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COMPRESSION SCHEME FOR WIRELESS SENSOR 
NETWORKS USING A DISTRIBUTED SOURCE CODING 

ALGORITHM BASED ON RAPTOR CODE 

Dragoş Mihai OFRIM1, Dragoş Ioan SĂCĂLEANU2, Vasile LĂZĂRESCU3 

Această lucrare adresează problematica compresiei datelor în re�elele de In 
this paper, the problem of distributed source coding for data compression in 
wireless sensor networks (WSN) is addressed. To achieve high levels of 
compression, a complete solution for network architecture, data correlation model 
and distributed source coding (DSC) algorithm is proposed. DSC is implemented 
using Raptor codes, the newest class of fountain codes. Rigorous tests proved better 
performance, in terms of compression rate, of the proposed solution compared to 
DSC schemes using LDPC or Turbo Codes. As tests also revealed, the differences in 
architecture between the proposed systematic version and the non-systematic 
version of Raptor code enable the implementation of DSC in a wide range of WSN 
applications. 

Keywords: wireless sensor networks, Raptor codes, distributed source coding, 
data compression, data correlation 

1. Introduction 

Wireless sensor networks (WSN) have generated a lot of research during 
the past decade. Their main challenge is designing robust, low power devices that 
operate in industrial environments for a long period of time. Because they are 
battery powered and their processing capability is reduced, optimizations in data 
processing and data transmissions are needed to enhance the lifetime and 
throughput of the network. 

Data compression is essential in reducing the amount of information sent 
over the wireless channel, thus reducing many cost functions of interest, like 
energy spent by sensor nodes, processing capabilities, data routing delay and 
efficiency. WSN compression schemes implementing algorithms based on source 
codes like Huffman [1] and Shannon-Fano-Elias [1] codes exploit internally the 
redundancy of data for each sensor node. More efficient approaches explore the 
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inter-correlation of data between the sensors. These are based on the 
groundbreaking theory developed by Slepian and Wolf [2], which allows 
distributed source coding (DSC) of correlated sources. The sensor nodes are 
modeled as correlated sources of information using mathematical models that 
exploit the dependency in the measured data at each sensor, thus enabling data 
compression. Successful DSC schemes have been implemented using block codes 
(including LDPC – Low Density Parity Check) [3] and Turbo Codes [4].  

This paper proposes a new compression scheme for WSN implemented 
using Raptor codes, the newest class of rateless codes. The advantage of using 
Raptor codes in real DSC applications is that they offer a low complexity of the 
encoder and a flexible code rate that can always be adjusted to match the changes 
is the data correlation parameters. Moreover, as the tests will reveal further in the 
paper, Raptor code, with both its systematic and non-systematic version, enables a 
great range of WSN applications, from simple environment monitoring, to video 
sensors.   

2. Fundamentals of distributed source coding 

During this paper, random variables are noted using capital letters, e.g., X, 
Y. Vectors are denoted by lower-case letters, e.g., x, y and matrices by bold upper-
case letters, e.g. Gk x n.    

 
 
 
 
 
 

 
 
 
 

 
Fig.1 Distributed compression of two correlated, i.i.d., discrete random sequences, X and Y 

In WSN, sensor nodes are modeled as independent, identically distributed 
(i.i.d) sources of information. Let (X, Y) be a pair of two correlated i.i.d sources. 
One way to model the correlation between these two sources is via a “correlation 
channel”, where X =Y + N and N is a random variable characterizing the noise of 
the correlation channel. Thus, one of the two sources is modeled as a noisy 
version of the other. 

Slepian-Wolf theorem [2] states that two correlated sources, X and Y, can 
be coded separately and decoded jointly (Fig. 1). Each source encodes the 
information at a certain rate and sends in further to the decoder. The rate bounds 
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which ensure a lossless recovery of both sources at the decoder are [2]: RX ≥ 
H(X|Y), RY ≥ H(Y|X), and RX +RY ≥ H(X,Y). In practice, the asymmetric rate 
bounds are used for simplicity of implementation: RX ≥ H(X|Y) and RY ≥ H(Y). 
This way, one source, Y, is perfectly known at the decoder, whiles the other one, 
X, needs to be perfectly recovered at the decoder side. Compression is achieved 
for source X, as the information rate RX is lower than the source entropy H(X).    

The key in implementing distributed source coding in WSN is using 
channel codes. Although classic compression schemes use other types of codes 
which eliminate the source’s redundancy, channel codes add redundancy to the 
source information. This redundancy is used to recover the possible errors which 
occur during the transmission over a communication channel. In the DSC case, 
the communication channel is represented by the correlation channel and source X 
represents a noisy version of the source Y.    

Based on the Slepian-Wolf theorem [2], Wyner [5] developed a practical 
approach to implement DSC. Each possible sequence of source X is indexed using 
parity-check bits from a systematic channel code. To encode a source word x of k 
bits, a systematic codeword (k + s, k) is needed, generated using the generator 
matrix ۵௞ൈሺ௞ା௦ሻ ൌ ሾ۷௞|۾௞ൈ௦ሿ. The s-tuple p = xP, which are the parity bits, 
represents the compressed information that is sent to the decoder. Here, the (k + 
s)-bits codeword ܏ ൌ ሾܡଵൈ௞|ܘሿ is created by attaching the side information ܡଵൈ௞, 
from source Y, to the received parity information p from source X.  By decoding 
g, the original codeword of source X is estimated. To ensure a lossless recovery, 
RX = ݏ ݇ൗ  ≥ H(X|Y). 

 
3. Distributed source coding using Raptor code 
 
Raptor codes [6] are the newest family of fountain codes, also called 

rateless, which are erasure protection codes. Raptor codes are based on the 
previous version of rateless codes, the Luby Transform – LT [7]. An LT code with 
parameters (k, C, Ω(x)) generates an infinite number of encoded symbols from the 
source symbols using a distribution Ω(x) [7]. To generate an encoded symbol, the 
encoder samples a degree d from the distribution and then randomly chooses d 
source symbols which are then XORed to form an encoded symbol. This process 
can be represented using a Tanner graph [8], in which the source nodes are called 
variable nodes and the encoded symbols are named check nodes. An edge 
connecting a variable node to a check nodes means that the corresponding source 
symbol is among the symbols XORed to form the corresponding encoded symbol. 
To ensure a succsessful decoding, the associated Tanner graph of the LT code 
must have at least cklog(k) edges.  

One of the disadvantages of the LT code is that the encoding and decoding 
costs are not constant. To relax the condition of having at least cklog(k) edges, 
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Amin Shokrollahi developed the Raptor code [6]. Raptor code is the 
concatenation of an LT code with a precode, a high-rate systematic linear code, 
like LDPC code. The precode ensures that the encoding and decoding complexity 
of the LT code varies only lineary with the number k of source symbols. Thus, the 
LT code is required to recover only a constant ratio of the source symbols, while 
the precode recovers the remaining symbols.   

The ability to continuously sample from the distribution Ω(x) assures the 
rateless characteristic of the Raptor code. In the DSC case, this is a great 
advantage, as the same code architecture can match any desired rate RX, even 
when it is dynamically changed at runtime. Moreover, the low complexity Raptor 
encoder best suites the common applications of WSN, where, due to the low 
capabilities of the wireless sensor nodes, low processing necesities are required.   

As mentioned before, the DSC arhitecture requires channel codes with 
error correcting capabilities, while fountain codes were designed for errasure 
protection [6,7]. To fully benefit of the Raptor code advantages in the DSC case, 
the decoding algorithm must enable the correction of the „correlation errors”. This 
paper proposes the implementation of a soft decoding algorithm like belief 
propagation [9], which enables error correction capabilities for the Raptor code.    

 
A.Encoding 
To fully expose the advantages of DSC with Raptor code in WSN, this 

paper proposes a systematic and a non-systematic version of Raptor code. Both 
structures use a systematic high-rate LDPC code as precode, defined by the (k+s) 
x k generator matrix ۵௅஽௉஼. The LT code is characterised by a N x (k +s) 
generator matrix ۵௅், with N not fixed, depending on the desired rate RX.  Let x = 
{x1,x2,x3,…,xk} be a realization for k source symbols of X. 

In the proposed non-systematic version of Raptor code, the source 
symbols are first encoded with a systematic LDPC code, resulting a vector of k+s 
LDPC symbols x’ = ۵௅஽௉஼ xT, x’ = {x1,x2,x3,…,xk,x’k+1,…,x’k+s}. Then, the LDPC 
symbols are coded using the LT code, resulting a number of N=p coded symbols 
x* = ۵௅஽௉஼ x’ = {ݔଵݔ ,…,כ௣כ} which are sent to the decoder. According to Slepian-
Wolf theorem [2], RX = ݌ൗ݇  ≥ H(X|Y). In the proposed non-systematic version, the 
source symbols are not among the coded symbols, as the LT code randomly 
XORes the LDPC symbols to calculate the coded symbols.  

The proposed systematic Raptor encoder assures that the source symbols are 
among the coded symbols. For that, a vector of k+s intermediate symbols is 
generated at first 

 
כݔ ൌ Aିଵ ൈ ்݀ 
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           Aሺ௞ା௦ሻൈሺ௞ା௦ሻ ൌ ൤
G_LDPC௦ൈ௞ ௦ൈ௦ܫ
G_LT௞ൈሺ௞ା௦ሻ

൨;    d = (0,0,....,0, x1, ... , xk)       (1) 

 
where A is a full rank (k+s) x (k+s) matrix and d is a (s+k)-tuple formed by s zeros 
and the k source simbols : 

These intermediate symbols are then encoded using a (k+p) x (k+s) ۵௅் 
generator matrix, resulting an output vector x* = {ݔଵ, ,ଶݔ … , ,௞ݔ כ௞ାଵݔ כ௞ା௣ݔ ,…, } 
containing, in the first k positions, the source symbols. In this case N = k + p, and 
the rate is RX = ݌ൗ݇  ≥ H(X|Y), because in the systematic version only the 
כ௞ାଵݔ} כ௞ା௣ݔ ,…, } output symbols are sent to the decoder. 

 
B. Decoding 
The joint decoder of the DSC scheme receives RX and RY bits from the two 

correlated sources X and Y. Source symbols y = {y1,y2,y3,…,yk} of Y are perfectly 
known at the decoder and are considered side information for decoding the 
original source symbols x, along with the RX parity bits. To properly decode the 
original source symbols of X, the proposed belief propagation [9] algorithm is 
used. The side information y is interpreted as a noisy version of x.  

The belief propagation is a message passing algorithm based on sending 
belief messages between the nodes of the graph. As stated before, the Raptor 
scheme is represented using a Tanner graph [8]. For every source symbol ݔ௜ the 
aposteriori probability Pr(xi = 1|y) that the bit has value 1, knowing the side 
information y, is calculated. In reality, as a measure of trust, the log-likelihood 
ratio (LLR) L(xi) is used 

 

௜ሻݔሺܮ                                              ؝ ln
Prሺݔ௜ ൌ 0|࢟ሻ
Prሺݔ௜ ൌ 1|࢟ሻ                                    ሺ2ሻ 

                                                                                                  
There are two types of nodes in a Tanner graph: variable nodes and check 

nodes. Using general notation, a message qij(x) from a variable node xi to a check 
node uj represents the propability that the variable node xi has a certain value, 

knowing all the extrinsic information received by the variable node xi from all the 
check nodes it is connected to, except uj. The message rji(x) from a check node uj 

to a variable node xi represents the probability that the uj parity is checked, 
knowing xi and the distributions of the other variable nodes connected to uj (other 

than xi), depicted by their corresponding messages sent to uj. The following 
formulas apply to these messages: 

 
tanh ቀ௥ೕ՜೔
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                                                                                  (3) 
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Fig. 2 Tanner graph associated to the non-systematic Raptor code and belief propagation algorithm 

for decoding the source symbols  
 
For the proposed non-systematic version, the associated graph is depicted 

in Fig. 2. Variable nodes are marked as circles, while the check nodes are 
represented by squares. The LLRs for the source symbols  are 
calculated using (2), while the LLRs for the LDPC parity symbols are initilized 
with zero, as there is no apriori information about them. 

The messages respect the rules in (3) and the following notations are used: 
•  and  – messages sent from the intermediate nodes to the output 

nodes and, respective, from the output nodes to the intermediate nodes, inside 
the LT graph, at iteration l. 

LDPC check  nodes LDPC symbols nodes 
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• ݉௜՜௖
ሺ௟ሻ  and ݉௖՜௜

ሺ௟ሻ  - messages sent from intermediate nodes to LDPC 
check nodes and, respective, from LDPC check nodes to intermediate 
nodes, inside the LDPC graph, at iteration l. 

The decoding algorithm is performed in two steps: first, messages are 
passed through the associated graph of the LT code until no more errors can be 
corrected or the maximum number of iterations for this phase is reached; second, 
messages are passed through the LDPC decoder, using the updated LLRs from the 
LT decoding step. The algorithm stops when either all the source symbols are 
recovered, or the maximum number of iterations is reached. At each iteration, the 
new values of the LLRs are evaluated and the source symbol is estimated, using 
the following decision scheme: 

 

ො௜ݔ                                             ൌ ൜0   if   ܮ
ሺݔ௜ሻ ൒ 0

1   if  ܮሺݔ௜ሻ ൏ 0                                           (4) 

 
For the systematic Raptor case, the associated Tanner graph is depicted in 

Fig. 3. Different from the non-systematic case, in this configuration the LLRs are 
associated to the first k output symbols, as the source symbols are found within 
the Raptor codeword. The middle nodes represent now the intermediate symbols, 
as resulted from (1). Besides the messages defined for the non-systematic version, 
two more intermediate messages are used in this systematic case: 

• ݉௅்
ሺ௟ሻ,௜ - messages generated by the intermediate node i from the LT 

graph 
•  ݉௅஽௉஼

ሺ௟ሻ,௜  – messages generated by the intermediate node i from the 
LDPC graph 

The same cascading scheme is used for the decoding algorithm of the 
proposed systematic version: first, messages through the LT graph are passed and 
the new LLRs are calculated at the output symbols. At the end of the LT decoding 
step, occuring when the maximum number of iterations is reached or when no 
more errors can be corrected, the LDPC decoding starts, passing messages from 
the output nodes to the LDPC check nodes. At each iteration, the source symbols 
are estimated using (4). The algorithm ends when either all the source symbols are 
recovered, or the maximum number of iterations is reached. 
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Fig. 3 Tanner graph associated to the systematic Raptor code and belief propagation algorithm for 
decoding the source symbols  

 

4. Data correlation model 

To effectively implement the proposed DSC in a real wireless sensor 
network application, several tasks need to be established: first, the architecture of 
the WSN has to be designed for the proper implementation of the DSC scheme; 
second, the mathematical model for the data correlation must be feasible and 
reflect the actual correlation of the measured data.  

 
A. The proposed DSC architecture for wireless sensor networks 
The proposed architecture for the WSN is cluster-based, as depicted in 

Fig. 4. DSC is applied within each cluster as follows: the source Y, which 
constitutes the side information, is represented by the cluster-head (CH).  

Output symbols  Intermediate nodes LDPC check  nodes 
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Fig. 4 Cluster based architecture of the WSN.   
 
The other nodes of the cluster represent the sources Xi, i = 1,…,n. The CH 

gathers all the information from the other nodes and sends it further to the base 
station, which performs the decoding. Thus, as side information, the CH has rate 
RY ≥ H(Y), while each sensor node has rate RXi ≥ H(Xi|Y). 

 
B. Correlation model based on a binary symmetric channel 
As DSC is implemented using channel codes, one way to model the 

correlation is by using a standard channel model, like the binary symmetric 
channel (BSC) [10]. For each received bit, p represents the probability that an 
error occurred during the transmission, while (1 - p) represents the probability that 
the bit was successfully received. Following this model in the DSC schemes, (1 – 
pi) represents the probability that a bit xij from the source Xi has the same value as 
the corresponding bit yj from the side information Y. Therefore, the information 
rates for sources Xi become [10]: 

 
                       RXi ≥ H(Xi|Y) = െ݌௜ log ௜݌ െ ሺ1 െ ௜ሻ݌ logሺ1 െ  ௜ሻ             (5)݌
 
At the decoder, the LLRs are calculated using the BSC model and (6): 
 
௜௝൯ݔ൫ܮ                                       ൌ ሺ1 െ ௝ሻ݈݊ݕ2

ଵି௣೔
௣೔

                                   (6) 
 

The belief propagation decoding algorithm is then initialized. In case the 
decoder is unsuccessful in recovering the original source symbols xi, that means 
rate RXi was under estimated and the base station informs the sensor node Xi to 
increase the rate. The power of the Raptor code is that the rate can easily be 
adjusted, without changing the architecture of the code, by just sampling more 
values from the distribution Ω(x) of the LT code, thus increasing the number of 
generated code bits.  
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5. Experimental results 

To justify the proposal of using Raptor code for DSC, over other channel 
codes, the performance over BSC correlation model of both systematic and non-
systematic proposed versions has been evaluated. Comparison were made with 
state of the art LDPC [3] and Turbo codes [4], which are also used in distributed 
source coding of correlated sources.  

First, the evolution of bit error rate (BER) over the source rate has been 
tested (Fig. 5). The source word length was 5000 bits and the compression rate 
was set to 2. The theoretical Slepian-Wolf (SW) limit of the rate is then H(X|Y) = 
0.5. The entropy was continuously decreased, keeping the compression rate 
constant, until a low BER was reached.        

 

 
 

Fig. 5 BER vs. entropy for different codes 
 

The superior performance of the proposed systematic Raptor code over the 
best Turbo and LDPC codes is visible in Fig. 5. The non-systematic version has 
the poorest performance. On the other hand, it can be observed that the theoretical 
SW limit cannot be reached in real implementations.  

Second, the variation of the compression rate for different probabilities of 
error p has been studied. The case with BER very close to 0 has been considered. 
The source word length was 5000 bits. 
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Fig. 6 Compression rate vs. p for Raptor systematic and Turbo code 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 BER vs. k for systematic and non-systematic Raptor code 

 
The superiority of the proposed systematic Raptor code over the Turbo 

code can be observed in Fig. 6. The SW limit is marked as a reference. The next 
study was the comparison of the two version of Raptor code at different source 
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word lengths k. The compression rate was kept constant at a value of 2.  It can be 
observed in Fig. 7 that the systematic version of Raptor code has very low BER 
for long source words, while the nonsystematic version has great performance for 
small source words.  

6. Conclusions 

This paper presents a novel compression scheme based on DSC, 
implemented using Raptor code. In the proposed WSN architecture, the 
systematic Raptor code outperforms the best implementations based on state of 
the art LDPC and Turbo codes in terms of compression rate. Compared to the 
non-systematic version, the systematic Raptor code has a very low BER when 
long source words are used, while the non-systematic code reaches BERs close to 
zero when small code words are used. This very important discovered feature 
enables the use of Raptor code in a large variety of wireless sensor networks 
applications, from environmental monitoring, where small code words are used, to 
multimedia applications, where long data streams are processed.    
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