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HOMOTOPY PERTURBATION METHOD FOR SOLVING
GOVERNING EQUATION OF NONLINEAR FREE
VIBRATION OF SYSTEMS WITH SERIAL LINEAR AND
NONLINEAR STIFFNESS ON A FRICTIONLESS CONTACT
SURFACE

Saeed DANAEE BARFOROUSHIY, Mostafa RAHIMI?, Siavash DANAEE®

In this paper we take care of free vibration of a nonlinear system having
combined linear and nonlinear springs in series. The conservative oscillation system
is formulated as a nonlinear ordinary differential equation having linear and
nonlinear stiffness components. Homotopy perturbation method (HPM) is used for
solving governing equation of nonlinear free vibration of systems with serial linear
and nonlinear stiffness. HPM deforms a difficult problem into a simple problem
which can be easily solved. Result of this approach will be compared with numerical
solution to see the validity and precision of the approach.
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1. Introduction

Many physical phenomena are modeled by nonlinear deferential equations
in order to have more opportunities to handle the real items in our real world. As
an instance, vibration of mechanical systems associated with nonlinear properties
is in this type. So, scientists tried to solve the problem and find some solutions
which at last a number of approaches for solving nonlinear equations is emerged
for the range of completely analytical to completely numerical ones. There have
been many approaches for solving nonlinear oscillation systems, as well as the
KBM method [1-4], the multiple scales method [1,2,3,5], which are applicable to
nonlinear oscillation systems even for quite large amplitudes of oscillation.
Recently, the weighted linearization method [6], the modified Lindstedt-Poincare
method [7] and power-series approach [8] were proposed to solve inexact periods
with large amplitude of oscillation.

Telli and Kompaz [9] tried to solve the motion of a mechanical system
coupled with linear and nonlinear properties using analytical and numerical
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techniques. It dealt with vibration of a Conservative oscillation system with
attached mass grounded by linear and nonlinear springs. The relation of the linear
and nonlinear springs in series has been derived with cubic nonlinear
characteristics in the equations of motion [9].

Juan Pena Miralles and others [10] had a study on the determination of
periodic solutions of nonlinear oscillators in addition to on the qualitative of
analysis of their stability. They improved an algorithm, based on the Galerkin
method, using the fast fourier transform (FTT), to calculate the periodic solutions
of governing equation.

Wu, Sun and Lim [11] applied an analytical approximation technique for
large amplitude oscillators of a category of conservative single degree-of-freedom
systems with unusual nonlinearities. The method incorporates with main features
of both Newton’s method and the harmonic balance method.

Recently Farzaneh and Tootoonchi [12] developed a modified variational
approach called Global Error Minimization (GEM) method for obtaining an
approximate closed-form analytical solution for nonlinear oscillator differential
equations. This method converts the nonlinear differential equation to an
equivalent minimization problem.

In order to achieve correct approximate analytical solution for the system
with combined linear and nonlinear stiffness, this paper presents Homotopy
perturbation method. HPM is the most useful ones for solving nonlinear equation.
Developing the perturbation method for different usage is very difficult because
this method has some restrictions and based on the existence of a small parameter.
Therefore, many different new methods have recently been introduced to
eliminate the small parameters. One of the semi-exact methods is HPM. The HPM
is one of the familiar methods to solve nonlinear equations that are established in
1999 by He [13]. The references therein to handle a wide variety of scientific and
engineering applications: linear and nonlinear, and homogeneous and
inhomogeneous as well. It was shown by many authors that this method provides
improvements over existing numerical methods [14].

2. Governing equation of motion

Take into account free vibration of a conservative, single-degree-of-
freedom system with a mass attached to linear and nonlinear springs in series.
This is shown in Fig.1. The motion is governed by a nonlinear differential
equation [9] as
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Fig.1. Nonlinear free vibration of a system of mass with serial linear and nonlinear stiffness on a
frictionless contact surface [9].
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with the initial conditions
vO)=A =0 (6)

In which ¢, g, v, w,, m and & are perturbation parameter (not restricted to a

small parameter), coefficient of nonlinear spring force, deflection of nonlinear
spring, natural frequency, mass and the ratio of linear portion k, of the nonlinear

spring constant to that of linear spring constant k, , respectively.

The deflection of linear spring y,(t) and the displacement of attached

mass Y, (t) can be stand for by the deflection of nonlinear spring V in simple
relationships [9] as

y,(t) = &v(t) + v @)f (7)
and
Y, (1) =v()+ v (1) ®)

Introducing a new independent temporary variable, 7 =wt, Egs (1) and
(6) become
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Wz[(1+3521/2)1'/'+66‘Zv1)2]+wezv+f,we2v3 =0 9)
and
v(0)=0,v(0)=0 (10)

where a dot denotes differentiation with respect to z. The deflection of
nonlinear spring v is a periodic function of z of period 27 .

3. Homotopy perturbation method

The homotopy perturbation method is a combination of the classical
perturbation technique and homotopy technique. To explain the basic idea of the
HPM for solving nonlinear differential equations we consider the following
nonlinear differential equation:

Au)-f(r)=0,reQ (11)
Subject to boundary condition
ou
B(u—)=0,rel’ 12
( 8n) € (12)

where A is a general differential operator, B a boundary operator, f. a
known analytical function, I" is the boundary of domain Q and Z_u denotes

differential along the normal drawn outwards from Q. The operator A can,
generally speaking, be divided into two parts: a linear part L and a nonlinear part
N . Therefore Eq. (11) can be rewritten as follows:

L(u)+N(u)-f(r)=0 (13)

In case that the nonlinear Eq. (11) has no “small parameter”, we can
construct the following homotopy:

H(v, p) = L(v) - L(u,)

+pL(uy) + p(N() - f(r))=0 (14)
where
v(r, p):Qx[01] >R )

In Eq. (7), pe[01] is an embedding parameter and ug is the first

approximation that satisfies the boundary conditions. We can assume that the
solution of Eq. (4) can be written as a power series in p, as following:
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V=Vt P+ Py, e (16)

And the best approximation for solution is:
u=lim, _,v=vy+v,+v,+... (17)

When, Eq. (4) correspond to Eq. (1) and Eq. (7) becomes the approximate
solution of Eq.(1). Some fascinating results have been achieved using this method.
Convergence and stability of this method is shown in reference [15]. The
combination of the perturbation method and the homotopy method is called the
homotopy perturbation method (HPM), which has eliminated the limitations of
the traditional perturbation methods. In contrast, this technique can have full
benefit of the usual perturbation techniques. The series (17) is convergent for
most cases.

However the convergent rate date on nonlinear operator A(u) , the
following opinions are recommended by He [16]:

(1) The second derivative of N(u) with respect to u must be small

because the parameter may be relatively large, i.e., p —>1
(2) The norm of L‘lz—\N/ must be smaller than one so that the series

converges.

4. Method of solution
In this study, the governing equation is in the form of:

2 2
1+ 352v2)(;t—:+6gz V(‘Z—l’j +w, v +aw, v =0 (18)

With the initial condition of
v(0) = A,z—r(O) =0 (19)

Substituting Eg. (6) into Eqg. (4) and rearranging based on powers of p-
terms, we have:

d 2
p’ = w? {W vo(r)} +W, v, () =0 (20)
The initial condition is defined as:

v,(0)=0.5,v,(0)=0 (21)
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In the same way we have:

2 2
p1 3wz V02 (r){d—2 12 (7)} + Wezvo2 (r)+ 6w ez Vo (z’)[di 12 (1)}
dr T
(22)
23 2| d?
+eWe“vo© (7)) + W —Zvl(z') =0
dr
The initial condition is defined as
1,(0)=0,v,(0)=0 (23)

Solving the above equations (Egs. (10) - (17)) and when P = 1, the result
may be written in the type:

1 W, 7
v(r)== cos( j +
2 w

W, {(9zw— w) cos( ervr} + (—9zw + w) cos(gv\:/\:r} +123in(wvevrj(zwer - wer)} (24)

256w

5. Results and discussion

We demonstrate accuracy and efficiency of HPM by applying the method
to governing equation and comparing the HPM solution with the numerical
solution. The parameter ¢ is linearly dependant on the coefficient of nonlinear
force S as given in Eq. (2). The latter can be positive or negative depending on

whether the nonlinear spring has hard or soft-spring properties. In Fig.2 we have
the diagram of the deflection of nonlinear spring for small parameters and then in
Fig.3 it is compared with the numerical solution. As we see in this diagram, HPM
solution has a good precision for small parameters. In table 1, we extracted the
error of HPM method in comparison with numerical solution for small
parameters. In accordance with the HPM results in Table 1, one can see that the
approximate solutions by HPM are quite closed to their numerical solution for
small parameters.
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Fig. 2. Deflection of nonlinear spring V(t) for m=1, A=0.5, ¢=05and £ =0.1
(k, =50, k, =5) with HPM solution
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Fig. 3. Comparison of the deflection of nonlinear spring V(t) for m=1, A=0.5, £ =0.5 and
& =0.1(k, =50, k, =5) for HPM and numerical solution
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Tablel
Error percentage of HPM method for m=1, A=0.5, ¢ =0.5and £ =0.1 (k, =50, k, =5)
time VHPM V numerical (VHPM - Vnumerical)/ Vnumerical

0 0.5 0.5 0

0.5 0.4245562811 0.4247466930 0.0004482950
1 0.2214058720 0.2219909820 0.0026357380
15 -0.0481198533 -0.0470439154 0.0228709260
2 -0.3040235756 -0.3020612840 0.0064963360
2.5 -0.4700676214 -0.4667343800 0.0071416240
3 -0.4953572825 -0.4910917550 0.0086858060
35 -0.3710749256 -0.3676750550 0.0092469440
4 -0.1343758157 -0.1340900150 0.0021314090
45 0.1439903975 0.1394766430 0.0323620820
5 0.3815925281 0.3714530130 0.0272968980
5.5 0.5072529006 0.4921163700 0.0307580310
6 0.4814562646 0.4646914490 0.0360773060

For showing the accuracy and validity of HPM method, we did it for

different values of parameters in Fig.4, Fig.5 and Fig.6. The parameters m and
A increased step by step until they get the values m=4 and A=10 in Fig.6. As
we see in these figures, the said method still has a good accuracy.

To extend applicability and to show flexibility and accuracy of this

method for large parameters, an example for m=8, A=200, ¢=2, £=20,
k, =5 and k, =100 is offered in Fig. 7. In table 2 deflection of nonlinear spring

for HPM and numerical solution is compared. As we see, this method is
applicable for such large parameters and the error percentage is still small.
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Fig.4. Comparison of the deflection of nonlinear spring V(t) for m=1, A=2, £ =0.5 and
& =10 (k, =5,k, =50) for HPM and numerical solution.




Homotopy perturbation method [... ] and nonlinear stiffness on a frictionless contact surface 115

numerical < HPIM

1 “a j;_‘?r
e 2
0.4 - AW 7‘?
" #
] o &
! #
0.2+ k\ P
¥ !
i % I
!
w 0+ !ﬁ\. .'b
_ : /
‘\ £
3 !
-0.2 4 a\ IS
y #
i % £
\a A
—0.4 S s
N o~
i >3, =
o 1 2 3 4 H 5 7 8 5
t (tame)

Fig.5. Comparison of the deflection of nonlinear spring V(t) for m=3, A=5, ¢ =1
and £ =2 (kg =8,ky =16) for HPM and numerical solution
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Fig.6. Comparison of the deflection of nonlinear spring V(t) for m=4, A=10, & =0.008
and £ =0.5 (k; = 6,ky =3) for HPM and numerical solution.
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Fig.7. Comparison of the deflection of nonlinear spring V(t) for m=8, A=200, & =2 and
& =20 (k, =5,k, =100) for HPM and numerical solution.

Table 2
Error percentage of HPM method for

m=8, A=200, £=2 and & =20 (k, =5, k, =100)

fime VHPM Vnumerical (VHPM - Vnumerical)/ Vnumerical

0 0.5 0.5 0

2 0.4384794342 0.4111818671 0.0663880620
4 0.0135665712 0.0117159289 0.1579594940
6 -0.4328875008 -0.4042821428 0.0707559270
8 -0.5007219584 -0.4998983574 0.0016475370
10 -0.4428290759 -0.4177663123 0.0599923040
12 -0.0405791079 -0.0350321883 0.1583377980
14 0.4258454412 0.3970534745 0.0725140780
16 0.5028630640 0.4995916056 0.0065482650

For all cases illustrated in the figures, only one period of oscillation are
presented. This is because only conservative, nonlinear free vibration of mass-
spring system is considered.

6. Conclusions

In this article homotopy perturbation method has been successfully applied
to find the solution of governing equation of nonlinear free vibration of systems
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with serial linear and nonlinear stiffness. Homotopy perturbation method is useful
to nonlinear oscillators which are practical in so many branches of sciences such
as: electromagnetic and waves, telecommunication, civil and its structures and all
supposed majors’ application, etc. we verified the accuracy and efficiency of
presenting method with some strong nonlinear problems. We can advise HPM
method as strongly nonlinear method for oscillation systems which provide easy
and direct process for determining approximations to the periodic solutions. But
there are limitations in applying the proposed method. It could not be applied for
coupled and higher degree of freedom systems. One another problem is that if the
governing equation of motion contains a damping term, HPM could not be
applied in that form and so, the researchers restricted to non periodic forms of
HPM (see [15-27]). In this paper the approximate solution obtained by the HPM
method are compared with numerical solution. One can see that the approximate
solutions which we obtained have three terms, and they are already quite accurate.
The reliability of HPM gives it a wider applicability, especially in engineering. In
our work we used MAPLE 12 package to carry the computations.
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