
Trx = {Z eC: f(z,y) + ;(y —z,Jz— Jl'> >0,Vy € C}
Then, the following hold:

(i) T) is single valued,
(ii) T, is a firmly nonexpansive-type mapping, i.e., for any x,y € E,
(Trx — Ty, JTyx — JTy) < (Thx — Ty, Jo — Jy),
(ili) F(T,) = EP(f),
(iv) EP(f) is closed and convex.

Lemma 2.11. ([12]) Let C be a nonempty closed convex subset of a smooth, strictly
convez, and reflerive Banach space E, let f be a bifunction of Cx C into R satisfying
(A1) — (A4), and let r > 0. Then for all x € E and q € F(T,),

¢(q, Trw) + o(Trw, 2) < ¢(g, ).

3. Main Result

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space,
and let C' be a nonempty closed conver subset of E. Let f be a bifunction from
C x C into R satisfying (A1) — (A4). Let T; : C — N(C), i = 1,2,....,m, be a
finite family of closed relatively quasi-nonexpansive multivalued mappings such that
F=NLF(TG)NEP(f) # 0 and Ti(p) = {p} for all p € F. For xzyp € C and
Co = C, let {z,} be a sequence generated by the following algorithm:

Yn,1 = J_l((l - an,l)Jﬂjn + an,ljzn,l)a
Yn2 = J_l((l - an,Z)J-Tn + an,QJZn,2)a

Yn,m = J71<(1 - an,m)an + an,mjzn,m)u
Uy, € C suchthat f(un,y) + (Y — wn, Jun — JYnm) >0, Yy € C,

Tn

Cn+1 - {Z c C’n : qb(z,un) S ¢(Z,£1?n)},
Tn+1l = HCn+1 o, V?’L Z 0

where zp1 € Tixy and zp; € Tiyni—1 for i =2,...,m and J is the duality mapping
on E. Assume thaty ;" an; =1, {an;} € [a,b] C (0,1) and {r,} C [c,00) for some
c > 0. Suppose that each T; is uniformly continuous with respect to the Hausdorff
metric for i = 2,....,m. Then {x,} converges strongly to Ugxy, where 15 is the
projection of E onto F.

Proof. At first, we show that C, is closed and convex for each n > 0. From the
definition, it is obvious that C), is closed. Moreover, since ¢(z,u) < ¢(z,xy) is
equivalent to

2(z, Jan — Jup) — ||f'7n||2 + ||unH2 <0,
it follows that C,, is convex for each n > 0. Next, we show by induction that
F=NL, F(G)NEP(f) C Cy for all n > 0. From Cy = C, we have F C Cp. We
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suppose that F C C,, for some n > 0. Let u € F. Since for each 1 < ¢ < m, T; is

relatively quasi- nonexpansive, we have
(s yn1) = o(u, JH(1 — an1)Jzn + an1J2n1))
= ||ull* = 2(u, (1 = an1)Jxn + ani1Jzn1) + (1 — an1)Jzn + an1J2n1 |
< ull? = 2(1 = an1)(u, Jxn) — 2an1(u, T2n1) + (1 — an1)||znl|® + anillzn1
=(1—ap1)p(u,xn) + an1¢(u, zn1)
< (1 —an1)o(u,xn) + an1®(Thu, Thzy,)
< (1= an1)p(u, zn) + an19(u, zn) = ¢(u, vn),

2

and

O(u,yn2) = ¢(u, J (1 — an2)Jxn + an2J 20 2))
= HuH2 —2(u, (1 —ap2)Jzy + an2Jzn2) + (1 — an2)Jzy, + an,QJzn,gH2
<l = 2(1 - an,2)(t, Jan) — 2an2(u, Jzn2) + (1 — an,Q)HQUn”Q + an,2”zn,2H2
= (1 —an2)P(u, ) + an2d(u, zn2)
< (1= an2)d(u, zn) + an2®(Tou, Toyn,1)
< (1= an2)d(u, zn) + an 20w, yn,1) = ¢(u, x5).

By continuing this process we obtain

P(us up) = d(u, Ty Ynm) < G(Us Ynm) = B(u, J_l((l — nm)JTn + an2mJ 2nm))
= |Jull® = 2(u, (1 = anm)JTn + anmd 2nm) + [|(1 = apm) I 2y + an,szn,mHQ
< HUH2 —2(1 = apm)(u, Jzn) = 2anm U, Jznm) + (1 — an,m)Han2 + an,muzn,muz
= (1 = anm)o(u, Tn) + anmd(u, 25,2)
< (1= anm)o(u, z0) + anm@(Tnu, TnYn,m—1)
< (1= anm)d(u, 20) + anm®(U, Yn,m-1)
< (1 = anm)o(w, Tn) + anmd(u, vn) = d(u, x,), (3.1)

hence, we have u € C,,41. This implies that
m
F=(\F(T)[)EP(f) CCn,  ¥n>0.
i=1

From x, = Ilg, z¢, we have
(xn, — 2z, Jxg — J2y) > 0, Vz € Cy. (3.2)
Since F C ), for all n > 0, we obtain that
(xn, —u, Jxg — Jp) > 0 Yu e J.
From Lemma 2.4 we have
¢(xn, 20) = d(Ilc, o, 20) < @(u, z0) — ¢(u, e, 0) < P(u, o)

for all u € F C C,. Then the sequence ¢(xy,xo) is bounded. Therefore {z,} is
bounded. We show that {z,;} is bounded for i = 1,2,...,m. Indeed, for u € F we
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have

(znill = llul)? < ¢z u) < dlan,u) < (laall + [ful])?.
Since {z,} is bounded, we conclude that {z,;} is bounded for ¢ = 1,2, ..., m. From
xn = o, x9 and z,41 € Cpy1 C C, we have

(2, w0) < G(Tny1,T0), Vn > 0.

Thus, {¢(zn, o)} is nondecreasing. So the limit of {¢(zn,x0)} exists. By the
construction of C, for any positive integer m > n we have

Tm = Hle'o e C,, C Cy.
It follows that

Qb(xma xn) = ¢(33ma HCnxO)
< ¢(Tm, z0) — ¢(llc, 20, 70)
= ¢($ma 330) - d’(zna CUO)

Letting m,n — oo we have
lim ¢(xp,,zy) = 0. (3.3)

n—oo

It follows from Lemma 2.2 that x,, —z, — 0 as m,n — oo. Hence {z,} is a Cauchy
sequence. Since C' is a closed and convex subset of the Banach space E, we can
assume that z, — p as n — oo. Next we show p € (2, F(T;). By taking m = n+1
in (3.4) we get

lim ¢($n+17 xn) =0. (34)

n—o0

It follows from Lemma 2.2 that
nlgg() |Zn+1 — zn| = 0. (3.5)

From 11 =Ilg, 4

x € Cpy1, we have
¢(xn+17un) S ¢(xn+1axn)7 n 2 0
It follows from (3.5) that

nh—{glo ¢(xn+17 un) =0.

By Lemma 2.1 we have
nh_)rrolo |Tnt1 — unll = 0. (3.6)
Combining (3.6) with (3.7) one observes that
lim [z —upl| < lm ([lzne — 20l + 2041 — ual]) = 0. (3.7)
n—oo n—oo

It follows from x,, — p that u, — p as n — oo. Since J is uniformly norm-to-norm

continuous on bounded sets and lim,,_,« ||Zn, — uy,|| = 0, we have
lim ||Jz,, — Ju,| = 0. (3.8)
n—oo

Let

r = supp>of{||znll, |2nill 11 =1,2,...,m}.
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Since F is a uniformly smooth Banach space, we know that E* is a uniformly
convex Banach space. Therefore from Lemma 2.8 there exists a continuous strictly
increasing, and convex function g with g(0) = 0 such that for ¢ = 1,2, ..., m,

O, yn) = d(u, J (1 — an1)Jzn + aniJzn1))
= ||ull* = 2(u, (1 = an1)Jon + aniJzn1) + (1 — an1)Jzn + an1J2n1 |
< HuH2 —2(1 = an1)(u, Jon) — 2an1(u, J2n1)
+ (1= an)2al® + anallznall® = anai(1 = an1)g(| Jzn — Jznal])
=(1- aml)gi)(u, Tn) + aml(b(u, Zn,l) - an,l(l - an,l)g(Han - JZn,l”)

<(1- an,1)¢(u’xn) =+ an71¢(u, Tp) — an,l(l - an,l)g(Han - JZmlH)
= ¢(u, p) — aml(l - an,l)g(Han - Jzn,ln)

and

(U, yn2) = ¢(u, J (1 — ano)JTn + anodzn2))
= ||ul* = 2(u, (1 = an2)Jn + anaJzn2) + (1 = ano)Jxn + anadzna|”
< HuH2 —2(1 —an2)(u, Jr,) — 2an2(u, J2p 2)
+(1- an,2)Han2 + an,QHZnQHZ —an2(1 —an2)g([|[Jon — J2n2|)
= (1 - an2)d(u, z,) + anﬂ‘b(“: Zn,Z) - an,2<1 - an,Q)g(Han - Jzn,QH)
< (1= an2)o(u, xn) + an2®(Tou, Toyn,1) — an2(l — an2)g(||Jxn — J2n2]|)
< (1 —an2)o(u, zn) + an20(U, Yn,1) — an2(l — an2)g(||Jzn — J2n2]|)
< o(u,zn) — an2(1 = an2)g(|J2n — Jzn2|l) — an2an,1(1 — an,1)g(||Jzn — J2n1l)).

By continuing this process we obtain

P(u,un) = ¢(u, T, Ynym) < S, Ynm) = ¢(u, J_l((l — anm)JTn + anmd 2nm))
= |Jull® = 2(u, (1 = anm)JTn + anmd Znm) + [|(1 = @nm) JEn + @nmd 2n.ml?
< ”uH2 = 2(1 = anm)(u, JTn) — 2anm(u, J2nm) + (1 — an,m)HanZ + anm||zn,mu2
— anm(1 = anm) 9|20 — J2nml)
= (1 = anm)d(u, Tn) + anm@(, 2n,m) = anm(l = anm)g(|J2n — J2nml)
<1 —anm)o(u, zn) + anm@(Tnw, Tnynm—1) — anm(l — anm)g(|Jzn — J2nml|)
< (1 = anm)d(u, Tn) + anm® (U, Ynm—1) = anm(l = anm) g([|J2n — Jznml)
< (1 = anm)P(w, Tn) + anmd (U, Tn) — anm(l = anm)g(|J2n — J2nmll)
—anmAn,m—1(1=anm—1)9([Ten—T 2nm-1]) = -—@nmnm—1-..an1 (1—=an1)g(|| Jxn—J 2n 11])
< O(us ) — anm(L — anm)g(| 20 — J2nml|)
— anmnm—11 — anm-1)g(||Jxn — J2nm-1l) — -..
— nmGnm—1---an1(1 —an1)g(||Jzn — Jzn1]). (3.9)
It follows that

AnmOnm—1---0n,1 (1 —an1)g(|| Jzn — T2n1ll) < d(u, ) — @(u, up,) n > 0. (3.10)
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On the other hand
$(u, ) — P, un) = ||z = llun|? = 2(u, Jan — Jup)
< el = Nunll? |+ 2/(u, T — Juy) |
< | lznll = llunll [(Hznll + llunll) + 2lullllJzn = Jun|
< Jwn = unll(lznll + [[unll) + 2[ullf| T2n — Junl|.
It follows from (3.8) and (3.9) that
Tim (6(u,2) — 0, 1,)) = 0. (3.11)
By our assumption we have
a™(1=b)g([|[Jzn — Jzn1l) < anmanm—1--.0n1(1 — an1)g(||Jzn — T2 1)),
which implies, by (3.10), that

lim (|| — Tz ]]) = 0.
n—oo
Therefore from the property of g, we have
lim | Jx, — Jz,1|| = 0.
n—oo

Since J~! is uniformly norm-to-norm continuous on bounded subsets, we have
lim ||z, — 2p,1]|| = 0.
n—oo

By a similar way, for ¢ = 2,...m we obtain that

lim ||z, — 25| = 0.
n—oo
Therefore we have
lim dist(xy,, Thz,) < lim ||z, — 251] =0,
n—oo n—oo
and also
lim dist(xy, Tiyni—1) < im ||z, — z,4|| =0, i=2,...,m.
n—oo n—oo
For k =1,2,...,m we have
lim ||Jynr — Jon| = Im apil|J2nk — Jan| = 0.
n—o0 n—oo

Since J~! is uniformly norm-to-norm continuous on bounded sets, we have
lim ||zn, — ynil = 0.
n—o0
Since T; is uniformly continuous for k = 2,3, ..., m we have
dist(xp, Typwy) < dist(xn, Teynk—1) + H(TYnk—1, TeTn)
<|lzn = 2okl + HTYn k-1, Txxn) = 0 n—oo (3.12)

Now by the closedness of T; we obtain that p € (2, F(T;). We shall show that
p € EP(f). From (3.2) we have

P(u,yn) < G(u, ). (3.13)
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From wu,, = T}, Ynm and Lemma 2.10 we have that

(Uns Yn,m) = ¢(Tr, Yn,ms Ynm)
< (U Yn,m) — d(u, T Ynm)
< ¢(u,zn) — d(u, Tr, Ynm)
= P(u, zn) — d(u, un)
So, we have from (3.11) that

lim @(up, yn,m) = 0.

n—oo

Since FE is uniformly convex and smooth and {u,} is bounded, we have from Lemma
2.2 that

limp—ool|tn — Yn,ml|l = 0. (3.14)

Since J is uniformly norm-to-norm continuous on bounded sets, we have
lim [[Juy, — Jynm| = 0. (3.15)
n—oo

From the assumption r, > ¢ we have

lim | Jun — Jyn,mH _

n—oo Tn

0.
By u, = T}, yn,m we have

1
f(uruy)+T7<y_un7‘]un_‘]yn,m>20 VyEC’

n

From (A2), we have

0 = Tyl | 1

”y_un’ <y_unaJUn_Jyn,m> > _f(unay) > f(y,un).

Tn Tn
By taking the limit as n — oo, in the above inequality and from (A4) we have
0> f(y.p), Vy eC.
Forallt € (0,1) and y € C, define y, = ty+ (1 —t)p. Since y,p € C, and C is convex
we have y; € C' and hence f(y,p) <0. So, from (A1) we have
0= Flye, ) <tf(ye,y) + A=) f(ye,p) < Ef (Y, y),

which gives f(y,y) > 0. From (A3) we have 0 < f(p,y),Vy € C which implies that
p € EP(f), and therefore p € F. Finally we prove p = Ilgzy. By taking limit in
(3.3) we have

(p —u, Jzg — Jp) > 0, Yu € F.
Hence by Lemma 2.3 we have p = [Igzg. ]

As a result for single valued mappings we obtain the following corollary.

Theorem 3.2. Let E be a uniformly smooth and uniformly convex Banach space,
and let C' be a nonempty closed convex subset of E. Let f be a bifunction from C xC
into R satisfying (A1) — (A4). Let T; : C — C, i = 1,2,...,m be a finite family of
closed relatively quasi-nonexpansive mappings such that F = (2, F(T;) \EP(f) #
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(). For xyg € C and Cy = C, let {x,} be a sequence generated by the following
algorithm:

Yn,1 = Jﬁl((l - an,l)an + an,IJTlxn)a

Yn2 = J (1 = an2)Jzn + an2JToyn,1),

Ynm = J_l((l - an,m)an + an,mJTmyn,m—l)a
u, € C suchthat f(un,y) + =y — tn, Ju, — JYn,m) > 0, Yy € C,

Cn—H = {Z eCy: ¢(Zvun) < ¢(Z,$n)},
(Zn1 =I]¢,., ®o Vn > 0.

Assume that > 7" an; = 1, {an;} € [a,b] C (0,1) and {r,} C [c,00) for some
¢ > 0. Suppose that T; is uniformly continuous for i = 2,3,....,m. Then {x,}
converges strongly to Igxg.

Theorem 3.3. Let E be a uniformly smooth and uniformly convex Banach space,
and let C' be a nonempty closed convex subset of E. Let F' be a bifunction from CxC
into R satisfying (A1) — (A4). Let T; : C — P(C), i = 1,2,...,m, be a finite family
of multivalued mappings such that Pr, is closed and relatively quasi-nonexpansive.
Assume that F = (2, F(T;) VEP(f) # 0. For zg € C and Cy = C, let {z,} be a
sequences generated by the following algorithm:

(yn,l = J_l((l - an,l)J"En + an,ljzn,l)a

Yn2 = J_l((l - an,Z)Jmn + an,QJZn,Z)v

Ynm = Jfl((l - an,m)JfUn + an,mJZn,m)a
Up € C suchthat f(un,y) + = (y — tn, Jt, — JYn,m) > 0, Yy € C,

Cry1 ={2€Cp:¢(z,un) < P(2,2,)},
Tpt+l = ch+l o, Vn Z O

where zy,1 € Pryxy, and 2, ; € Pryyni—1 fori=2,...,m and J is the duality mapping
on E. Assume that > ", an; = 1, {an;} € [a,b] C (0,1) and {r,} C [c,00) for
some ¢ > 0. Suppose that Pr, is uniformly continuous with respect to the Hausdorff
metric for i = 2,3,...,m. Then {x,} converges strongly to Ilyx.

Proof. Let p € F, then Pr,(p) = {p}, (i=1,2,....m). Also we have F(T;) = F(Pr,).
Now by substituting Pr, instead of 7; and similar argument as in the proof of
Theorem 3.1 we obtain the result. O
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