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A HYBRID ITERATIVE METHOD FOR A CLASS OF RICCATI
EQUATIONS IN THE CRITICAL CASE

Bo Yu!, Ning Dong*!, Feng-Hua Wen,? Xiao-Hong Chen?

In this paper, we devise a hybrid nonlinear block splitting double Newton
method to compute the minimal positive solution of a class of Riccati equations
arising from transport theory. The overall convergence of our algorithm is
established. Preliminary numerical experiments show the new presented method
1s very efficient for compute the desired solution of equations near or in the
critical case.
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1. Introduction

We consider the following nonsymmetric algebraic Riccati equation (NARE)
arising from the transport theory [1, 13]

R(X)=XCX — AX — XD+ B =0, (1)

where X is the desired solution matrix and A, B, C and D € R™*" are known

matrices of forms
A=A—eq", B=eel, C=qq¢", D=T—¢e’. (2)
In the above,

A = dia‘g((sh 527 teey 5”)7 F = diag(717727 "'7771)7

e=(1L1,... D)7, ¢=1(q1,q2, )7,
h
where 1 1 ¢
Oi=——— Vi= 7, &=
cwi(1 + o) cwi(1 — «) 2w;
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for i = 1,...,n with constants a € [0,1), ¢ € (0,1] ¢; > 0, w; > 0 satisfying
n
0<wy <..<w <1, Zcz-:l.
i=1

From the definition of the diagonal elements of A and I', we can easily see
0<61<0<...<dp, and 0< 71 <72 < oo < Yo (3)

The above Riccati equation (1) is derived by discretizing the Gauss-Legendre
quadrature formula to an integrodifferential equation related to the transport theory
[13] or the Nash game [1]. It also can be regarded as a more generalized form of
Chandrasekhar H-equation considered in [6, 12, 20]. The minimal positive solution
X of (1) is of great interest and its existence was proved by a lot of scholars (see,
e.g. [10, 12]). In recent years, various numerical methods have been developed to
compute the minimal positive solution (see, e.g. [2]-[11], [18]-[22]). By introducing
the M-matrix structure, Guo et.al. [10] first transformed (1) to a more generalized
Riccati matrix equation and gave the Newton method in matrix form

(A-x®oyxEl) L xk+D(p _cx®y=p—-x®ox® r=12.. (4
and the fixed-point method in matrix form
A XD 4 x DD — xWox® 4 A4y x® 4 xF Dy, + B, k=1,2,... (5

to find the minimal positive solution, where in (5) matrices Ay and Az, D; and Do
are some regular splitting of coefficient matrices A and D [17].

If the NARE (1) is far away from the critical case, the fixed-point method (5)
is more proper to compute the minimal positive solution since its computational
cost at each step is relatively cheaper than that of Newton’s method although both
of them are about O(n?®). While the NARE (1) comes close to the critical case,
Newton’s method (4) and its double variant (see, e.g. [7]) become a better choice
than the fixed-point iteration (5) as they bear a higher convergence speed than that
of fixed-point iteration.

As for the computational methods at each step in iterations (4) and (5),
the accurate algorithms such as Bartels-Stewart algorithm [5] are enough for small
scale problems. When the scale of (1) becomes larger, accurate methods lose their
effectiveness as their complexity at each iterative step is considerably huge as n
increase. By noting the special structure of NARE (1), Juang [12] observed the
solution X is of the form

X =To (wh)

ith
wi 1

Ti= () = 8+

, u=Xg+e, v=X'g+e, (6)
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where o is the Hadamard product. Lu [15] made use of these expression to refor-
mulate Ricaati equation to an equivalent form

u=wuo(Pv)+e, v=wvo(Qu)+e

with ” ¢
P.=(F) = . = (Qi) = J 7

and furthermore, devised the following simple iteration (SI) in vector form

u(k+1) = u(k) o) (P’U(k)) + e,
U(k"’_l) = v(k‘) le) (Qu(k)) + e.

The computational superiority of the SI over iterations (4) and (5) is that the
complexity at each iterative step can be reduced from O(n3) to O(n?), which is
fitter to solve (1) with larger scale. Recently, Bai, Gao and Lu [2] further designed
a class of nonlinear splitting iteration methods, including the nonlinear block Jacobi
(NBJ) iteration

ulb D) = B+ o (Py(R)) 4 ¢,

VD) — k4D o (Quik) e,

the nonlinear block Gauss-Seidel (NBGS) iteration

u(k+1) = u(k"’_l) le) (Pv(k)) —+ €, 8
kD) = (D) o (Quk+D) 1 ¢ (8)

ol
and the nonlinear block successive overrelaxation (NBSOR) iteration

w1 o (e — Pu®)) = se + (1 — s)u® o (e — Pv®)) (0 < s < 1),
v+t o (e — QuiF)) = te + (1 — t)v® o (e — QuiktD)) (0 <t < 1).

The most attractive feature of the nonlinear block splitting iterations is that they
can obtain faster convergence with less computational complexity compared with
that of SI iteration. Especially, the NBGS iteration stands out among all nonlinear
block splitting methods as it surpasses others both in CPU time and convergence
rate. For other iterative methods with O(n?) complexity, we refer to [3], [16] for
example.

It should be pointed out that although the developed nonlinear block splitting
iterations beat the fixed-point iterations for NARE (1) far away from the critical
case, they still show the slow sublinear convergence rate when NARE (1) is in the
critical case. One approach to tackle this difficulty is employing a shift technique
[3] to transfer the NARE (1) to another equation which is no longer in the critical
case but shares the same minimal positive solution with (1). In this way one can
expect the nonlinear block splitting iterations recover their original convergence
speed but they fail to solve the NARE near the critical case, since the solution in
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the shifted NARE is not the desired one in the original NARE. In this paper, we are
bound for another way to enhance the overall convergence of the nonlinear block
splitting iterations in or near the critical case by inosculating a double Newton step.
The proposed hybrid algorithm mainly depends on two computational switches.
One plays the role to detect whether the current nonlinear block splitting iteration
needs turning to Newton’s iteration and the other can automatically determine a
double Newton step is required or not. In another word, these two switches make
the algorithm self-adaptive whenever the NARE is in (near) or far away from the
critical case. Particularly, Numerical experiments in the last section show that
when NARE (1) is near or in the critical case, our algorithm will work very well for
computing the minimal positive solution of NARE (1).

The rest of this paper is organized as follows. We propose the hybrid nonlinear
block splitting Newton method and construct its overall convergence in Section 2.
Section 3 is devoted to describing a double Newton step with the aim to accelerate
the new-presented method in the critical case. We do some numerical experiments
in Section 4 to indicate the effectiveness of our proposed algorithm.

Notations. Let I, and I be the identity matrices of order r and n, respec-
tively. For a diagonal matrix D € R™*™ and a vector d € R", diag(D) represents
the vector whose elements are the diagonal entries of D and, diag(d) represents the
diagonal matrix whose diagonal entries are elements of d.

2. The hybrid nonlinear block splitting Newton method

In this section, we first give a concise Newton iterative scheme which is equiv-
alent to (4). Then we present the hybrid nonlinear block splitting Newton algorithm
to compute the minimal positive solution.

Let w! = (u®',vT). By using the vectors given in (6), it is not difficult to see
that the NARE (1) can be rewritten as

R(w) = [j]—[diagé”) diag?Qu)][Z]—[Z]—O. ©)

By using Newton’s method to the equation (9), one can obtain a iterative scheme
in vector form

I — diag(Pv®)) —diag(u®)P
—diag(v®™)Q I — diag(Qu®)

B [ 0 —diag(u®)P

w+D) ]

kD)

u®) e
o ] + [ e ] (1)

with matrices P and Q given in (7). As the iterative matrix sequence {X*)}2

—diag(v®™)Q 0

produced from (4) with the initial guess zero matrix is monotonically increasing
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and convergent to the minimal positive solution X* (see [10]), we know form (6)
that the sequence {w(k)}z‘;o generated by (10) is also monotonically increasing and
convergent to w*, the minimal positive solution of R(w) = 0.

It is worth noting that if computing the desired solution of NARE only by
Newton’s method, the computational cost at each iteration is relatively higher than
that of nonlinear block splitting methods. However when the current iteration
point is close enough to the desired solution, Newton’s method is more preferred
as result of its quadratic convergence. Therefore it is advisable to start with some
nonlinear block splitting iteration and then switch to the Newton step provided
that the residual error is down to a certain prescribed level. Since the numerical
performance of NBGS iteration (8) is the best among the family of nonlinear block
splitting iterations [2], we only describe NBGS-Newton algorithm as follows and
other hybrid methods can be derived in a similar manner.

Algorithm 2.1.
1. Set w® = 0.
2. For k=1,2,...kg,
compute w* D) via NBGS iteration (8);
3. For k = kg, ko + 1, ... until convergence,
solve (10) to obtain w*+b.

To show the overall convergence in step 3 of Algorithm 2.1, we first take a
second to recall the monotonic convergence of NBGS iteration [2] and Newton’s
iteration [16].

Lemma 1. Let the sequence {w*)}2°  be produced by NBGS iteration (8) with
w® = 0. Then for k =1,2, ..., it holds that
0 < w® < whth) < 4

and limy,_, w®) = w*,

Lemma 2. Let the sequence {w®}32 be produced by Newton’s iteration (10).
Then for k =1,2,..., it holds that
0 < w® < whth) < 4
and limy,_, w®) =,
We now establish the overall convergence of Algorithm 2.1.
Theorem 3. If {(w(k)}zozo is produced by NBGS iteration (8) with w® = 0 and
{w(k)}zozkoJrl is generated by Newton’s method (10) with w*0) as an initial point,
then
0<w® <w® < . <who) < kot

and limy_ o w*) = w*.
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Proof. Tt follows from Lemma 1 that the sequence {w(k)},’z(’zo satisfies

*

0< w® < w® < < ko) < p*,

Moreover for 1 < k < ko, by recalling the NBGS iteration scheme (8), NARE (9)
at w®) admits

R(w®) = [ I — diag(Pv®) 0 ] [ u®) ] - [ e

0 I — diag(Qu®) vk) e
| T diag(Pv®) 0 u®)
- 0 I — diag(Qu'®) v(k)
I diag(Pvk=1) 0 u®)
0 I — diag(Qu®) vk)
_(P(v®) — pk=1) (k)
_ (P(v % ))ou ] <0. (11)

Now the Newton’s method from the ko-th step yields
R’(w(ko))(w(ko+1) _ w(’m)) — _R(w(ko)) >0,
which is equivalent to

I - diag(Pv(kO)) —diag(u(kﬂ))P
plko+1) _ 4 (ko)

—diag(v*o))Q I — diag(Qu*0))

(ko+1) _ 4, (ko)
U u ] 0
On the other hand, it follows from [10] that the matrix

I — diag(Pv*) —diag(u*)P
—diag(v*)Q I — diag(Qu™)

is a nonsingular M-matrix or a singular irreducible M-matrix. Subsequently, the
matrix on left hand side of (12) must be a nonsingular M-matrix and all elements of
its inverse matrix are greater than or equal zero. Therefore, we have w01 > (ko)
Once such a fact holds true, we know from Lemma 2 that

w ko) < wkotl) <
and limg_,oo w®) = w*. ]

The above theorem shows that the iterative sequence {w(k)}zozl generated
by Algorithm 2.1 converges to the minimal positive solution of (9). But when
NARE (9) is in the critical case, Newton’s method will take on linear convergence
which results in more iterations in Algorithm 2.1. To accelerate the current Newton
iteration, we will give a double Newton step as stated in next section.
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3. Double Newton step for NARE in the critical case

When NARE (1) is in the critical case, i.e. the Frechet derivative R’ (w*) at w*
is singular, the convergence of Newton’s method become linear with a constant 1/2.
In this case, a double Newton step can be employed to speed up the convergence.
We first show an useful inequality referred as Banach lemma [14].

Lemma 4. If A and B are n X n matrices and B is an approrimate inverse of A
(i.e. ||I — BA|| < 1), then A and B are both nonsingular and

-1 1Bl

A7 = 7= = A
Theorem 5. Let w* be the minimal positive solution of R(w) = 0. Suppose that
R/ (w*) is singular. Let N = Ker(R'(w*)) and X = Im(R'(w*)) be the null space
and the range of R'(w*), respectively. Let Py and Py be the projection on the null
space N and the range X. Assume R" = N & M with & denoting the direct sum.
Let {w(k)},;";ko be generated by Newton’s method (10).

(i) If for k > ko, w®) —w* € N, then we have

WD) _ ot %(w(k) —w, (13)
R(w) = TR ). (14)

(i) Assume for k > 1
(R (w®)) 7] < exlfw® — w7 (15)

If for sufficiently small € > 0,
1P (w® —w*)|| < el[Par(w® —w?)]],

then
[[w® = 2(R (™) T R(w®) — w|] < ce (16)

with some constant ¢ independent of k and e.
Proof. (i) Let @) = w®) —w*. Note R'(w*)(@™®) = 0 as @*) € N, we have the
expansion
R@®)@®) = R(w)@®)+ R (w)@®, o)
2(R(w) + R (w)(@®) + %Rﬂ(w*)(w(m,w(k)»
= 2R(w™).
Then

o® D) = 5®) (R () 1R (w®) = Zp®), (17)

1
2
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that is to say the equality (13) holds true. On the other hand, by (17) we have the
expansion of R(w**+1) at w*

1
R(w(kJrl)) _ R/(w*)_’_R/(w*)(w(k+1))+§R//(w*)(w(k+1)7w(k+l))
= (R + R @®) + SR (w)@®, a))
= R,

which means the equality in (14) is true.
(ii) Let w® = w* 4+ Py (w™® — w*). There must be a constant ¢y > 0 such

that
lw® — @@ = ||Pr(w® —w®)|
< el[Pr(w® —w")|
< coe[w™® —w|]. (18)

Then we have

11— (R (™))" R (@W))
IR (™) 7H] IR (™) = R (™))
erflw® — w*|| 7 ez lw™® — ™|

C3€ (19)

ININ A

with ¢3 = cjcg. Therefore, it follows from Lemma 4 that R'(w®*)) is nonsingular
and

1
1 —c3e
cal|w® — w7t (20)

IN

(R (@™))~1] (R (™))~

IN

with some constant ¢4 > 0, where the second inequality is valid because of (15).
On the other hand, by (18) we can find positive constants c5 and c¢g such that

IR@®)]| = [|[R@®) - R(w")||
es|[w®) —w*|
cs(coe + 1)||w™ — w*|| (21)

and

[R(@™) = R(w™)]] o™ — w ™|

cecze|[w® — w*||. (22)

IAINA
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Therefore we have the following estimate for the factorization

IR/ @) R(@®) — (R () R(w®)|

< I /(121 )) — (R ( (k)))_l) (A(k))H
+H|(R'(w™)) " (R(a ) R(w™))]|

< I(R(@W)) M| - [|R (@ )( (w®)) Tt 1] - |[R(w®)]]
HIR @®) - [RE@P) - R(w®)|

< ce

with some ¢ > (coe + 1)escqcs + c1cac6, where the last inequality holds true because
of (15), (19), (20), (21) and (22).
At last by (18) and

[w® —2(R!(w®)) R (™) — w|
< [ —w®]|

Ho® —w* —2((R(w®) R (wW))]]
< [l —w®]|
+2/|(R' (@) "' R(&™) — (R (w™)) " R(wW)]],

(16) holds true readily. O

We know from Theorem 5 (i) that the convergence of Newton’s method will
degrade to linearity with a constant 1/2 when R’(w*) is singular. Fortunately in
such case, inequality (16) in Theorem 5 (ii) implies that a double Newton step can
make the current iteration point remarkable close to the desired solution, which
becomes the motivation for the acceleration of the Newton’s method by imposing
a double step. We describe the overall computational details in Algorithm 3.1 as
below.

Algorithm 3.1.
1. Choose parameters kg, €, n1 > 0 and 7y > 0.
2. Set w® =0, R(w®) = el 7y = [|R(wD)].
3. For k=0,1,2,..., do:
solve (8) to obtain w(*+1);
compute R(w®), rj = ||R(w™)|];
if r/ro < m or k > ko, goto step 4;
update current point w®),
4. Forp=Fk,k+1,..., do:
solve (10) to obtain w®*1);
compute R(wPV), r,1q = [|[R(wPTD)||;
if 711/70 < €, then stop and w* ~ w®*1);
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TABLE 4.1 Test Results for (o, c) = (le — 10,1 — (1le — 10)).

n | Method | NBGS | NEWTON | ALG.3.1
CPU 0.7344 0.1094 0.0781
64 IT 10000/0/0 | 0/19/0 | 273/10/0
RES 7.33e¢-09 | 1.99e-15 | 3.99-15
CPU 2.4688 0.3594 0.2969
128 IT 10000/0/0 | 0/19/0 | 273/10/0
RES 2.22¢-09 | 1.1le-15 | 1.1le-15
CPU 8.6563 3.5625 1.5156
256 IT 10000/0/0 | 0/19/0 | 273/10/0
RES 7.35¢-09 | 2.88e-15 | 6.21e-15
CPU 29.453 25.250 14.935
512 IT 10000/0/0 | 0/18/0 | 274/10/0
RES 7.36e-09 | 7.54e-15 | 3.68e-14

if ]T’;:l — 1 <y, then w®tD) = w® — 2(R/(wP))) IR (wP)

and r = ||R/(w*D)]]
if /79 < €, then stop and w* ~ w®+1),

Remark. The parameter kg is to set the maximal number of the NBGS iteration
while 71 and 72 are employed to give the error tolerance of the NBGS iteration and
the double Newton iteration, respectively.

4. Numerical examples

In this section, we test the effectiveness of the proposed Algorithm 3.1 for
NARE (1) with various dimension n. The constants ¢; and w; in NARE are given by
a numerical quadrature formula on the interval [0, 1], which is obtained by dividing
[0,1] into n/4 subintervals of equal length and applying Gauss-Legendre quadrature
with 4 nodes to each subinterval. We coded Algorithm 3.1 in MATLAB 7.1 with
ko = 500, n; = 107° and 7y = 107%. We compared the performances of Algorithm
3.1 with that of NBGS iteration and the Newton’s iteration for problems near or in
the critical case with n = 64,128,256, 512.

The obtained results are listed in Table 4.1-4.4 where the “n” column gives
the sizes of the problem, the “CPU” row denotes the CPU time used in seconds, the
“IT” row represents “the maximal NBGS iteration/ the maximal Newton iteration/
the maximal double Newton iteration”. The “RES” row reports the relative residual
error

RES = ||R(w™)][oo/[|R(w)]|sc,

where w®) is the obtained approximative solution.
We see from Table 4.1-4.3 that, for NARE (1) near the critical case, the NBGS
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TABLE 4.2 Test Results for (a,c) = (le — 13,1 — (le — 13)).

n | Method | NBGS | NEWTON | ALG.3.1
CPU 0.7188 0.0938 0.0938
64 IT 10000/0/0 | 0/23/0 | 273/16/0
RES 7.46e-09 | 22215 | 3.10e-15
CPU 2.4375 0.4219 0.4063
128 IT 10000/0/0 | 0/22/0 | 274/16/0
RES 7.48¢-09 | 7.10e-15 | 3.77e-15
CPU 8.640 3.4844 2.6404
256 IT 10000/0/0 | 0/22/0 | 274/15/0
RES 7.49e-09 | 7.99e-15 | 4.97e-14
CPU 32.109 28.765 18.421
512 IT 10000/0/0 | 0/22/0 | 274/15/0
RES 7.49¢-09 | 12le-14 | 5.0le-14

TABLE 4.3 Test Results for (a,c) = (le — 15,1 — (le — 15)).

n | Method | NBGS | NEWTON | ALG.3.1
CPU 0.7969 0.0938 0.0469
64 IT 10000/0/0 | 0/24/0 | 273/5/1
RES 7.46e-09 | 4.21e-15 | 4.21e-15
CPU 2.3906 0.4688 0.2188
128 IT 10000/0/0 | 0/24/0 | 273/5/1
RES 7.48¢-09 | 3.10e-15 | 4.66e-15
CPU 8.2656 3.5469 1.500
256 IT 10000/0/0 | 0/24/0 | 273/5/1
RES 7.49e-09 | 1.28e-14 | 7.77e-15
CPU 31.812 29.562 11.062
512 IT 10000/0/0 | 0/23/0 | 274/5/1
RES 7.49e-09 | 1.3le-14 | 9.10e-15
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TABLE 4.4 Test Results for (o, c) = (0,1).

n | Method | NBGS | NEWTON | ALG.3.1
CPU 0.7344 0.0938 0.0313
64 IT 10000/0/0 | 0/24/0 | 273/5/1
RES 7.46e-09 | 3.77e-15 | 1.77e-15
CPU 2.4219 0.4219 0.2188
128 IT 10000/0/0 | 0/24/0 | 273/5/1
RES 7.48¢-09 | 5.10e-15 | 2.66e-15
CPU 8.6563 3.5625 1.5156
256 IT 10000/0/0 | 0/23/0 | 273/5/1
RES 7.49e-09 | 1.37e-14 | 5.99e-15
CPU 31.718 29.818 10.968
512 IT 10000/0/0 | 0/23/0 | 274/5/1
RES 7.49e-09 | 1.28e-14 | 8.2le-15

iteration fail to attain the prescribed accuracy within 10000 iterations and the
proposed Algorithm 3.1 outperforms the Newton’s method in CPU time. Especially
for NARE (1) is very close to the critical case, numerical results in Table 4.3 indicate
Algorithm 3.1 beats other two algorithms both in CPU time and the relative residual
error. When NARE (1) is in the critical case, Table 4.4 also shows a similar result
to that of Table 4.3, which means the proposed Algorithm 3.1 is very efficient for
solving NARE (1) near or in the critical case.

5. Conclusion

We have presented a hybrid nonlinear block splitting double Newton method
to compute the minimal positive solution for a class of nonsymmetric algebraic
Riccati equations in the critical case. We also constructed the overall convergence
of the hybrid algorithm under mild conditions. Numerical experiments particu-
larly indicated that our algorithm is very effective for computing the solution of
nonsymmetric algebraic Riccati equations near or in the critical case.
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