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NONSPREADING MAPPINGS ON MODULAR VECTOR SPACES

Cristian Ciobanescu1, Mihai Postolache2

We introduce the notion of a nonspreading mapping in the setting of modular

vector spaces, having as starting source the elegant article by Kohsaka and Takahashi

[Arch. Math., 2008, 91, 166-177]. We establish some properties of this class of mappings

and suggest a way to reckon their fixed points. More accurately, to estimate the solutions

of fixed point equations involving this kind of operators, we use a suitable iterative process

introduced by Sintunavarat and Pitea [J. Nonlinear Sci. Appl., 2016, 2553-2562].
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1. Introduction

The beginning of modular analysis was given by some practical examples of general-

ized function and sequence spaces provided by Orlicz and Birnbaum in the early 1930’s. A

deep analysis regarding modular function spaces and their suitability for fixed point theory

was realized by Kozlowski (1988) in [10] and by Khamsi and Kozlowski in [8]. Still, the

formal definition of modular vector spaces (not necessarily function-type spaces), as it is

known and used today, was settled by Orlicz and Musielack in [12] and [13]. From that mo-

ment on, the modular setting became an interesting and nontrivial alternative to classical

Banach spaces. Recent papers, using this particular framework as underlying setting are

related with various modular nonexpansivenes conditions, please see: Abdou and Khamsi

[1], Bejenaru and Postolache [2], Kassab and Turcanu [7].

Iteration based procedures provide important instruments in nonlinear analysis. They

can produce approximate solutions for certain classes of problems, which can be thought of

in terms of fixed point theory, whenever analytical methods fail. For instance, they can be

useful for approximating the zeros of complex polynomials, for studying general variational

inequalities, solving classes of split problems, finding solutions to optimization problems or

designing algorithms for processing signals and images: please, see Usurelu et al. [19, 20],

Yao et al. [21, 22].

The necessity of elaborated iteration procedures came with the study of generalized

contractive conditions and the major limitation of the Picard sequence under the aspect of

reaching the fixed point. Important results in this direction were obtained by Mann (1953)

[11], Ishikawa (1974) [5], Noor (2000) [14], Sahu et al. (2020) [15] and many others, in

the context of fixed point theory or variational inequalities. For instance, Suzuki (2008)
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[17] proved a convergence result for a mapping satisfying condition C using a Krasnoselskij

iterative process; Karahan and Ozdemir (2013) [6] introduced the S∗ iteration for numerical

reckoning fixed points of contractive or nonexpansive mappings; Thakur et al. (2016) [18]

used a newly defined iteration process for approximating a fixed point of nonexpansive

mappings; Sahu et al. (2020) [15] utilise their new iteration technique for nonlinear operators

as concerns convex programming and feasibility problems. And the list above may continue.

Lately, classical methods of numerical analysis have been combined with some of these new

iterative procedures, resulting interesting and valuable new approximation methods.

However, there is an odd thing about iterative schemes. Despite the significant interest

a certain iterative process could produce, no one could say for sure that its study is being

completed. Each newly defined iterative scheme is almost immediately absorbed and reused

in different setting. For instance, the iteration process Sn defined by Sintunavarat and

Pitea (2016) [16] was initially used for approximating the fixed points of mappings satisfying

Berinde (2004) contractive condition; in [4] convergence, stability and data dependence were

analyzed in connection with operators with condition (D), while in [3], the same procedure

was used to solve split feasibility problems.

In 2008, Kohsaka and Takahashi ([9]) introduced a new class of operators on Banach

spaces, namely the nonspreading mappings. This way, they generalized the class of firmly

nonexpansive type mappings. An interesting fact about the newly introduced operators

concerns their appearance on Hilbert spaces. Starting from this particular expression, we

adapt the definition to convex modular vector spaces. Further on, we evaluate the solutions

of fixed point equations involving this kind of operators based on the Sn iterative process.

2. Preliminaries

We initiate our approach by revealing the main features of the analytical setting, as

well as some instrumental definitions and lemmas.

Definition 2.1 ([12],[13]). Let X be a real vector space. A function ρ : X → [0,∞] is called

a modular if it satisfies:

(i) ρ(x) = 0 if and only if x = 0;

(ii) ρ(αx) = ρ(x), for |α| = 1, ∀x ∈ X;

(iii) ρ(αx+ (1− α)y) ≤ ρ(x) + ρ(y), ∀α ∈ [0, 1], for all x, y ∈ X.

By replacing condition (iii) with

ρ(αx+ (1− α)y) ≤ αρ(x) + (1− α)ρ(y),

for all α ∈ [0, 1] and for all x, y ∈ X, we find the so-called convex modular.

Definition 2.2 ([12]). Let ρ be a convex modular function defined on a vector space X.

The vector subspace Xρ is called a modular space, where

Xρ =
{
x ∈ X : lim

α→0
ρ(αx) = 0

}
.

Definition 2.3 ([1]). Let ρ be a convex modular on a vector space X.

(1) A sequence {xn} ⊂ Xρ is called ρ-convergent to some x ∈ Xρ if and only if

lim
n→∞

ρ(xn − x) = 0.

(2) A sequence {xn} ⊂ Xρ is called ρ-Cauchy if lim
m,n→∞

ρ(xm − xn) = 0.

(3) We say that Xρ is ρ-complete if any ρ-Cauchy sequence in Xρ is ρ-convergent.

(4) A set C ⊂ Xρ is called ρ-closed if for any sequence {xn} ⊂ C which ρ - converges

to some point x, one has x ∈ C.
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(5) A set C ⊂ Xρ is called ρ-bounded if δρ(C) = sup
x,y∈C

ρ(x− y) <∞.

(6) A set K ⊂ Xρ is called ρ-compact if any sequence {xn} ⊂ K has a subsequence

which ρ-converges to a point in K.

(7) The modular ρ is said to satisfy the Fatou property if ρ(x− y) ≤ lim inf
n→∞

ρ(x− yn)

whenever {yn} ρ-converges to y, for any x, y, yn ∈ Xρ.

Definition 2.4 ([8]). The uniform convexity type properties of the modular ρ are defined

for every r > 0 and every ε > 0 as follows:

(1) Define

D1(r, ε) = {(x, y) : x, y ∈ Xρ, ρ(x) ≤ r, ρ(y) ≤ r, ρ(x− y) ≥ εr} .

If D1(r, ε) 6= ∅, let

δ1(r, ε) = inf

{
1− 1

r
ρ

(
x+ y

2

)
: (x, y) ∈ D1(r, ε)

}
.

If D1(r, ε) = ∅, set δ1(r, ε) = 1.

We say that ρ satisfies (UUC1) if for every s ≥ 0 and ε > 0, there exists η1(s, ε) > 0,

depending on s and ε, such that

δ1(r, ε) > η1(s, ε) > 0.

for r > s.

(2) Define

D2(r, ε) =

{
(x, y) : x, y ∈ Xρ, ρ(x) ≤ r, ρ(y) ≤ r, ρ

(
x− y

2

)
≥ εr

}
.

If D2(r, ε) 6= ∅, let

δ2(r, ε) = inf

{
1− 1

r
ρ

(
x+ y

2

)
: (x, y) ∈ D2(r, ε)

}
.

If D2(r, ε) = ∅, set δ2(r, ε) = 1.

We say that ρ satisfies (UUC2) if for every s ≥ 0 and ε > 0, there exists η2(s, ε) > 0,

depending on s and ε, such that

δ2(r, ε) > η2(s, ε) > 0,

for r > s. It is important to point out that (UUC1) property also implies (UUC2).

Lemma 2.1 ([7]). Let ρ be a convex modular which is (UUC1) and let {tn} ∈ (0, 1) be a

sequence bounded away from 0 to 1. If there exists r > 0 such that

lim sup
n→∞

ρ(xn) ≤ r,

lim sup
n→∞

ρ(yn) ≤ r,

lim
n→∞

ρ(tnxn + (1− tn)yn) = r,

where {xn} and {yn} are sequences in Xρ, then

lim
n→∞

ρ(xn − yn) = 0.
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Definition 2.5 ([1]). Let {xn} be a sequence in Xρ and C a nonempty subset of Xρ. The

function

τ : C → [0,∞] , τ(x) = lim sup
n→∞

ρ(x− xn)

is called a ρ-type function.

Furthermore, a sequence {cn} ⊂ C is called a minimizing sequence of τ if

lim
n→∞

τ(cn) = inf
x∈C

τ(x).

Lemma 2.2 ([1]). Assume that the modular space Xρ is ρ-complete and ρ satisfies Fatou

property. Let C be a nonempty convex and ρ-closed subset of Xρ. Consider the ρ-type

function τ : C → [0,∞] given by a sequence {xn} in Xρ. Assume that τ0 = inf
x∈C

τ(x) < ∞.

If ρ is (UUC1), then all minimizing sequences of τ are ρ-convergent to the same ρ-limit.

Definition 2.6. Let Xρ be a modular space. It is said that the modular ρ satisfies the

∆2-condition if there exists a constant K ≥ 0 such that

ρ(2x) ≤ Kρ(x),

for any x ∈ Xρ.

The smallest such constant K will be denoted by ω(2). In addition, one can also

consider µ =
ω(2)

2
, known as the modular factor (see [2]).

Remark 2.1 ([2]). The modular factor µ satisfies the properties:

(P1) µ ≥ 1;

(P2) ρ(x+ y) ≤ µ [ρ(x) + ρ(y)], for all x, y ∈ Xρ.

3. Main results

Throughout this part we will assume that ρ is a convex modular, satisfying the ∆2-

condition. Moreover, µ stands always for the modular factor.

Definition 3.1. Let C be a nonempty subset of a modular spaceXρ. A mapping T : C → Xρ

with

(1 + µ2)µ2ρ2(Tx− Ty) ≤ ρ2(Tx− y) + ρ2(x− Ty),

for all x, y ∈ Xρ is called a modular nonspreading mapping.

Remark 3.1. The definition of nonspreading mappings on a Hilbert space H (see [9]) is

recovered by taking ρ(x) = ||x||. Indeed, in this particular case one has µ = 1, so the

inequality above becomes:

2||Tx− Ty||2 ≤ ||Tx− y||2 + ||x− Ty||2,

for all x, y ∈ H.

In the following, we will present an example of nonspreading modular mapping.

Example 3.1. In R, we consider the convex modular

ρ(x) = |x|
√
|x|,

with the modular factor µ =
√

2.

To prove that a mapping T : R→ R is a nonspreading modular mapping, we need to

prove

6 |Tx− Ty|3 ≤ |Tx− y|3 + |Ty − x|3 , (3.1)

for all x, y ∈ R.
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We take now the mapping

T : R→ R, Tx =
x

2

and we check the inequality (3.1), meaning

6

[
1

2
|x− y|

]3
≤
∣∣∣∣12x− y

∣∣∣∣3 +

∣∣∣∣12y − x
∣∣∣∣3 ,

or, in other words,

6 |x− y|3 ≤ |x− 2y|3 + |y − 2x|3 , (3.2)

for all x, y ∈ R.

In the following, we will assume that x ≥ y and we mention that the case y > x can

be proved absolutely similar.

Let a = x− y ≥ 0. This implies that x = a+ y and the condition (3.2) becomes

6a3 ≤ |a− y|3 + |2a+ y|3 .

Case I: Let y ∈ [−2a, a]. In this case, we have

6a3 ≤ (a− y)3 + (2a+ y)3,

which is equivalent to

3a(a2 + 3ay + 3y2) ≥ 0. (3.3)

But inequality (3.3) is true for all a ≥ 0.

Case II: Let y > a. Because a ≥ 0, we obtain y > 0. We have

6a3 ≤ (y − a)3 + (2a+ y)3,

whish is equivalent to

a3 + 3y2a+ 15a2y + 2y3 ≥ 0. (3.4)

But inequality (3.4) is true for all a, y ≥ 0.

Case III: Let y < −2a. It is obvious that y < 0, because a ≥ 0. In this case, we

have

6a3 ≤ (a− y)3 + (−2a− y)3,

which is equivalent to

15a2(y + 2a)− 17a3 +
3

2
y2(y + 2a) +

1

2
y3 ≤ 0. (3.5)

But inequality (3.5) is true for all a > 0 and y < 0, given that y + 2a < 0.

Based on relationships (3.3), (3.4) and (3.5), which turned out to be true, we conclude

that Tx =
1

2
x, for x ∈ R is a nonspreading modular mapping in relation to the modular

ρ(x) = |x|
√
|x|.

We consider that this example is extremely significant for the type of operators that

will be worked on in the following results regarding the convergence of the chosen iterative

process and comes as a natural complement to other examples previously presented in the

literature.

Next, we introduce some characteristic properties of the newly introduced class of

operators.

Lemma 3.1. Let C be a nonempty subset of a modular space Xρ and let T : C → C be a

modular nonspreading mapping with F (T ) 6= ∅. Then T is a modular quasi-nonexpansive

mapping (i.e. ρ(Tx− p) ≤ ρ(x− p), ∀x ∈ C, ∀p ∈ F (T )).
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Proof. Let p ∈ F (T ). As T is a nonspreading mapping, we have

(1 + µ2)µ2ρ2(Tx− p) ≤ ρ2(Tx− p) + ρ2(x− p),

so [
(1 + µ2)µ2 − 1

]
ρ2(Tx− p) ≤ ρ2(x− p).

Using (P1) from Remark 2.1 we get that µ ≥ 1, therefore (1 + µ2)µ2 − 1 ≥ 1.

In conclusion,

ρ2(Tx− p) ≤
[
(1 + µ2)µ2 − 1

]
ρ2(Tx− p) ≤ ρ2(x− p),

so T is a quasi-nonexpansive mapping. �

Lemma 3.2. Let C be a nonempty ρ-bounded subset of a modular space Xρ and T : C → C

a modular nonspreading mapping. If {xn} is a sequence in C such that lim
n→∞

ρ(Txn−xn) = 0,

and τ is the ρ-type function of {xn}, then:

(i) τ(Tx) ≤ τ(x), for all x ∈ Xρ;

(ii) T leaves the minimizing sequences invariant (i.e. if {cn} is a minimizing sequence

for τ , then so is {Tcn}).

Proof. (i) First, we will apply the Definition 3.1. Based on this, we get

(1 + µ2)µ2ρ2(Txn − Tx) ≤ ρ2(Txn − x) + ρ2(xn − Tx),

that is

(1 + µ2)
[
µ2ρ2(Txn − Tx)− ρ2(xn − Tx)

]
≤ ρ2(Txn − x)− µ2ρ2(xn − Tx)

=
[
ρ2(Txn − x)− µ2ρ2(xn − x)

]
+µ2

[
ρ2(xn − x)− ρ2(xn − Tx)

]
.

It follows

µ2
[
ρ2(xn − x)− ρ2(xn − Tx)

]
≥ (1 + µ2)

[
µ2ρ2(Txn − Tx)− ρ2(xn − Tx)

]
+
[
µ2ρ2(xn − x)− ρ2(Txn − x)

]
.

(3.6)

Next we will prove that

lim sup
n→∞

[
µ2ρ2(Txn − Tx)− ρ2(xn − Tx)

]
≥ 0.

Indeed, using property (P2), we find that

ρ(xn − Tx) = ρ ((xn − Txn) + (Txn − Tx)) ≤ µρ(xn − Txn) + µρ(Txn − Tx),

so

µρ(Txn − Tx)− ρ(xn − Tx) ≥ −µρ(xn − Txn).

By multiplying this last inequality with µρ(Txn−Tx)+ρ(xn−Tx), which is obviously

positive, we obtain

µ2ρ2(Txn − Tx)− ρ2(xn − Tx) ≥ −µρ(xn − Txn) · [µρ(Txn − Tx) + ρ(xn − Tx)] .

Because C is ρ-bounded it follows that µρ(Txn − Tx) + ρ(xn − Tx) is also bounded.

Moreover, lim
n→∞

ρ(Txn − xn) = 0 and, by applying lim sup, it follows that

lim sup
n→∞

[
µ2ρ2(Txn − Tx)− ρ2(xn − Tx)

]
≥ 0.

Similarly, one obtains

lim sup
n→∞

[
µ2ρ2(xn − x)− ρ2(Txn − x)

]
≥ 0.
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Taking lim sup in (3.6), we find

µ2 · lim sup
n→∞

[
ρ2(xn − x)− ρ2(xn − Tx)

]
≥ 0.

From this

lim sup
n→∞

ρ2(xn − x) ≥ lim sup
n→∞

ρ2(xn − Tx),

so

lim sup
n→∞

ρ(xn − x) ≥ lim sup
n→∞

ρ(xn − Tx).

which closes the proof.

(ii) If {cn} is a minimizing sequence for τ , we find that

lim
n→∞

τ(cn) = inf
x∈C

τ(x).

Using the conclusion in (i) we have

inf
x∈C

τ(x) ≤ lim
n→∞

τ(Tcn) ≤ lim
n→∞

τ(cn) = inf
x∈C

τ(x) (3.7)

From (3.7) it is clear that

lim
n→∞

τ(Tcn) = inf
x∈C

τ(x),

so {Tcn} is a minimizing sequence for τ . �

Proposition 3.1. Let C be a nonempty, convex and ρ-closed subset of a ρ-complete modular

space Xρ. Assume that ρ is (UUC1) and satisfies Fatou property. Consider the ρ-type

function τ : C → [0,∞] of a sequence {xn} ⊂ Xρ and suppose τ0 = inf
x∈C

τ(x) <∞. Let {cn}
and {dn} be two minimizing sequence for τ . Then,

(i) any convex combination of {cn} and {dn} is a minimizing sequence for τ as well;

(ii) lim
n→∞

ρ(cn − dn) = 0.

Proof. The proof does not differ at all from the proof of Proposition 1 from [7].

(i) We consider

en = λcn + (1− λ)dn,

for λ ∈ (0, 1) and n ≥ 1.

For any x ∈ C, we have

ρ(en − x) ≤ λρ(cn − x) + (1− λ)ρ(dn − x), n ≥ 1,

therefore

lim sup
m→∞

ρ(en − xm) ≤ λlim sup
m→∞

ρ(cn − xm) + (1− λ)lim sup
m→∞

ρ(dn − xm), n ≥ 1,

meaning that

τ(en) ≤ λτ(cn) + (1− λ)τ(dn).

Passing to the limit and keeping in mind that {cn} and {dn} are minimizing sequences,

we obtain

τ0 = inf
x∈C

τ(x) ≤ lim
n→∞

τ(en) ≤ λτ0 + (1− λ)τ0 = τ0,

where we get the conclusion.

(ii) Notice that, for en =
1

2
(cn + dn) , n ≥ 1, we have cn − dn = 2(en − dn), n ≥ 1.

From (i), {en} is a minimizing sequence and, according to Lemma 2.2, all minimizing

sequences ρ-converge to the same point, which we denote by z. Hence,

ρ(en − dn) = ρ

(
cn − dn

2

)
≤ 1

2
(ρ(cn − z) + ρ(dn − z)) , n ≥ 1.
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Using (i), we deduce that lim
n→∞

ρ(en−dn) = 0. From ∆2 - condition, we will also have

ρ(cn − dn) ≤ ω(2)ρ(en − dn).

Taking n→∞, we obtain the conclusion in this case. �

In 2016, Sintunavarat and Pitea ([16]) introduced the Sn iteration procedure defined

as follows: for an arbitrary x1 ∈ C, a sequence {xn} is obtained by the rule:
yn = (1− βn)xn + βnTxn
zn = (1− γn)xn + γnyn
xn+1 = (1− αn)Tzn + αnTyn,

(3.8)

for all n ≥ 1, where {αn}, {βn} and {γn} are real sequences (0, 1).

Lemma 3.3. Let C be a nonempty ρ-bounded and convex subset of Xρ and let T : C → C

be a modular nonspreading mapping with F (T ) 6= ∅. For an arbitrary chosen x1 ∈ C, let the

sequence {xn} be generated by the iterative process (3.8).

Then, lim
n→∞

ρ(xn − p) exists for any p ∈ F (T ).

Proof. Let p ∈ F (T ). From Lemma 3.1 we have

ρ(Tx− p) ≤ ρ(x− p),

for all x ∈ C.

Now using this inequality and the convexity of ρ, we find that

ρ(yn − p) = ρ((1− βn)xn + βnTxn − p)
≤ (1− βn)ρ(xn − p) + βnρ(Txn − p)
≤ (1− βn)ρ(xn − p) + βnρ(xn − p)
= ρ(xn − p).

(3.9)

Using (3.9), we get

ρ(zn − p) = ρ((1− γn)xn + γnyn − p)
≤ (1− γn)ρ(xn − p) + γnρ(yn − p)
≤ (1− γn)ρ(xn − p) + γnρ(xn − p)
= ρ(xn − p).

(3.10)

From (3.9) and (3.10), we have

ρ(xn+1 − p) = ρ((1− αn)Tzn + αnTyn − p)
≤ (1− αn)ρ(Tzn − p) + αnρ(Tyn − p)
≤ (1− αn)ρ(zn − p) + αnρ(yn − p)
≤ (1− αn)ρ(xn − p) + αnρ(xn − p)
= ρ(xn − p).

(3.11)

This involves that the sequence {ρ(xn − p)}n≥k is bounded and nonincreasing for any

p ∈ F (T ), so lim
n→∞

ρ(xn − p) exists for any p ∈ F (T ). �

Theorem 3.1. Let Xρ be a ρ-complete modular space and C be a nonempty convex ρ-

closed and ρ-bounded subset of Xρ. Suppose ρ is (UUC1) and satisfies Fatou property. Let

T : C → C be a modular nonspreading mapping and let the sequence {xn} be generated by

the iterative process (3.8) with {αn}, {βn} and {γn} in (0, 1) and {βn} bounded away from

0 and 1.

Then F (T ) 6= ∅ if and only if lim
n→∞

ρ(xn − Txn) = 0.
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Proof. First of all, suppose F (T ) 6= ∅ and take p ∈ F (T ). According to Lemma 3.3, the

limit lim
n→∞

ρ(xn − p) exists and we will denote its value with r.

Using Lemma 3.1, we obtain

lim sup
n→∞

ρ(Txn − p) ≤ lim
n→∞

ρ(xn − p) = r.

On the other hand, using the relation (3.11) and the Lemma 3.1, together with the

convexity of ρ, we obtain

ρ(xn+1 − p) ≤ (1− αn)ρ(zn − p) + αnρ(yn − p)
= (1− αn)ρ((1− γn)xn + γnyn − p) + αnρ(yn − p)
≤ (1− αn)(1− γn)ρ(xn − p) + [(1− αn)γn + αn] ρ(yn − p)
= ρ(xn − p) + [1− (1− γn)(1− αn)] (ρ(yn − p)− ρ(xn − p)) ,

which implies
ρ(xn+1 − p)− ρ(xn − p)

1− (1− γn) (1− αn)
≤ ρ(yn − p)− ρ(xn − p).

Therefore

ρ(xn+1 − p)− ρ(xn − p) ≤
ρ(xn+1 − p)− ρ(xn − p)

1− (1− γn) (1− αn)
≤ ρ(yn − p)− ρ(xn − p),

so

ρ(xn+1 − p) ≤ ρ(yn − p).
It is worth noting that, according to inequality (3.9), ρ(yn − p) ≤ ρ(xn − p), which

implies that

r = lim
n→∞

ρ(yn − p).

It follows

lim
n→∞

ρ (βn(Txn − p) + (1− βn)(xn − p)) = lim
n→∞

ρ(yn − p) = r

and, since the conditions of Lemma 2.1 are now checked, we see that lim
n→∞

ρ(Txn−xn) = 0.

Conversely, let τ denote the ρ-type function of {xn} and let {cn} be a minimizing

sequence for τ converging to a point z ∈ C, which implies that lim
n→∞

ρ(cn − z) = 0 (Lemma

2.2 ensures this convergence).

Using Lemma 3.2 (ii), {Tcn} is a minimizing sequence as well and by Proposition 3.1

it is easily observed that lim
n→∞

ρ(cn − Tcn) = 0.

Using now Lemma 3.2 (i), we have

0 ≤ lim sup
n→∞

ρ(cn − Tz) ≤ lim sup
n→∞

ρ(cn − z) = 0,

which involves that lim
n→∞

ρ(cn − Tz) = 0.

By the uniqueness of the limit, we have Tz = z. �

Theorem 3.2. Let C be a nonempty ρ-compact and convex subset of a complete modular

space Xρ and let ρ, T and {xn} be as in Theorem 3.1. Then, the sequence {xn} ρ-converges

to a fixed point of T .

Proof. The ρ-compactness of C implies the existence of a subsequence {xnk
} of {xn} which

ρ-converges to a point z ∈ C.

From Lemma 3.2, we obtain

0 ≤ lim sup
n→∞

ρ(xnk
− Tz) ≤ lim sup

n→∞
ρ(xnk

− z) = 0,

hence lim
n→∞

ρ(xnk
− Tz) = 0. By the uniqueness of the limit, we have Tz = z.
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From Lemma 3.3, it follows that the limit lim
n→∞

ρ(xn−z) exists and then the sequence

{xn} ρ-converges to z, where z ∈ F (T ). �

4. Conclusions

Quadratic nonexpansiveness conditions of nonspreading or hybrid type are a recent

direction in fixed point theory. Initiated in the setting of Banach spaces, directly related

with the duality map, they reach a more approachable expression in the particular setting

of a Hilbert space. This paper adapted the expression of nospreadingness in Hilbert setting

to a modular framework. The analysis specifically looked at issues related to necessary and

sufficient conditions for the existence of fixed points and was performed via the Sn itera-

tion procedure. A convergence criterion was also established under modular compactness

assumption.
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