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ON APPROXIMATE-ANALYTICAL SOLUTION OF
GENERALIZED BLACK-SCHOLES EQUATION

Hossein AMINIKHAH?, Farshid MEHRDOUST?

In option pricing theory, the Black-Scholes equation is one of the most
effective models for pricing options. In this paper, we present an analytical method
for the generalized Black-Scholes partial differential equation, which is used for
option pricing. The proposed method (LTNHPM) is based on Laplace transform
(LT) and new homotopy perturbation method (NHPM). Two test examples have been
solved for illustrating the merits of the proposed analytical approximation method.
The method can be extended for solving problems arising in financial mathematics.

Keywords: Black-Scholes equation; Laplace transform method; Homotopy
perturbation method; European option pricing.

1. Introduction

A financial derivative is a contract which provides to the holder a future
payment that depends on the price of the assets such as stocks, currencies,
commodities. Options are financial derivative products that give the right, but not
the obligation, to engage in a future transaction on some underlying financial
instrument. For instance, European-style options can be exercised only at the
expiration date, in contrast to American-style options, where the holder can
exercise them earlier than the maturity date [1]. The Black-Scholes theory of
option pricing, developed by Black, Scholes and Merton is one of the most 2.
Paper contents influential theories in finance [2-3]. The Black-Scholes and
Merton model hinges on the modeling of stock returns by the geometric Brownian
motion [4]. According to the idea of Black-Scholes, the option price can be
modeled as a terminal boundary problem for a partial differential equation.
Therefore, it is reasonable to adopt the existing theory and methods of partial
differential equation as a fundamental approach to the study of the option pricing.
This includes designing efficient algorithms for solving option pricing problems
from the viewpoint of numerical solutions of partial differential equation
problems. Many authors have applied several different methods to solve the
Black-Scholes partial differential equation [5-16]. Recently the modified HPMs
[17] have been used to solve various functional equations. These methods have
been applied to solve nonlinear equations of heat transfer [18], MHD viscous flow
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over a stretching sheet [19], Troesch’s problem [20], approximation of normal
distribution integral [21] and many other subjects [22-25]. In this work, we
present the solution of Black—Scholes partial differential equation by combination
of Laplace transform and new homotopy perturbation methods. The paper is
divided into five sections. After the introduction, we present the standard Black-
Scholes-Merton model in Section 2. Section 3 includes analysis of the new
technique for Black-Scholes problem and two examples are given to illustrate the
proposed approach in Section 4. Conclusions are present in Section 5.

2. The Black-Scholes-Merton model framework

Let V(S,t) denotes the price of an option at the moment t, where
S =S(x),x=x(t) is the price of the underlying asset at time t. The randomness of
V (S(t), t) would be fully correlated to that S(t). Thus, we consider a portfolio
which contains only S and V, but in opposite position in order to cancel out the
randomness. Then this portfolio becomes deterministic. Let us consider the
following portfolio [4]
M=V - AS.
The change of the portfolio in one step time is
dIT=dV —AdS
where A is held fixed during the time step. From Ito’s lemma [1]
2
dIT= JS(ﬂ—Ajdz +£,u8ﬂ—,uAS +ﬂ+£0282 0 \i ]dt.
oS oS ot 2 oS
Here, S is the current asset price, ux is the growth rate of an asset, and
o=0o(S(t),t) is the volatility function of the underlying asset. By choosing

A= % , at the starting time of each time step we can write

2
dnz(ﬂ+£0232ﬂjdt_

ot 2 as?

From the hypothesis of no arbitrage opportunities, the return, dFH should

be the same asII being invested in a riskless bank with interest rate r(t), i.e.

dFH =r(t)dt. Therefore, we must have

2
r(t)I1dt = ﬂﬁazyg dt
o 2 oS
Or equivalently,

2
roV s | M 1o 0V g
0S ot 2 0S
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Hence, the partial differential equation of Black-Scholes for option pricing is
written as
ﬂJrlazSz 82\2
o 2 oS
In this paper, we consider the partial dlfferentlal equation of Black-Scholes
with the following terminal condition,
V(S,t)=¢(S,T)=(S -K)" =max(S - K,0), for call option,
V(S,t)=p(S,T)=(K-S)" =max(K - S,0), for put option
where K is the exercise (strike) price, and T is the expiry time of European
option. In general, the final condition is
V(S,T)=1(S)
where f is the payoff function. By setting S=x the Black-Scholes equation
becomes

+ r(t)S—— r(t)V =0.

oV ov
_+_
ot

(x,t)e R" x(0,T)

with the terminal and boundary condltlons as below
V(x, T)=(x-K)", xeR"
V(0,t)=0, te[0,T].

3. Analysis of Method (LTNHPM)

Consider the Black Scholes equation in the following form
AV (x,t) t) 2,2 OV (x.1) oV (x t)
t t)V (x,t) =0,
at 2GX me X TV (1)
V(x,0) = f,(x)
By the new homotopy technique, we construct a homotopy U :R’x[0,1] - R?,

which satisfies

HU D, =22y, sy,

4 p{ 2 282U(X t) (t)xm—r(t)U(X,t)}z
ox® OX

where pe[0,1] is an embedding parameter, v, is an initial approximation of the

solution of equation (1). By applying Laplace transform on both sides of (2), we
have

)

2
L{%—vo +py, + p{;azx2 2}( + r(t)x—L):—r(t)U}} (3)

Using the differential property of Laplace transform we have
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2

s LU (x,)}—U (x,0) :L{vo v, - p{%o-zx aaxu ; r(t)x—— r(t)U}}

or

LU y== {U(X 0)+£{ p"o‘p{% 2 aaxu }H ®)

By applying inverse Laplace transform on both sides of (5), we have

2o of e gzeﬂawai—r«w}}}} ®

According to the HPM, we use the embedding parameter p as a small

parameter, and assume that the solutions of equation (6) can be represented as a
power series in p as

U(xH =3 PU, (x). )

Now let us write the equation (6) in the following form

> D"Un(x,t)=fl{%{u (x,0)+£{\’0 ~PY% - p{iazxz aalu ’ r(t)x__ r(t)u}}}} ©

n=0

Comparing coefficients of terms with identical powers of p, leads to

p%:U, (x,1) =£1{§(u (x.0) +£{v0})}

1 1 62U ou,
ph U, (x,t)=L" {—g(ﬁ{vo s o*x*—L v ™ OH} 9)
2
p"”:Un+1(x,t)=£1{—l(£{lazx2aU Y, n}J}’n=l'2"“
S 2 ox? oX

Suppose that the initial approximation has the form U(x,0)=v, = f,(x),

therefore the exact solution may be obtained as following
u(x,t):Iirr}U(x,t):Uo(x,t)+U1(x,t)+-~. (10)
p—-

Convergece
Suppose that X and Y be Banach space and N:X —Y is a contraction
nonlinear mapping, that is
Vv,V e X;[INW)-NW)| <y |lv-Y]|,0<y<1.
which according to Banach’s fixed point theorem having the fixed point u, that is
N(u)=u.
Theorem: The sequence generated by LTNHPM will be regarded as

n-1
V,=N(V,,).V,, =>U,n=123,..,
i=0
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and suppose that V, =U, € B (u) where B (u)={u" e X||lu" —u|l<r}, then we have
the following statements:

i) IV, —ull<y" [[Ug —ull,

i) V., €B, (u),

i) limV, =u.

Proof: i) By induction method on n, for n=1 we have
IV, —ull=[IN(Vo) = Nu) <y [|Ug —ull.
Assume that ||V, —u||<y"™*||U, —u]| as induction hypothesis, then
IV, = U= NV, ) = NI 7 [V, =ull< 77" HIUg —ull= " U, ~u]].
ii) Using (i), we have
IV, —ull< 7" Iy —u <y r <r =V, € B, (u).
iii) Because of ||V, —-u||<y"||U,—u]l, and limy" =0, we derive lim|V, —u|=0,

that is,
limV, =u.

n—oo

4. Examples

Example 1. Consider the following Black-Scholes equation
ﬂJrlo-ZSZaz\iJrrSﬁ—rV:O, (11)

ot 2 0S 0S
By setting x=InS and =T —t, the problem (11) is reduced to a Cauchy problem

of a parabolic equation with constant coefficients

W 1 ,0°W 1, 0W
E_EO- v —(I’—EO' )E-{- rw =0, (12)
W (x,0) = max(e* —1,0)
If we set k =§ the equation (12) can be represented as the following form
oW o'W oW
Ezka—DE_k\N:O’ (13)
W (x,0) = max(e* —1,0)
The exact solution of above equation was found to be of the form
W (x,7) = max(e* —1,0)e™* + max(e*,0)(1—e™). (14)
To solve equation (13) by the LTNHPM, we construct the following homotopy
a—U—u +p{u —az—u—(k—l)a—u+ku}=0 (15)
r ° OX ’

Applying Laplace transform on both sides of (15), we have
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ou o°U
£{E—UO+ p{u[J a — (k- 1)— }}:0 (14)
Using the differential property of Laplace transform we have
sL{U(x,7)}-U(x,0)= L{uo - p{u0 - Z v —(k— 1)— H (16)

or

LU(x)}== {U(x 0)+£{ p{u0 —y—g—(k —1)£+ kU }}} a7
OX OX

By applying inverse Laplace transform on both sides of (17), we have

U(x,7)= [l{ {U(x0)+£{ p{uo—az—g—(k—l)ﬁJrkU}}H (18)
OX OX

Suppose the solution of equation (18) to have the following form
U(x,7) =U, (X, 7) + pU, (X,7) + p°U, (X, )+, (19)
where U;(x,z) are unknown functions which should be determined. Substituting
equation (19) into equation (18), collecting the same powers of p and equating
each coefficient of p to zero, results in

p°:U,(x,7) = ﬁ{ (U(x,0)+ L{u })}

1 o*U ouU
pl :Ul(X,T) = .E_l {—E(L{uo - aXZO - - 6X0 O}J} (20)
2
anZUn(X,Z‘):fl{E(ﬁ{a U2n+ 3 aUn_kUn}]},nZLZ,...
S OX OX

Assuming u, =U(x,0) =max(e* —1,0), and solving the above equation for
U,(x,7), j=0,1,-- leads to the result

U,(x,7) = max(e -1,0)(1+7),
U, (x, r)— {max(e ~1,0)+ max(e",0)} + r{—(k +1) max(e* —1,0) + k max(e",0)},

k2 s . . k(k +1)7°
67 {max(e —1,0) — max(e ,0)}+%{m

U,(x,7)=

ax(e* —1,0) - max(eX,O)},

max(e”* —1,0) + max(e*,0)| +M{
(K +1)7*

Jr—

U,(x,7) = —max(e*~1,0) + max(e", 0)},

U4(X,r)—

max(e* —1,0) — max(e*,0) max(e” —1,0)—max(ex,0)},
k*(k +1)7°

120

45{
< 0!
Sug

U, (x,7) = max(e* —1,0) + max(e*,0)} + {~max(e*~1,0) + max(e*,0)},
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Therefore we gain the solution of equation (11) as
W(x,7)= Iir’qU(x,r) =U,(x,7)+U,(X,7) +--
p—-

k%> k3 k!

=max(e* -1,0)1-kz + - + e
( ke T )
2 2 3.3 4.4
+max(ex,0)(kr—kf LK Ko +o)
2 6 24

=max(e* —1,0)e™ + max(e*,0)(1—e™)
which is exact solution.

Example 2. Consider the following Black-Scholes equation

8V l o
=3 2Szaserr(t)S——r(t)V 0, (21)

where o =k(2+sinx),S = x,r(t) = a,k,a >0 and initial condition as following
V (x,0) = max(x — 25e“,0)
The exact solution of above equation was found to be of the form
V(x,1) = x(1—e ™) + max(x — 25e“,0)e . (22)
To solve equation (21) by the LTNHPM, we construct the following
homotopy

2
%—u(ﬁp{u(ﬁ (2+sinx)*x ngu +ax%—au} 0, (23)
Applying Laplace transform on both sides of (23), we have
2|
L{aaltj -u +p{u +—(2+sinx)*x ZXLZJ +ax%—aU}}=0 (24)

Using the differential property of Laplace transform we have
2|
s LU (x, )} -U (x,0) :£{u0 - p{uo K 2wsin2e ZY 4 ox _qu H (25)
2 ox? OX
or
2]
LU )}== {U(x O)+£{u - p{u0 +g(2+sin x)zxz%Jraxaa—L;—aU }}} (26)

By applying inverse Laplace transform on both sides of (26), we have
2
U(x,t)= [1{1{U (x,0) + £{u0 - p{uO +5(2 +sinx)*x? 20U +ax£—au }}}} (27)
S 2 ox? OX

Suppose the solution of equation (27) to have the following form
U(X’t):UO(X’t)+ pUl(Xlt)+ pZUZ(X,t)—i----, (28)
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where U, (x,t) are unknown functions which should be determined. Substituting
equation (28) into equation (27), collecting the same powers of p and equating
each coefficient of p to zero, results in

p°:U, (x,1) :fl{%(U (x,0) +£{Uo})}

2
ph:U, (x,t)=L" {—%(ﬁ{uo +%(2+sin x)*x* aa)l(Jzo +ax a{;‘(‘) —auo}j} (29)

2,
p"tiuU, L (xt)=L"1 {_E(ﬁ{g(2+sin X)ZXZ%-F(ZX a(;J” —aUn}]}, n=12,...
S X X

Assuming u, =U (x,0) = max(x —25e“,0) , and solving the above equation for
U, (x,7),j=0,1,-- leads to the result
U, (x,t) = max(x — 25e“,0)(1+t),
U, (x,t) = (—% max(x — 25e“,0) + %x]tz +(~(a+1) max(x - 25¢“,0) + ax)t,

2 2
U, (x,t) :(%max(x—ZSe",O)—a—x)t3 +(

3 ala+l) max(x—25e",0)——a(a+1) xjtz,

2! 2!

3 3
U,(x,t) = [—% max(x — 25e“,0) +%x]t4

2 2
+ [—# max(x— 25e“,0) + #tha,

4 4
U,(xt)= (%max(x —25e“,0) —%xjts

3 3
+ %max(x —25e“,0) —#x]t“,

5 5

Uy (x,t) = (_%max(x — 25¢%,0) +%xjt6

4 4
+ (—%max(x— 25e%,0) + %xjts,

Therefore the exact solution of equation (21) as follows
V(x,t) = Iir’qU (x,t)=U,(x, t) + U, (x,t) +--
p—

at® ot ottt
- +

=max(x —25e*,0)1—at +
( ) 2 3! 4! )
242 343 4.4
+x(at—a +0(t _at +--4)
2! 3! 41

=max(x —25e“,0)e " +x(1—e )
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5. Conclusion

The main goal of this paper is to obtain an analytical solution of the
generalized Black-Scholes option pricing equation by LTNHPM. The LTNHPM,
a combination of Laplace transform method and new homotopy perturbation
method, was applied successfully to find the exact solution of Black-Scholes
equation. By applying this method on two examples we conclude that LTNHPM
is essential tool for solving other partial differential equations of mathematical
finance.
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