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THE EXTRAGRADIENT METHOD WITH A TWO-STEP INERTIAL
TECHNIQUE FOR QUASIMONOTONE VARIATIONAL INEQUALITIES

by Ariana Pitea!, Luong Van LongZ®, Hoang Van Thang3 and Pham Van Nghia*

In this paper, based on extragradient method and the two-step inertial tech-
nique, we introduce a new iterative scheme for finding an element of the set of solutions
of a quasimonotone, Lipschitz continuous variational inequality problem in real Hilbert
spaces. Under suitable conditions, we present a weak convergence theorem of the se-
quence generated by the proposed algorithm.
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1. Introduction

The paper deals with two new numerical approaches for finding a solution of the
variational inequality problem (VIP) [I3] 14] in a real Hilbert space H.

Let C be a nonempty, closed, and convex subset in H and F': H — H be an operator.
Recall that VIP for the operator F' on C is stated as follows:

Find z* € C such that (Fz*,y —2*) >0 for all y € C. (1)
The solution set is denoted by S.
The dual variational inequality problem of is to find a point z* € C such that
(Fy,y—x*) >0 Yy e C. (2)

We denote the solution set of the dual variational inequality problem by Sp. It is
obvious that Sp is a closed, convex set (possibly empty). In the case when F is continuous
and C' is convex, we get

Sp CS.

If F is a pseudomonotone and continuous mapping, then S = Sp (see, Lemma 2.1 in
[10]). The inclusion S C Sp is false, if F' is a quasimonotone and continuous mapping (see
Example 4.2 in [47]).

Variational inequality theory is an important tool in economics, engineering mechan-
ics, mathematical programming, transportation and others (see, [II [, 15 23] 25]). One
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of the most interesting and important problems in the VIP theory is the study of efficient
iterative algorithms for finding approximate solutions and the convergence analysis of algo-
rithms. Several methods have been proposed to solve VIPs in finite and infinite dimensional
spaces, see e.g. [7, (8,9, 28, 45]. and the references therein. Among these iterative methods,
the simplest one for VIP is the following gradient projection method:

Vo € C,
Unt+1 = Po(v, — 7Fvy,),

where P denotes the metric projection of H onto the set C' and 7 is a positive real num-
ber. The main restriction of gradient projection methods is that the operators require to
be Lipschitz continuous and strongly monotone (or inverse strongly monotone). The extra-
gradient method which was introduced by Korpelevich [26] and Antipin [3] overcomes this
disadvantage by performing an additional projection at each iteration in the following way:

Vo € C7

un = Po(vn, — 7Fvy), (3)

Unt1 = Po(vn — TFuy),
where F: C — (' is monotone and L-Lipschitz continuous, 7 € (O,%). Recently, the
extragradient method has given conclusive results assuming monotone and the Lipschitz
continuous mappings (see, e.g., [11l 27, B4, B9 [42]). It is well known that to implement
the extragradient method, one needs to calculate two projections onto C' in each iteration.
Thus, if C' is a general closed and convex set, then the computation of projections is rather
expensive. Recently, we have some methods were introduced so that they can overcome
this drawback as follows the subgradient extragradient method [7], Tseng’s method [40],
the projection and contraction method [I§]. However, these methods require a mapping
F: H — H instead of F: C — C in the extragradient method. Therefore, in the case
the computation of projection onto feasible C' is easy to calculate, when we can use the
extragradient method instead of some recent methods. This makes us interested in the
extragradient method in this work.

One of the new directions in this field is to combine well-known algorithms with

the inertial technique for solving VIPs; the purpose of them is to improve the speed of
convergence rates (see, e.g., [2, [0, 12, 16, 22| 24] 35| 36], 37, B8] and the references therein).

Let us now discuss an inertial type algorithm. We know the problem of finding a zero
of a maximal monotone operator A on a real Hilbert space H can be expressed as follows:

find x € H such that 0 € A(x). (4)

One fundamental approach to solving this is the proximal method, which generates
the next iteration z,1 by solving the subproblem:

0 € MA(x) + (& — zp),

where x,, is the current iteration and A, is a regularization parameter (see [5, [33]).

In 2001, Attouch and Alvarez [2] applied an inertial technique to the algorithm above
to construct an inertial proximal method for solving the original problem . It works as
follows: given ,,_1,x, € H and two parameters 6,, € [0,1), A, > 0, find x,; € H such
that:

0e )\nA(zn-&-l) + Tp+1 — Tp — en(xn - :Cn—l);

which can be rewritten as:

Tn+1 = an (‘rn + gn(zn - zn—l))a
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where an is the resolvent of A with parameter )\,,. The inertia is induced by the term
0, (2, — x,—1) and can be viewed as a means to accelerate convergence (see e.g., [2] [3T]).

In recent years, the class of quasimonotone (or non-monotone) mappings has been
studied as a weaker alternative to the pseudomonotonicity assumption for solving the VIP
[19, 20, [43] [44], 46, 47]. However, these methods primarily employ the one-step inertial
technique [2, 1] in conjunction with extragradient method (3). Recently, in [32], the two-
step inertial technique was investigated, demonstrating that this approach may enhance
convergence more rapidly than the one-step inertial technique. In this paper, motivated and
inspired by the above problems, we introduce a modified extragradient method by applying
the technique of two-step inertial for solving a quasimonotone variational inequality in real
Hilbert spaces.

This paper is organized as follows: In Sect. 2, we recall some definitions and prelim-
inary results for further use. Sect. 3 deals with analyzing the convergence of the proposed
algorithm. Finally, in Sect. 4, conclusion is provided.

2. Preliminaries

Let H be a real Hilbert space and C' be a nonempty, closed, convex subset of H.
The weak convergence of {p,}°; to z is denoted by p, — = as n — oo, while the strong
convergence of {p,}°2 to x is written as p, — x as n — oco. For each u, v, w € H, and 0,
B € R we have
lu+ol* < [ull® + 2(v,u +v),
and
I(L+0)u — (0 — B)v — Bl =(1 +0)[ul|* = (0 = B)|[v]]* - Bllw]?
+(1+0)(0 — B)lu—v|?
+B(L+0)|lu—wl|* = B0 = B)|v—w]?*. (5)
For all x € H, there exists a unique nearest point in C, denoted by Pcx, such that
|z — Pex|| < |lz —yl, forallyeC,

where P¢ is the metric projection of H onto C'. We know that Po is nonexpansive.

Lemma 2.1 ([I7]). Let C be a closed convex subset in a real Hilbert space H and x € H.
Then we have the following inequalities:

(i) Given z € C, we have z = Pox < (x — 2,2 —y) >0, for ally € C;

(i) |Pox — Poyl|* < (Pox — Poy,x —y) for ally € H;

(iii) [|[Pex —y|I* < |z =yl = ]z — Pex|]?, for ally € C.

Definition 2.1 ([41]). An operator F': H — H is said to be:
(1) L-Lipschitz continuous with L > 0 if
|Fz — Fy|| < L||lz —y|, forallz,y € H.

In particular, when L =1 then the operator F is called nonexpansive.
(ii) monotone if

(Fx — Fy,x —y) >0, forallxz,y € H.
(7i1) pseudo-monotone in the sense of Karamardian [21] if
(Fz,y—z) > 0= (Fy,y —x) >0, forallz,yec H.
(iv) quasimonotone, if

(Fe,y—z) >0= (Fy,y —x) >0, forallz,y € H.
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(v) d-strongly pseudo-monotone if there exists a constant 6 > 0 such that
(Fx,x —y) > 0= (Fy,y —x) > S|z —y||*, forallz,yc H.

(vi) sequentially weakly continuous if, for each sequence {p,} in H, the fact that {p,}
converges weakly to a point x € H implies that {Fp,} converges weakly to Fx.

It is easy to see that every monotone operator is pseudo-monotone but the converse is
not true. The following lemma provides some sufficient conditions for nonemptiness of Sp.

Lemma 2.2 ([47]). Suppose that at least one of the following conditions holds true:

(1) F is pseudomonotone on C and S # 0,
(2) F is the gradient of G, where G is a differential quasiconvex function on an open set
K,C C K and attains its global minimum on C,
(3) F is quasi-monotone on C, F #0 on C and C is bounded,
(4) F is quasi-monotone on C, F # 0 on C and there exists a positive number r such that,
for everyv € C with ||v]| > r, there existsy € C such that ||y|| < r and (Fv,y—v) <0,
(5) F is quasimonotone on C and Sy # (),
(6) F is quasi-monotone on C, intC is nonempty and there exists v* € S such that
Fv* #0.
Then, Sp is nonempty.
Lemma 2.3. [[29]] Let C be a nonempty subset of H and let {x,,} be a sequence in H such
that the following two conditions hold:
(a) for each x € C, limy 00 ||xn — x| exists;
(b) every sequential weak cluster point of {x,} belongs to C.
Then {x,} converges weakly to a point in C.

Lemma 2.4 ([30]). Let {\},{pn} and {g,} be three sequences of nonnegative numbers sat-
1sfying

Ant1 < (14 gn)An + Dy for alln > 1,
where Y 0 pn < +00 and Y-, qn < +00. Then lim,,_, oo A, exists.

3. The Main Results

In this paper, we introduce a new modified extragradient method for solving the
quasimonotone VIP in real Hilbert spaces. In order to prove the convergence of the proposed
algorithm, we assume the following conditions:

Condition 3.1. Sp # 0.

Condition 3.2. The mapping F: C — C is L-Lipschitz continuous on H. However, the
size of L is not necessary to be known.

Condition 3.3. The mapping F is sequentially weakly continuous on C, i.e., for each
sequence {x,} C C : {x,} converges weakly to x* implies {Fx,} converges weakly to Fz*.

Condition 3.4. The mapping F is quasimonotone on H.

Now, we introduce our algorithm:

1
Algorithm 3.1. Given 7 > 0, 6 € [0,1], 8 € [-1,0], pu € <0,3). Let y_1,y0,y1 €

H be arbitrary and {a,} and {B,} be two nonnegative real numbers sequences such that
Yoo iy < 400 and Y07 By < 400.
Iterative Steps: Given the current iterate y,, calculate yn41 as follows:
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Step 1. Compute

tn =Yn + 0Wn — Yn—1) + BYn—1 — Yn—2),
Uy = Pc(tn — 7'nFifn)7
If t,, = u, or Ft, =0 then stop and t,, is a solution of . Otherwise
Step 2. Compute
Yn+1 = PC(tn - TnFun);

update

. th _unH } .
min 4§ pr——————, (1 + an )7 + Bn if Fty, # Fug,
s = [ =

(1+ an)m + B otherwise.
Set n:=n+1 and go to Step 1.

The following lemmas will guide the convergence analysis.

Lemma 3.1. Let {7,,} be a sequence generated by @ Then

lim 7, =7 and 7 > min{n,ﬁ}.
n— oo L

Moreover, we also obtain

I

=

Proof. By the definition of {7,,} we get 7, < (1 + a,)7n + Bn, for all n. Using Lemma

then lim,, o, 75, exists. Assume lim,,_,~ 7, = 7. Using the definition of {7, } again, it is easy
to see that 7,, > min {7’1, %} Thus 7 > min {7'1, %} Moreover, it is obvious that

|1 Ety, — Fuy| < It — unl|-

|t = Fun|l < == |tn = unl,
Tn+1
in both of these cases, F't,, # Fu, or Ft, = Fu,. The proof is completed. O

Lemma 3.2. Assume that Conditions hold. Let {t,} be a sequence generated
by Algorithm . If there exists a subsequence {t,,} convergent weakly to z € H and
limy oo ||tn, — Un, || =0, then z € Sp or Fz=0.

Proof. First, we see that {t,, } — 2z and limy_, ||[tn, — tn,|| = 0 imply that w,, — z and
since u,, € C we get z € C.

Now, we divide the proof into two cases.

Case 1: Iflimsup,,_, o [|[Ftn, || = 0, then we have limy_, oo || Ftip,, || = Uminfy_yo0 || Ftn, || =
0. Since u,, converges weakly to z € C' and F' satisfies Condition we get

0 < ||Fz|| < liminf || Fuy,| = 0.
k—o0
This implies that Fz = 0.
Case 2: Iflimsup,_, o || Ftn, || > 0. Without loss of generality, we take limy_, o0 || Ftp, || =
M

M > 0. It then follows that there exists K € N such that || Fuy, | > 5 for all k > K. Since
Un,, = Po(tn, — Tny, Ftn,, ), we have

(tn, — Tnp Ftn, — Un,,  — U, ) <0,for all z € C,

or, equivalently,

1
——(tny — Unyy & — Upy, ) < (Ftp,, @ — Uy, ), forall z e C.
Trg
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Consequently, we have

1
—(tny = Uny, & — Uny, ) + (Flny s Un, —tn,) < (Ftp,,z —ty,), forallzeC. (7)

Th
Since {ty, } is weakly convergent, {t,, } is bounded. Then, by the Lipschitz continuity

of F, {Ft,,}is bounded. As ||t,, —un, || = 0, {un, } is also bounded and 7, > min {71, %}
Passing to the limit as k — co, we get

likm inf(Ft,,,x —t,,) >0 forall z € C. (8)
— 00
Moreover, we have
(Ftn,, @ —Up,) = (Fup, — Ftn,,x—tn,)+ (Ftn,, T —tn,)
+<Funk7tnk - unk> (9)
Since limy oo ||tn, — tn, || = 0 and F is L-Lipschitz continuous on H, we get

which, together with and @, implies that

lim inf(Fu,, ,x — uy,, ) > 0. (10)

k—oo
If im supy,_, oo (F'tin,,, @ — Up,, ) > 0, then there exists a subsequence {unkj} such that
limj%m(Funkj T — unkj> > 0. Consequently, there exists jo € N such that

(Fty, ,x — tp,,) >0, for all j > jo.

Using the quasimonotonicity of F, one gets (Fz,z — unkj> > 0, hence, tending j — oo, we
conclude z € Sp.
If lim supy,_, oo (F'tn,,, © — Uy, ) = 0, inequality implies that

lim (Fuy,, s — uy,,) =0.
k— o0

1
Let e := |[(Fun,, & — tn, )| + il Then we obtain

(F'tp,,, © — Up, ) + € >0, forall k> 1. (11)

Furthermore, for each k > 1, since {uy, } C C, we can suppose Fu,, # 0 (otherwise,

Un, 1s a solution) and, setting

Fuy,

I = P, 2

we have (F'up, , qn,) = 1 for each k > 1. Now, we can deduce from that, for each k > 1,
(Ftn,, s T + €xqn, — Un,,) > 0.
Since F' is quasimonotone on H, we get

(F(z + €xqny, ), T + €6qn, — Un,) > 0. (12)
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Now, for all £ > 1, using we get

<F£E,.’E—|— €kqn, — unk> = <F(E - F((E + qunk)v‘r"’_ €kqn, — unk> + <F(.’E+€kan),$+ €kqn;, — unk>
> <F$ - F($+6kQHk)7x+6k)q’ﬂk _unk>

> —HFZ‘ - F(Z‘ + qumg)”Hx + €xGn;, — Un, ||
> —erLl|gn, |1z + €xgn,, — un, ||
1
- el _
€k ||Funk|| Hx"i_elchk unkH
2
> *ekLM”‘T + €xny, — Uny||- (13)

In (13), letting k¥ — oo and using the fact that limy_. € = 0 and the boundedness
of {”‘T + €xdny, — Un, ”}a we get

(Fx,xz—z) >0, forall zeC.
This implies that z € Sp.

Next, we present the convergence of Algorithm

Theorem 3.1. Assume that Conditions hold and Fxz # 0, for all x € C. Then the
sequence {y,} generated by Algorithm converges weakly to an element z € S provided that

33-5 202 +50 — 1
the parameters 6 and 3 satisfy: 0 < 6 < fT and max {8—54—8’ 79—1} <p<o.

Proof. The proof is divided into several steps as follows:
Step 1. We first prove that

Tn

* * 1 *
lgnss =27 <t = "2 = 5 (1= =" Y lynss = tal?, forall o* € Sp. (14)

n+1

Indeed, taking * € Sp C S C C, we have
[Yns1 — 2*||* = || Po(tn — TnFun) — Pox*||?
< (yn+1 — ", tn — T Fu, —x*)
1 * (|2 1 * (|2 1 2
= §||yn+1 —z"||7 + §||tn = TnFuy — %7 — §||yn+1 —tn + TnFuy||

1 1 1
= §||yn+1 —z*|?+ §||tn —z*|? + 57721“Fun||2 — (tn — 2", T Fup)

1

1
- §Hyn+1 — tn]? — §Ts||FUnH2 — (Yns1 — tn, TnFuy)

= S lmes = 22 + Sltw = 21 = Slmss = tall? = {nsr = 2°, 70 ).
This implies that
[Ynr1 =21 < lltn = 212 = llynt1 — tall® = 2(yn+1 — 2, 7 Fug). (15)
Since z* € Sp, we have (Fx,x — 2*) > 0 for all z € C. Taking x := u, € C, we get
(Fgn, 2" — u,) <0.
Thus we have

<Fum='17* - yn+1> :<Fun,z* - un> + <Fun,un - yn+1> < <Fun,un - yn+1>- (16)
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From and , we obtain

Yn+1 — x*HQ <|ltn — x*HQ —lyn+1 — tn||2 + 270 (Fthy, gy — Yt 1)

12 = llynsr = unll* = llun = tall® = 2(ynr1 — i, un — tn)

+ 27—n<Funa Up — yn+1>

=||tn —

= lltn = 217 = llyn+1 — unll® = llun — ta®

+ 2<tn — TnF Uy — Un, Yny1 — un> (17)
Since u,, = Pe(t, — 7, Ft,) and y,41 € C, we have

2<tn — TnFu, — Un, Yn+1 — un> = 2<tn — T F't, — Un, Yn+1 — un) + 27—n<Ftn - Fun7yn+1 - un>
< 27—n<Ftn - Funayn-‘rl - Un>
<27 || Ftn — Fun||[|yn+1 — unl|

.
<2pu - ltn — wnllllyn+1 — unll
Tn+1
T) T)
< == ltn = unl® + p =" [ttn = yn1a|*. (18)
Tn+1 Tn+1

Substituting into , we obtain

* * T T
lgmsr = 2117 < it = 212 = (1= =Yl = tall? = (1= == ) fgns1 =
Tn+1 Tn+1

i
= Jltn = @2 = (1= 1= ) (m = tall® + gt = wall?)
Tn+1

Tn

N 1
<t = 2" 12 = 5 (1= 1= g = tal® (19)

n+1

n 2, .
T ) =1—pu> 3’ it follows that there exists

1
From p € (07 ) and lim,, s (1 —u
3 Tn+1

N7 € N such that

" 2
1—p T > —, foralln > Ny.
Tn+1 3
It implies, from (19)), that
* * 1
Y1 —2*|* <t —2*|* — 3lyns1 - tnll*, for all n > Ny. (20)
Step 2.
lim [|y,—1 — yn—2| = 0.
n—oo

First, using the definition of ¢,, and using we get
[t = 2*1* = llyn + 0(yn — Yn-1) + BYn—1 = Yn-2) — z*?
=1+ 0)(yn — ") = (0 = B)(Yn—1 — ") = Blyn—2 — ")
= (14 0)lyn — "> = (0 = A)llyn-1 — 2*|* = Bllyn—2 — 2"|*
+ (1 +0)(O = B)llyn — yn—1l* + BQ+ 0)lyn — yn—2l® = BO = B)llyn—1 — yn—2|?
< @+ O)llyn — 2*1* = (0 = B)llyn—1 — 2"II* = Bllyn—2 — 2*|*
+ (1 +0)(0 = B)lyn — yn—1l* = B0 = B)llyn—1 — yn—2]*. (21)
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and

||yn+1 - tn||2 = Hyn-&-l — Yn + Q(yn - yn—l) - 6(yn—1 - yn—2)||2

= yns1 = Unll® = 20(Uns1 = Yns Un — Yn-1) + llyn — yn-1
= 28(Ynt1 = YnsYn—-1 — Yn—2) +208Un — Yn—1,Yn—1 — Yn—2) + 52||yn—1 - yn—2||2'

(22)
On the other hand, it is easy to see the following inequalities
~20(a,b) > —26|a|[|b]] > ~0lla]|* - 6l|b]|* (6 > 0)
and
28(a,b) > 2B|al[[b]] > Bllal® + BBl (B < 0).
Using the above inequalities we deduce
=20(Yn+1=Yn, Yo~ Yn—1) = =20/ynt1 = Yalllyn —yn-1ll = =0lyns1 = ynll* = Ollyn — yn—all?,

_2B<yn+1_yn7ynfl_yn72> > 26||yn+1_yn||||yn71_yn72|| > ﬁ”ynJrl_yn||2+ﬁ||yn71_yn72”2a
and
29ﬁ<yn_ynflaynfl_yn72> > 20ﬁ”yn_yn71”||yn71_yn72|| > 05”yn_yn71||2+95||yn71_yn72||2'

Substituting the three inequalities into (22)), we obtain

[Ynt1 = tall> > (1 =0+ B)yns+1 — yull* + (6% — 0+ 08)lyn — yn|
+ (8 + 08 + B)llyn-1 — yn—2|l*. (23)

Again, substituting and into we get

Iyt — @12 < (14 0)lyn — 2" = (0 — B)lyn—r — 2" I* = Bllg—s — 2|
+ (14 60)(0 = B)llya — g1l? = BO = B)llg—1 — yosl?

1
(1 -0 + B)HynJrl - ynH2 - 5(92 -0 + eﬂ)”yn - yn71||2

(B2 + 08+ B)|yn-1 — yn—2|*.

1
3
1
3

This implies that

* * 1
lyn1 = 2" I* = Ollyn — 2™ I” = Bllynr =27 + 3(1 = 0+ B)llyns1 = yul® < llyn — "I

* * 1
= Ollyn—1 = 2" |* = Bllyn—2 — " [* + 5 (1 = 6.+ B)llyns1 — yl®

~(0-0+8)+ 3070409~ L+ 00 =5 ) Iy — v

- (;(62 + 08+ B) + B(6 6)) lym—1 = 2l
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It is, equivalently,

* * * 1
lyn1 = 2" I* = Ollyn — 2" 1% = Bllyn—r — (" + (1 = 0+ B)llynsr — wnl®

+ (;(1 —0+B)+ %(02 —0+68)—(1+6)(0 ﬂ))|yn — 1 ||?

< M — 12— Bl — "1 — Bl — "I+ 2 (10 )l —
+(3U-048)+ 50 = 6+09) = (146)0 = 5) ) lsn-s ~ sn-al?
- <§(1_e+6>+;(92—e+95)—(1+9)<e—3)
#3004 054 )+ 50~ 5) ) ln-s el (24)
Let
T t= lyn a2~ 1= =Bl 2= %4+ (=0 8) =11+ C 1=

where

O i= S(1= 04 6)+ 5(0% ~ 0468) — (1+6)(0 - ).

Let

C% = 21— 0+6) + (0% —0+08) — (14 0)(0— §) + (5 +05 +6) + B0 — ).
Using 7 we get

Fn-i—l - Fn < _CZHyn-i-l - ynH27 for all n.

Next, we show that

lim T',, exists
n—oo

and
(25)

lim ||yn—1 — yn—2f = 0.
n—oo

V33 -5
Note that we need the assumption 0 < 0 < 1 so that 2602 + 50 — 1 < 0. Now,

207 + 50 — 1
we use max 813 70 — 1, < B <0 to prove that C; > 0 and Cy > 0. Indeed, we

have
1 1 o
Cr=2(1=0+8)+ (0% —0+08) — (1+6)(0 )
1 5 4. 2. 4
= - _Z04+28—26%4 29p.
3 3 + 36 3 + 3 g
202 + 50 — 1
It is easy to see that C' > 0 is equivalent to 8 > ZL—(;T By the assumption
) B 2 _
20 +50 — 1 20°+50 -1 Hence, C! > 0.

- ded
8> R0+ 38 , we deduce § > T
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Next, we have

€2 = L(1 =04 8) + S8~ 0+08) — (L +6)(6— B) + L(8° + 08+ 5) + 56— B)

3
1 5, 5. 2 8
= — S0+ -pB-Z0+-03—p
5 30Tl gt gtr—s
1 5, 5. 2 8
>_ S04 -B—Z602+ -6 by — 3% >
23— 30+ 38387 +506+5(by — 5" 25)
1 5, 8. 2 8
= — S0+ -B— 6%+ 05
5 30Tl 30 T30

202 + 560 — 1

80 + 8
Now, we show that I',, > 0. Indeed, we have

So C? > 0, by our assumption 3 >

* * * 1
T =llgn = "II* = Ollyn—1 = 2"|I* = Bllyn—2 = 2" [” + 3(1 = 0+ B)llyn = yn-1l* + Clyn—1 = g2l

. wa 1
> lyn = 21 = Ollyn—1 — 2*[I° + (1 = 0 + B)llyn — yn1|?

3
* * 1
> lyn — ||2 —20(lyn, — H2 = 20|y, — yn—1||2 + g(l =0+ B)lyn — yn—1H2
N 1
= (1—20)[lyn — =*[* + 31 =70+ B)llyn — yn—1?. (26)
202 + 50 — 1
By assumption 8 > max SZT’ 70 — 1}, we obtain § > 76 — 1. Combining
this with , we get '), > 0, for all n.
Thi1 — Ty < —C2||yn,1 — yn,QH2 <0, for all n, (27)

Therefore, the sequence {T',,} is below bounded and nonincreasing, hence lim,,_, o, T';,
exists. Using this and we get
lim {|y—1 — Yn—2| = 0. (28)

n—oo

Step 3.

lim |y, — 2*||? exists for all 2* € Sp.
n—oo

Indeed, combining , , lim,,_, o I';, exists. Therefore, the sequence {y,} is
bounded, and from it is easy to see that

Jim lyn—2 —yal = 0.
Let
an = |yn — 2> = Ollyn—1 — 2" = Bllyn—2 — ||,
bn = ||Yyn—1 — yn||2 +2(Un-1=Yn,Yn — °) = ||Yn-1 — I*Hz —lyn — ‘T*sz
and
n = |[Yn—2 — yn||2 +2(Yn—2 = Yn,Yn — *) = ||Yn—2 — 1:*||2 —llyn — x*HQ
We have
1 =0 —8)|yn — z*||* = an + b, + Bey. (29)
Moreover, since lim,,_, o I';, exists and lim, o0 [|[yn—1 — Yn—2|| = 0 we deduce
lim a, exists. (30)
n—oo
Since {y,} is bounded, lim, oo ||yn—1 — Yn—2|| = 0 and lim,, o0 ||y — Yn—2|| = 0 we
obtain
lim b, =0 and lim ¢, =0. (31)

n—o0 n—0o0
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Combining , and 7 we get

lim |y, — 2*||? exists for all 2* € Sp.

n—oo
Step 4.
lim ||lu, —t,] = 0.
n—oo
Indeed, we have
[tn = ynll < Ollyn — yn—1ll + Bllyn—1 — Yn—2|| — 0 as n — oo. (32)
Using and limy, 00 ||Yn+1 — ynll = 0, we get
[¥n+1 = tall < l[Ynt1 = Ynll + lyn — tul| = 0 as n — oo (33)

On the other hand by 7 we have

1 T,
5 (1= 1= Yt = tall? <Jtn =212 = lynss 2”2
n

+1
=(ltn =" = llyns1 = 2" D (1tn — 27| + lyns1 — 2"[])
<M ||Yn41 — ty||, for some M > 0. (34)
Combining and we deduce
lim |, —t,] = 0. (35)
n—oo

Step 5. The sequence {y,} converges weakly to an element in Sp Now, since the sequence
{yn} is bounded, we choose a subsequence {y,,} of {y,} such that y,, — z*. By ,
we have t,, — z*. From and Lemma we get z* € Sp C S. Therefore, we proved
that, for all * € Sp C S, lim, 0 ||yn — 2*|| exists and each sequential weak cluster point
of the sequence {y,} is in Sp C S. By Lemma the sequence {y,} converges weakly to
an element of Sp C S. This completes the proof.

O

4. Conclusions

In this paper, we present a new version of the extragradient algorithm for solving
the variational inequality problem in Hilbert spaces. We introduce new strategies for the
inertial parameter and step size. Weak convergence is established under the assumptions of
quasimonotonicity and Lipschitz continuity of the given mapping.
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