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STANLEY DEPTH OF POWERS OF THE PATH IDEAL

Alin Stefan!

The aim of this paper is to give a formula for the Stanley depth of
quotients of powers of the path ideal. As a consequence, we establish that
the behavior of the Stanley depth of the quotients of powers of the path ideal
is the same as a classical result of Brodmann on depth.
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1. Introduction

Let S = K|z, ..., 2, be the polynomial ring in n variables over a field
K and M be a finitely generated Z"-graded S-module. Let u € M be homoge-
neous element and Z C X = {xy,...,2,}. Then the K[Z]-submodule uK[Z]
of M is called a Stanley space of M if uK|[Z] is a free K[Z]-submodule of M
and |Z] is called the dimension of wK|[Z], where |Z| is the cardinality of Z.
A Stanley decomposition D of M is a decomposition of M as a direct sum of
Z"-graded K-vector space

D: M =Pu,;K[Z)],
j=1

where each u;K[Z;] is a Stanley space of M.
The number
sdepth (D) = min{|Z;| :i=1,...,r}
is called the Stanley depth of decomposition D and the number
sdepth(M) := max{sdepth(D) : D is a Stanley decomposition of M}
is called Stanley depth of M. In 1982 Stanley conjectured in [19] that
sdepth(M) > depth(M)

for all Z"-graded S-module M. Apel [1], [2] proved the conjecture for a mono-
mial ideal I over S and for the quotient S/I in at most three variables. Anwar
and Popescu [3] and Popescu [14] proved the conjecture for S/I and n = 4, 5;
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also for n = 5 Popescu proved the conjecture for square free monomial ideals.
Herzog, Vladoiu and Zheng [11] introduced a method to compute the Stanley
depth of a factor of two monomial ideals which was later developed into an
effective algorithm by Rinaldo [18] implemented in CoCoA [8]. Duval, Goeck-
ner, Klivans and Martin proved that the conjecture is false [9]. They construct
a non-partitionable Cohen-Macaulay simplicial complex and using a result of
Herzog, Soleyman Jahan and Yassemi [12] deduce that the Stanley Reisner
ring of this simplicial complex does not satisfy Stanley conjecture. The coun-
terexample given in [9] is a quotient of squarefree monomial ideal. Thus, one
can still ask whether Stanley conjecture holds for non-squarefree monomial
ideals; in particular for high powers of monomial ideals. However, it is difficult
to compute this invariant, even in some very particular cases. For instance
in [5] Bird et al. proved that sdepth(m) = [2]| where m = (z1,...,z,) is
the graded maximal ideal of S and where for x € R, [z] denote the smallest
integer > x. For a friendly introduction on Stanley depth we refer the reader
to [16] and, for a nice survey, to [10].

The aim of the paper is to study the Stanley depth of S/I*, where ¢ > 1
and I = I(P,) is the edge ideal of the path graph of lenght n— 1; see Definition
2.1. In general, if I is a squarefree monomial ideal, based on the behavior of
the limit depth of I, Herzog [10, Conjecture 2.7| conjectured that the Stanley
depth of S/I* is constant for large k. This is clear if m = (zy,...,z,) is the
graded maximal ideal of S, since S/m* is an artinian ring and thus we have
sdepth(S/m*) = 0, for every integer k > 1. In 2018 Cimpoeas [6] proved that
if I is a complete intersection monomial ideal which is minimally generated by
t monomials we have

sdepth(S/I*) = sdepth(1* /I*™) = dim(S/I) =n —t
for any integer £ > 1. Our main result is Theorem 2.2, where we proved
that sdepth(S/I') = maz{[2=+],1}. Moreover, sdepth(S/I") stabilizes for

t >> 0. So, we obtain a similar result to [4] Brodmann’ theorem on the Stanley
depth.

2. The Stanley depth of the path ideal

Let G = (V, E) be a simple graph on the vertex set V' = {zy,...,2,} and
the edge set E. The edge ideal I = I(G) of the graph G is the ideal generated
by all monomials of the form z;x; such that {z;,z;} is an edge of G.

Definition 2.1. Suppose n > 2. A path P, of lenght n — 1 is the graph on the
vertex set V.= {x1,...,x,} and with n — 1 edges e; = {x;,x;11} for 1 <i <
n — 1. The edge ideal of P, is I = I(P,) = (x129, xax3, ..., Tp_12,) C S.

For I = I(P,), Morey [13] proved that depth(S/I) = [%] and for the
powers of I gave a lower bound, depth(S/I") > maxz{[2=1],1}. The proof
makes repeated use of applying the Depth Lemma:
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Lemma 2.1. ([20], Lemma 1.3.9) If
0—U-—>M-—N—0

is a short exact sequence of modules over a local ring R, then
a) If depth M < depth N, then depth U = depth M.
b) If depth M > depth N, then depth U = depth N + 1.

Rauf [17] showed that most of the statments of the Depth Lemma are
wrong if we replace depth by sdepth and prove the analog of Lemma 2.1.(a)
for sdepth:

Lemma 2.2. Let
0—U—M-—>N—0

be an exact sequence of finitely generated Z"-graded S-modules. Then
sdepth M > min{sdepth U, sdepth N}.

In [15], for I = I(P,), the authors, based on the proof from [13] of the fact
that depth(S/) > [%2], showed that sdepth(S/I) > [2] and for the powers
of I gave a lower bound, sdepth(S/I') > maz{[2=*],1}. See also [7] which
generalizes this result beyond edge ideals.

Now, we present an algorithm, introduced in [11], in order to compute
the Stanley depth of a module of the form I/.J where J C I C S are monomials
ideals.

We define a natural partial order on N" as follows: a < b if and only
if a(i) < b(i) for i = 1,...,n and we will say that b cover a. Note that
2|2 if and only if @ < b. Here, for any ¢ € N we denote as usual by ¢ the
monomial "Mz ... 5™ Observe that N with the partial order introduced
is a distributive lattice with meet a A b and join a V b defined as follows:
(a A b)(7) = min{a(i),b(i)} and (a Vv b)(i) = maz{a(i), b(i)}.

Suppose [ is generated by the monomials z%, ..., z% and J by the mono-
mials 2%, ... z%. We choose g € N" such that a; < g and b; < g for all i
and j. Let PIg/J be the set of all ¢ € N” with ¢ < ¢ and such that a; < ¢ for
some ¢ and ¢ 2 b; for all j. The set P/ 1 viewed as a subposet of N” is a finite
poset and we call it the characteristic poset of 1/J with respect to g. There is
a natural choice of g, namely the join of all the a; and ;. For this g, the poset
Pf/ ; has the least number of elements, and we denote it simply by P, ;.

Given any poset P and a,b € P we set [a,b] = {c € P:a <c¢<b} and
call [a,b] an interval. Of course, [a,b] # 0 if and only if @ < b. Suppose P is a
finite poset. A partition of P is a disjoint union

7) . P = LTJ[CLZ,bZ]
=1

of intervals.
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In order to describe the Stanley decomposition of I/J coming from a
g

partition of Plg/ ; we shall need the following notation: for each b € Py 15> We
set Z, = {x; : b(i) = g(i)}; we also introduce the function

p:ij/J —>ZZ()7 C|—>p(C>,
where p(c) = [{x; : ¢(i) = g(i)}|(= |Zc]). We then have
Theorem 2.1. ([11, Theorem 2.1.]) (a) Let P : P, ; = Ui_[ci, di] be a parti-
tion of P}’/J. Then

D(P): 1/] = DED K [Z))

is a Stanley decomposition of 1/J, where the inner direct sum is taken over all

c € [, d;] for which c(j) = ¢;(j) for all j with x; € Zy,. Moreover,
sdepth(D(P)) = min{p(d;) i =1,...,r}.

(b) One has
sdepth(//.J) = maz{sdepth(D(P)) : P is a partition of P, ;}.

In particular, there exists a partition P : Pj"/J = U;_[ci, di] of Pf/J such that
sdepth(1/J) = min{p(d;) :i=1,...,r}.

Lemma 2.3. If [ = I(P,), then sdepth(S/I) = [%].

Proof. The inequality sdepth(S/I) > (g] is known, see ([15, Proposition 2.1.])
Now we prove the other inequality, sdepth(S/I) < [%W .

We denote by e; the j canonical unit vector in Z".

We identify S/I with the Z"-graded K-subvector space I¢ of S which is gen-
erated by all monomials u € S\ I.

The characteristic poset (see [11]) of S/I is

P={aeN" : 2*ecland 2*|z129- -2},

where 2% = 2922?22 and a = (a(1),...,a(n)) € N". Also, we intro-
duce the function
p:P— Zsy, c— p(c),
where p(c) = [{i : ¢(i) = 1}].
For d € N and oo € N" let
Py:={a€P :l|a|=d} and Py, :={a € Py : x|z"},

where for a = (a(1),...,a(n)) € N, |a| := >, a(i).
Firstly, we note that if & € P such that P,, = 0 then sdepth(S/I) < d.
Indeed, let P : P = J._,[c;, d;] be a partition of P with

sdepth(S/I) = min{p(d;) :1=1,...,r}.
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> d then it

Since a € P it follows that a € [¢;,d;] for some i. If p(d;)
d and z%|z%, a

follows that Py, # 0, since there is a € [¢;,d;] with p(a) =
contradiction. Thus, p(d;) < d and therefore sdepth(S/I) < d.
We have three cases to study.

(1) If n=3k>3 and o = Zle esi—1 € Py, then Pyyq 4 = 0. Indeed, if u =
ToT5 - - - T3p—1, One can easily see that xju € I forall j ¢ {2,5,...,3k—1}.
Therefore by previous remark, sdepth(S/1) < k= [%], as requlred

(2) Ifn=3k+1>7and a =e; + 21:1 esi € Pry1, then Pyio, = 0. As
above, it follows that sdepth(S/I) < k+1 = [2].

B)Ifn=3k+22>5and a = Zk+11 e3i—o € Pgy1, then Pryo, = 0 and
therefore sdepth(S/1) < k+1=[2].

O

Theorem 2.2. Let I = I(P,) be the path ideal. For n >3 andt > 1 we have
that sdepth(S/I") = max{[2=+],1}.

Proof. The inequality sdepth(S/I') > maz{[2=*],1} is known (see [15,
Proposition 2.5.]).

Now we prove the other inequality, sdepth(S/I") < maz{[2=],1} for any
t > 1. By Lemma 2.3. the result holds for £ = 1.

Let t > 2 fixed. We identify S/I" with the Z™-graded K-subvector space (I*)°
of S which is generated by all monomials v € S\ I'.

The characteristic poset (see [11]) of S/I" is

P={aeN": 2°€ (I and x*|(z129 - - x,)"'},
where 20 = 2722 .. 2% and a = (a(1), ..., a(n)) € N".

Let us first show why sdepth(S/I*) < 1 for any ¢t > n — 2. Assume
sdepth(S/I") > 2 for any t > n — 2. According to Theorem 2.1.(see [11])
there exists a partition of P = |J,_,[F}, G;] such that min]_, p(G;) = 2, where

p(Gi) = |{j : t = Gi(j)}]| is the cardinality of {j : t = Gi(j)}.
For t > n — 2 fixed, let the sets:

2
[(tt=1,£,0,.. )] :={(t.on,t,u, B) EP | 0< D ap; <t—1,8€N"*

i=1

with |8] = (t — 1)( H Zam

2
[(t=1,t=1,4,0,.. )] :=={(t—1,00,t,0s, B) EP |0 < Y "y <t—1,8€N""

i=1

with |8] = (t — 1)( H Zam
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2
[(t,t—l,t—l,O,)] = {(t,O@,t-l,CM,ﬁ) eP ‘ 0< ZOCQZ' < t—l, 5 € an4

i=1
with |8 = (t —1) [ —‘ Zam

The elements of [(¢,t 1, t,0,...)] can only cover the elements of [(t —
1Lt —1,¢,0,.. )] U[(t,t — —1,0,...)] since for any v € [(¢,t —1,t,0,...)],
de[(t—1,t—1,t0,.. )} ndne[ t—1,t —1,0,...)] we have |y| — 1 =
0] = |nl, p(v) = 2, p(d) = p(n) = 1. As long as there is an one to one
corespondence between the sets [(t,t — 1,t,0,. )] and [(t —1,t—1,t,0,...)],
( respectively the sets [(t,t —1,¢,0,...)] a d [( —1,0,...)]) and [(

L,t—1,¢,0,..)]N[(t,t—1,t—1,0,...)] =0, hen there exists elements from
[(t—1,t —1,¢,0,...)] U [(t,t 1,t —1,0,...)] which can not be covered by
elements of [(¢,t — 1,¢,0,...)]. Therefore sdepth(S/I*) < 1 for any t > n — 2
and so sdepth(S/I") =1 for any t > n — 2.

Using the same technique as above we show why sdepth(S/I") < [2=41]
forany 2 <t <n-—3. Let 2 <t <n—3 fixed and we denote by a := [”’Tt“w )
Assume sdepth(S/I") > a + 1. According to Theorem 2.1.([11]) there exists a
partition of P = J,_,[F;, G;] such that minl_,p(G;) = a + 1.

We consider the sets:

a+1
[(t,t=1¢,0,...,6,0,..)] :={(t, 00, t, s .., t, 03012, 8) € P|0 < ;agi < t—1,
a—times =
a+1
B e N"20=2 yith || = (t — 1)( { ] Zam
a+1
[(t=1,t—11,0,...,£,0,..)] == {(t=1, 9, t, ug, . . . , 1, g2, B) € P | 0 < Za%
a—times
a+1 a+1
Zagigt—l,ﬁeNn_%_Z with |B| (t—l ’7 —‘ ZO{QZ

=1

(£t —18,0,...,6,0,.. ){(t,ag, t,au ... t, 024, 8) € P | ogza%gt—L

a—1—times i=1

B € N2 with || = (t_1)(H—a+1 Zam

The elements of [(t,t — 1¢,0,...,¢,0,...)] can only cover the elements of
—_——

a—times

[(t —1,t —1¢,0,...,t,0,.. )] U[(t,t — 1¢,0,...,¢,0,...)] since for any v €
——— ———

a—times a—1—times
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[(t,t —1¢,0,...,£,0,...)], 0 € [(t —1,t —1¢,0,...,t,0,...)] and n € [(¢t,t —
——— ————
a—times a—times
1t,0,...,t,0,...)] we have |y| —1=|0| = |n|, =a+1, p(d) = = a.
: )] il 6 = Inl, p(7) p(6) = p(n)
a—1—times
As long as there is an one to one corespondence between the sets [(¢,t —
1¢,0,...,t,0,...)] and [(t — 1,t — 1¢,0,...,¢,0,...)], (respectively the sets
—_——— —_———

a—times a—times
[(t,t —1¢,0,...,£,0,...)] and [(t,t — 1¢,0,...,t,0,...)]) and
M 1 “tA
a—times a—1—times

[(t—1,t —1¢0,...,6,0,..)] N[t —1¢0,...,t,0,...)] = (0 then there ex-
—_——— —_———

a—times a—1—times
ist elements from [(t — 1,£ — 1¢,0,...,¢,0,...)] U [(t,t — 1¢,0,...,¢,0,...)]
M 1 ‘t'
a—times a—1—times

which can not be covered by elements of [(¢,¢ — 1¢,0,...,t,0,...)]. Therefore
—_——
a—times
sdepth(S/I') < [2=42] and so we have the equality sdepth(S/I") = [2=41]
for any 2 <t <n — 3.
Thus, we have sdepth(S/I') = maz{[®=1] 1} for any ¢ > 1. O

By a theorem of Brodmann ([4]), depth(S/I") is constant for ¢ >> 0. As
a consequence of the previous theorem we obtain a similar result to Brodmann’
theorem on the Stanley depth.

Corollary 2.1. Stanley depth of factors of powers of path ideal stabilizes, i.e.
sdepth(S/(I(P,))") =1 for any t > n — 2.

3. Conclusions

In this paper we computed the Stanley depth of S/I(P,)" where t > 1
and I(P,) is the edge ideal of the path graph of lenght n — 1. In particular,
Herzog conjecture [10, Conjecture 2.7] holds for I(P,).

Future directions of research include the study of Stanley depth for pow-
ers of edge ideals, or, more generally, of m-path ideals associated to several
classes of graphs.
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