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AN ELEMENTARY PROOF OF THE WEIGHTED GEOMETRIC MEAN

BEING A BERNSTEIN FUNCTION

Feng Qi1, Xiao-Jing Zhang2, Wen-Hui Li3

In the paper, the authors supply an elementary proof for the assertion that the
weighted geometric mean is a Bernstein function.
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1. Introduction

An infinitely differentiable function f is said to be completely monotonic on an interval
I if it satisfies

(−1)nf (n)(t) ≥ 0

for x ∈ I and n ≥ 0. See [10, Definition 1.3]. An infinitely differentiable function
f : I ⊆ (−∞,∞) → [0,∞) is called a Bernstein function on I if its derivative f ′(t) is
completely monotonic on I. See [10, Definition 3.1]. The Bernstein functions on (0,∞) can
be characterized by the assertion that a function f : (0,∞) → R is a Bernstein function if
and only if it admits the representation

f(x) = a+ bx+

∫ ∞

0

(
1− e−xt

)
dµ(t), (1.1)

where a, b ≥ 0 and µ is a Radon measure on (0,∞) satisfying∫ ∞

0

min{1, t}dµ(t) < ∞. (1.2)

See [10, Theorem 3.2]. The triplet (a, b, µ) determines f uniquely and vice versa. The repre-
senting measure µ and the characteristic triplet (a, b, µ) from the expression (1.1) are often
called the Lévy measure and the Lévy triplet of the Bernstein function f . The formula (1.1)
is called the Lévy-Khintchine representation of f . If the Lévy measure µ satisfying (1.1)
and (1.2) has a completely monotonic density m(t) with respect to the Lebesgue measure,
that is, the integral representation

f(x) = a+ bx+

∫ ∞

0

(
1− e−xt

)
m(t) d t (1.3)

holds for a, b ≥ 0 and m(t) is a completely monotonic function on (0,∞), then f is said
to be a complete Bernstein function on (0,∞). See [10, Definition 6.1]. For f(t) being

1Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010,

China; College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner
Mongolia Autonomous Region, 028043, China; E-mail: qifeng618@gmail.com, qifeng618@hotmail.com,
qifeng618@qq.com; URL: http://qifeng618.wordpress.com.

2The 59th Middle School, Jianxi District, Luoyang City, Henan Province, 471000, China; E-mail:

xiao.jing.zhang@qq.com.
3Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387,

China; E-mail: wen.hui.li102@gmail.com, wen.hui.li@foxmail.com.

35

http://qifeng618.wordpress.com


36 F. Qi, X.-J. Zhang, W.-H. Li

a nonconstant infinitely differentiable function on (0,∞), for f(∞) = limx→∞ f(x), and
for some r ∈ R, if the function tr[f(t) − f(∞)] is completely monotonic on (0,∞) but
tr+ε[f(t) − f(∞)] is not for any positive number ε > 0, then we say that the number r
is the completely monotonic degree of f(t) with respect to t ∈ (0,∞); if for all r ∈ R
each tr[f(t) − f(∞)] is completely monotonic on (0,∞), then we say that the completely
monotonic degree of f(t) with respect to t ∈ (0,∞) is ∞. See [2, Definition 1.1], or [4,
Definition 1.1], or [8, Definiton 1.3]. If the density m(t) of the representing measure µ(t) is
of the completely monotonic degree r, then f is said to be a complete Bernstein function of
degree r, or say, r is said to be the degree of the complete Bernstein function f on (0,∞).
See [1, Definition 1.6] and [8, Definiton 1.4].

Recall that the quantity G(x, y;λ) = xλy1−λ for x, y > 0 and λ ∈ (0, 1) is called the
weighted geometric mean. For λ ∈ (0, 1) and x, y ∈ R, define

Gx,y;λ(t) = G(x+ t, y + t;λ) (1.4)

on (−min{x, y},∞). From the facts that xλ is a complete Bernstein function for λ ∈ (0, 1)
on (0,∞), see [10, Remark 7.8], and that, if f1 and f2 are complete Bernstein functions on

(0,∞), then fλ
1 f

1−λ
2 for λ ∈ (0, 1) is also a complete Bernstein function on (0,∞), see [10,

Proposition 7.10], it follows that Gx,y;λ(t) for λ ∈ (0, 1) is a complete Bernstein function
on (0,∞). In the proof of [3, Theorem 1], it was essentially recovered that the weighted
geometric mean Gx,y;λ(t) is a Bernstein function of t > −min{x, y}. In [9], see also [11,
Chapter 2], the statement that the geometric mean Gx,y;1/2(t) is a complete Bernstein
function was rediscovered by several approaches. Recently, among other things, it was
found in [1, Theorem 2.5] that Gx,y;λ(t) for λ ∈ (0, 1) is a complete Bernstein function of
degree 0 on (0,∞). For more information, please refer to [5, 7] and closely related references
therein.

In this paper, we will provide an elementary proof for the assertion that for λ ∈
(0, 1) and x, y ∈ R the weighted geometric mean Gx,y;λ(t) is a Bernstein function on
(−min{x, y},∞).

Theorem 1.1. For λ ∈ (0, 1) and x, y ∈ R with x ̸= y, the weighted geometric mean
Gx,y;λ(t) defined by (1.4) is a Bernstein function of t > −min{x, y}.

2. A lemma

Our elementary proof for Theorem 1.1 bases on the following lemma.

Lemma 2.1. For t > 0 and α ∈ (−1, 1), let

hα(t) =

(
1 +

1

t

)α

. (2.1)

Then the derivatives of hα(t) can be computed by

h(i)
α (t) =

(−1)i

ti(1 + t)i

(
1 +

1

t

)α i−1∑
k=0

aα,i,kt
k, (2.2)

where i ∈ N and

aα,i,k = k!

(
i

k

)(
i− 1

k

) i−k−1∏
ℓ=0

(α+ ℓ). (2.3)

Consequently,

(1) if α ∈ (0, 1), the function hα(t) is completely monotonic on (0,∞);
(2) if α ∈ (−1, 0), the function hα(t) is a Bernstein function on (0,∞);
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(3) the derivatives of the function

Hα(t) =
hα(t)

α
− hα−1(t)

α− 1
(2.4)

may be calculated by

H(i)
α (t) =

(−1)i

ti(1 + t)i+1

(
1 +

1

t

)α i−1∑
k=0

bα,i,kt
k, (2.5)

where i ∈ N and

bα,i,k = k!

(
i+ 1

k

)(
i− 1

k

) i−k−1∏
ℓ=1

(α+ ℓ); (2.6)

(4) the function Hα(t) is completely monotonic for all α ∈ (0, 1) on (0,∞).

Proof. It is easy to see that

h′
α(t) = −α

(
1 +

1

t

)α−1
1

t2
= −α

(
1 +

1

t

)α
1

t(1 + t)
.

This means that the formulas (2.2) and (2.3) are valid for i = 1.
Assume that the formulas (2.2) and (2.3) are valid for some i > 1. By this inductive

hypothesis, a simple calculation gives

h(i+1)
α (t) =

[
h(i)
α (t)

]′
=

[
(−1)i

ti(1 + t)i

(
1 +

1

t

)α i−1∑
k=0

aα,i,kt
k

]′

= (−1)i+1
i−1∑
k=0

aα,i,k
[ti+α−k(1 + t)i−α]2

×
[
(i+ α− k)ti+α−k−1(1 + t)i−α + (i− α)ti+α−k(1 + t)i−α−1

]
=

(−1)i+1

ti+1(1 + t)i+1

(
1 +

1

t

)α i−1∑
k=0

aα,i,k[i+ α− k + (2i− k)t]tk

=
(−1)i+1

ti+1(1 + t)i+1

(
1 +

1

t

)α
{
(i+ α)aα,i,0 + (i+ 1)aα,i,i−1t

i

+
i−1∑
k=1

[(i+ α− k)aα,i,k + (2i− k + 1)aα,i,k−1]t
k

}

=
(−1)i+1

ti+1(1 + t)i+1

(
1 +

1

t

)α i∑
k=0

aα,i+1,kt
k.

This shows that the formulas (2.2) and (2.3) are valid for all i ≥ 1.
The rest of the proof is straightforward. The proof of Lemma 2.1 is completed. �

3. An elementary proof of Theorem 1.1

Now we are in a position to provide an elementary proof of Theorem 1.1.
When x > y > 0, a direct differentiation yields

G′
x,y;λ(t) = λ(1− λ)

[
1

λ

(
x+ t

y + t

)λ

+
1

1− λ

(
y + t

x+ t

)1−λ]
= λ(1− λ)

[
1

λ

(
1 +

x− y

y + t

)λ

− 1

λ− 1

(
1 +

x− y

y + t

)λ−1]
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= λ(1− λ)

[
1

λ
hλ

(
y + t

x− y

)
− 1

λ− 1
hλ−1

(
y + t

x− y

)]
= λ(1− λ)Hλ

(
y + t

x− y

)
.

By the complete monotonicity of the function Hα obtained in Lemma 2.1, it is immediate
to see that the derivative G′

x,y;λ(t) is completely monotonic, and so the geometric mean

Gx,y;λ(t) is a Bernstein function for x > y > 0 and λ ∈ (0, 1). Considering the symmetry
property Gx,y;λ(t) = Gy,x;1−λ(t) reveals that, no matter y > x > 0 or x > y > 0, the
geometric mean Gx,y;λ(t) is a Bernstein function of t > −min{x, y}.
Remark 1. In [10, Corollary 7.9 (i)], it was given that, if f1 is a complete Bernstein function
on (0,∞) and f2 is a Stieltjes function, then the composition f1 ◦ f2 is a Stieltjes function.
For α ∈ (0, 1), since xα is a complete Bernstein function on (0,∞), see [10, Remark 7.8],
and 1 + 1

x is a Stieltjes function, see [10, Theorem 2.2 (ii) and Remark 2.4], the function
hα(t) is a Stieltjes function, and so a completely monotonic function on (0,∞).

In [10, Corollary 7.6 (iii)], it was stated that, if f1, f2 are complete Bernstein functions
on (0,∞), then the composition f1 ◦ f2 is also a complete Bernstein function on (0,∞).
Therefore, for α ∈ (−1, 0), since both of the functions f1(x) = x−α and f2(x) = x

1+x are

clearly complete Bernstein functions on (0,∞), the function hα(t) =
(

t
1+t

)−α
is a complete

Bernstein function on (0,∞).
In [8, Lemma 2.1], the above two conclusions were directly recovered by using the

Cauchy integral formula in the theory of complex functions.

Remark 2. This paper is abstracted from the preprint [6] and the thesis [11].
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