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WRIGHT DISTRIBUTION AND ITS APPLICATIONS ON UNIVALENT

FUNCTIONS

S. Porwal1, A. L. Pathak2, O. Mishra3

The purpose of the present paper is to introduce the Wright distribution and by

using this distribution, we introduce a Wright distribution series and an integral operator

associated with this series. Some sufficient conditions and inclusion relations have been
obtained for this series and its integral operator belonging to certain classes of univalent

functions.
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1. Introduction

In 1933, Wright [24] introduced a special function which is named as Wright function
and defined in the following way

Wλ,µ(z) =

∞∑
n=0

zn

n!Γ(λn+ µ)
, (1)

where λ > −1, µ ∈ C and Γ(·) stands for the usual Gamma function. The series given by
(1) is absolutely convergent for all z ∈ C, while for λ = −1 this is absolutely convergent in
U. He also proved that it is an entire function for λ > −1. For more basic properties on
Wright functions one may refer to Gorenflo et al. [10] and Mustafa [14]. It is easy to see
that the series (1) is not in normalized form so we normalized it as

Wλ,µ(z) = Γ(µ)zWλ,µ(z)

Wλ,µ(z) =
∞∑
n=0

Γ(µ)zn+1

n!Γ (λn+ µ)
(2)

where λ > −1, µ > 0, z ∈ U.
Now, we introduce Wright distribution in the following way, first we define the series

Wλ,µ(m) =

∞∑
n=0

Γ(µ)mn+1

n!Γ (λn+ µ)
(3)

which is convergent for all λ, µ,m > 0.
The probability mass function of Wright distribution is given by

p(n) =
Γ(µ)mn+1

n!Γ (λn+ µ) Wλ,µ(m)
, m, µ, λ > 0, n = 0, 1, 2, 3, . . . (4)
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It is worthy to note that for λ = 0 it reduces to the Poisson distribution.

2. Applications on Univalent functions

Let A stand for the class of functions f of the form

f(ξ) = ξ +

∞∑
n=2

anξ
n, (5)

which are analytic in the open unit disk U = {ξ : ξ ∈ C and |ξ| < 1} and satisfy the
normalization condition f(0) = f ′(0)− 1 = 0. Further, we let S represent the subclass of A
consisting of functions f of the form (5) which are also univalent in U.

Kanas and Wisniowska [11, 12] introduced the class of γ-uniformly convex functions
denoted by γ−UCV in U, consisting of functions f of the form (5) which satisfy the following
condition

<
{

1 +
ξf ′′(ξ)

f ′(ξ)

}
≥ γ

∣∣∣∣ξf ′′(ξ)f ′(ξ)

∣∣∣∣ , γ ≥ 0, (6)

Similarly, they introduced the class of γ-starlike functions denoted by γ − ST in U,
which consist of the functions f of the form (5) which satisfy the following analytic criteria

<
{
ξf ′(ξ)

f(ξ)

}
≥ γ

∣∣∣∣ξf ′(ξ)f(ξ)
− 1

∣∣∣∣ , γ ≥ 0. (7)

The classes γ − UCV and γ − ST were further generalized and studied by Bharti et
al. [3], Dixit and Porwal [6], (see also [8, 9, 13, 21]). A function f(ξ) ∈ A of the form (5) is
said to be in the class S∗δ if it satisfied the condition∣∣∣∣ξf ′(ξ)f(ξ)

− 1

∣∣∣∣ < δ, δ > 0.

Similarly, a function f(ξ) ∈ A of the form (5) is said to be in the class Cδ if it satisfies
the following analytic criteria ∣∣∣∣ξf ′′(ξ)f ′(ξ)

∣∣∣∣ < δ, δ > 0.

The classes S∗δ and Cδ were introduced and studied by Ponnusamy and Rønning [16].
In 1995, Dixit and Pal [5] introduced the class Rτ (A,B) consisting of functions f of the
form (5) which satisfy the following analytic criteria∣∣∣∣ f ′(ξ)− 1

(A−B)τ −B(f ′(ξ)− 1)

∣∣∣∣ < 1,

where ξ ∈ U, τ ∈ C\ {0} , −1 ≤ B < A ≤ 1.
In 2014, by using the definition of Poisson distribution, Porwal [17] introduced Poisson

distribution series and gave a nice application of it on certain classes of univalent functions
and opened up a new direction of research in the geometric function theory. After the inves-
tigation of this series several researchers investigated various distribution series like Hyper-
geometric distribution series [1], Pascal distribution series [4], Mittag-Leffler type Poisson
distribution series [7], Binomial distribution series [15], generalized distribution series [18],
Hypergeometric type distribution series [19], confluent hypergeometric distribution series
[20], generalized hypergeometric distribution series [22], Borel distribution series [23] (see
also [2]) and obtained various interesting results on certain classes of univalent functions for
these series.

Now, using the definition of Wright distribution, we introduce the Wright distribution
series as follows

K(λ, µ,m, ξ) = ξ +

∞∑
n=2

Γ(µ)mn

(n− 1)!Γ(λ(n− 1) + µ)Wλ,µ(m)
ξn. (8)
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The convolution of two power series f(ξ) of the form (5) and g(ξ) = ξ +
∑∞
n=2 bnξ

n

is defined as the power series

(f ∗ g)(ξ) = ξ +

∞∑
n=2

anbnξ
n. (9)

Now, we introduce the linear operator I(λ, µ,m) : A→ A defined as

I(λ, µ,m)f(ξ) = f(ξ)∗K(λ, µ,m, ξ) = ξ+

∞∑
n=2

Γ(µ)mn

Γ(λ(n− 1) + µ)(n− 1)!Wλ,µ(m))
anξ

n. (10)

Motivating with the above mentioned work we obtain some sufficient conditions for
the Wright distribution series K(λ, µ,m, ξ) belonging to the classes γ − UCV, γ − ST, S∗δ
and Cδ. Further we obtain some inclusion relations between the classes Rτ (A,B), γ −UCV

and Cδ by applying certain convolution operator I(λ, µ,m) defined by (10).

3. Preliminary results

To establish our main results, we need to recall the following lemmas.

Lemma 3.1. ([12]) Let f ∈ A is of the form (5). If for some γ (0 ≤ γ <∞) the following
inequality

∞∑
n=2

[n(1 + γ)− γ]|an| ≤ 1, (11)

holds, then f ∈ γ − ST

Lemma 3.2. ([11]) If f ∈ A is of the form (5) and satisfies the condition
∞∑
n=2

n[n(1 + γ)− γ]|an| ≤ 1

then f ∈ γ − UCV, for some γ(0 ≤ γ < 1).

Lemma 3.3. ([11]) If f ∈ A is of the form (5) and satisfies the condition
∞∑
n=2

n(n− 1)|an| ≤
1

γ + 2

for some γ(0 ≤ γ < 1), then f ∈ γ − UCV.

Lemma 3.4. ([16]) If f ∈ A is of the form (5) and satisfies the condition
∞∑
n=2

(δ + n− 1)|an| ≤ δ, (δ > 0)

then f ∈ S∗δ .

Lemma 3.5. ([16]) If f ∈ A is of the form (5) and satisfies the condition
∞∑
n=2

n(δ + n− 1)|an| ≤ δ (δ > 0)

then f ∈ Cδ.

Lemma 3.6. ([5]) If f ∈ Rτ (A,B) is of the form (5) then

|an| ≤
(A−B)|τ |

n
, n ≥ 2.

The result is sharp.
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4. Main Results

In our first theorem, we obtain a sufficient condition for the Wright distribution series
K(λ, µ,m, ξ) in the class γ − ST.

Theorem 4.1. If λ, µ,m > 0 and for some γ (0 ≤ γ < 1) the condition

Γ(µ)(γ + 1)Wλ,µ+λ(m) ≤ Γ (µ+ λ) (12)

is satisfied then K(λ, µ,m, ξ) ∈ γ − ST.

Proof. To prove that K(λ,mu,m, ξ) ∈ γ− ST, from Lemma 3.1 it is sufficient to prove that

∞∑
n=2

[n(γ + 1)− γ]
Γ(µ)mn

(n− 1)!Γ (λ(n− 1) + µ)Wλ,µ(m)
≤ 1.

Now
∞∑
n=2

[n(γ + 1)− γ]
Γ(µ)mn

(n− 1)!Γ (λ(n− 1) + µ)Wλ,µ(m)

=

∞∑
n=2

{(γ + 1)(n− 1) + 1} Γ(µ)mn

(n− 1)!Γ (λ(n− 1) + µ)Wλ,µ(m)

=
1

Wλ,µ(m)

[ ∞∑
n=2

(γ + 1)Γ(µ)
1

(n− 2)!

mn

Γ(λ(n− 1) + µ)
+

∞∑
n=2

Γ(µ)

(n− 1)!

mn

Γ (λ(n− 1) + µ)

]

=
1

Wλ,µ(m)

[
(γ + 1)

∞∑
n=0

Γ(µ) mn+2

n!Γ(λ(n+ 1) + µ)
+

∞∑
n=1

Γ(µ) mn+1

n!Γ(λn+ µ)

]

=
1

Wλ,µ(m)

[
(γ + 1)m

Γ(µ)

Γ (µ+ λ)
Wλ,µ+λ(m) + Wλ,µ(m)−m

]
≤ 1, by the given hypothesis.

Thus the proof of Theorem 4.1 is established. �

Theorem 4.2. If λ, µ,m > 0 and for some γ (0 ≤ γ < 1) the condition

Γ(µ)

Γ (µ+ 2λ)
(γ + 1)mWλ,µ+2λ(m) + (2γ + 3)

Γ(µ)

Γ (µ+ λ)
Wλ,µ+λ(m) ≤ 1 (13)

is satisfied then K(λ, µ,m, ξ) ∈ γ − UCV.

Proof. The proof of above theorem is much similar to Theorem 4.1. Therefore, we omit the
details involved. �

Theorem 4.3. If λ, µ,m > 0 and for some δ (δ > 0) the condition

Γ (µ)Wλ,µ+λ(m) ≤ δΓ (µ+ λ) (14)

is satisfied then K(λ, µ,m, ξ) ∈ S∗δ .

Proof. To prove K(λ, µ,m, ξ) ∈ S∗δ , from Lemma 3.2 it is sufficient to prove that

∞∑
n=2

(δ + n− 1)
Γ(µ)mn

(n− 1)!Γ(λ(n− 1) + µ)

1

Wλ,µ(m)
≤ δ.
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Now

1

Wλ,µ(m)

∞∑
n=2

(n− 1 + δ)
Γ(µ)

(n− 1)!

mn

Γ(λ(n− 1) + µ)

=
1

Wλ,µ(m)

[ ∞∑
n=2

Γ(µ)mn

(n− 2)!Γ(λ(n− 1) + µ)
+

∞∑
n=2

δΓ(µ)

(n− 1)!

mn

Γ(λ(n− 1) + µ)

]

=
1

Wλ,µ(m)
[m

Γ(µ)

Γ (µ+ λ)
Wλ,µ+λ(m) + δ(Wλ,µ(m)−m)]

≤δ (from (14)).

This completes the proof of Theorem 4.3. �

The proof of Theorems 4.4 and 4.5 is similar to that of Theorem 4.3, therefore we
only state the results.

Theorem 4.4. If λ, µ,m > 0 and for some δ (δ > 0) the condition

m
Γ(µ)

Γ (µ+ 2λ)
Wλ,µ+2λ(m) + δ

Γ(µ)

Γ (µ+ λ)
Wλ,µ+λ(m) ≤ δ (15)

is satisfied then K(λ, µ,m, ξ) ∈ Cδ.

Theorem 4.5. If λ, µ,m > 0 and for some γ (0 ≤ γ < 1) the condition

m2 Γ(µ)

Γ (µ+ 2λ)
Wλ,µ+2λ(m) + 2m

Γ(µ)

Γ (µ+ λ)
Wλ,µ+λ(m) ≤ Wλ,µ(m)

γ + 2
(16)

is satisfied then K(λ, µ,m, ξ) ∈ γ − UCV.

5. Inclusion relation

Theorem 5.1. If λ, µ,m > 0, f ∈ Rτ (A,B) and the inequality

(A−B)|τ |
Wλ,µ(m)

[(γ + 1)m
Γ(µ)

Γ (µ+ λ)
Wλ,µ+λ(m) + Wλ,µ(m)−m] ≤ 1 (17)

is satisfied then I(λ, µ,m)f ∈ γ − UCV.

Proof. Let f be of the form (5) belonging to the class Rτ (A,B). To show that I(λ, µ,m)f ∈
γ − UCV it is sufficient to prove that

∞∑
n=2

n[n(γ + 1)− γ]
Γ(µ)mn|an|

Wλ,µ(m)(n− 1)!Γ(λ(n− 1) + µ)
≤ 1.

Since f ∈ Rτ (A,B), from Lemma 3.6, we have |an| ≤ (A−B)|τ |
n .

Now
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∞∑
n=2

n[n(γ + 1)− γ]
Γ(µ)mn |an|

Wλ,µ(m)(n− 1)!Γ(λ(n− 1) + µ)

=
(A−B)|τ |
Wλ,µ(m)

∞∑
n=2

[n(γ + 1)− γ]
Γ(µ)mn

(n− 1)!Γ(λ(n− 1) + µ)

=
(A−B)|τ |
Wλ,µ(m)

∞∑
n=2

[(n− 1)(γ + 1) + 1]
Γ(µ)mn

(n− 1)!Γ(λ(n− 1) + µ)

=
(A−B)|τ |
Wλ,µ(m)

[
(γ + 1)

∞∑
n=2

Γ(µ)mn

(n− 2)!Γ(λ(n− 1) + µ)
+

∞∑
n=2

Γ(µ)mn

(n− 1)!Γ(λ(n− 1) + µ)

]

=
(A−B)|τ |
Wλ,µ(m)

[
(γ + 1)m

Γ(µ)

Γ (µ+ λ)
Wλ,µ+λ(m) + Wλ,µ(m)−m

]
≤1, from (17).

This completes the proof of Theorem 5.1. �

Theorem 5.2. If λ, µ,m > 0, f ∈ Rτ (A,B) and the inequality

(A−B)|τ |m Γ(µ)

Γ (µ+ λ)
Wλ,µ+λ(m) ≤ Wλ,µ(m)

γ + 2

is satisfied then I(λ, µ,m)f ∈ γ − UCV.

Proof. Let f be of the form (5) belonging to the class Rτ (A,B). To show that I(λ, µ,m)f ∈
γ − UCV, from Lemma 3.3, it is sufficient to show that

∞∑
n=2

n(n− 1)
Γ(µ)

Wλ,µ(m)

mn

(n− 1)!

|an|
Γ(λ(n− 1) + µ)

≤ 1

γ + 2
.

Since f ∈ Rτ (A,B), from Lemma 3.6 we have

|an| ≤
(A−B)|τ |

n
.

Now
∞∑
n=2

n(n− 1)
Γ(µ)mn |an|

Wλ,µ(m)(n− 1)!Γ(n− 1) + µ

≤ (A−B)|τ |
Wλ,µ(m)

[ ∞∑
n=2

Γ(µ)

(n− 2)!

mn

Γ(λ(n− 1) + µ)

]

=
(A−B)|τ |
Wλ,µ(m)

m
Γ(µ)

Γ (µ+ λ)
Wλ,µ+λ(m)

≤ 1

γ + 2
, by given hypothesis.

Thus the proof of Theorem 5.2 is established. �

Theorem 5.3. If λ, µ,m > 0, f ∈ Rτ (A,B) and the inequality

(A−B)|τ |
Wλ,µ(m)

[m
Γ(µ)

Γ (µ+ λ)
Wλ,µ+λ(m) + δ(Wλ,µ(m)−m)] ≤ δ

is satisfied then I(λ, µ,m)f ∈ Cδ.

Proof. The proof of above theorem is much akin to that of the previous theorem. Hence,
we omit the details involved. �



Wright distribution and its applications on univalent functions 87

6. An integral operator

In this section, we obtain some sufficient conditions for a particular integral operator
G(λ, µ,m, ξ) which is defined in the following way

G(λ, µ,m, ξ) =

∫ z

0

k(λ, µ,m, t)dt

t
or

G(λ, µ,m, ξ) = ξ +

∞∑
n=2

Γ(µ)mn

n!(Γ(λ(n− 1) + µ))

ξn

Wλ,µ(m)
. (18)

Theorem 6.1. If λ, µ,m > 0 and for some γ (0 ≤ γ < 1) the condition (12) is satisfied
then G(λ, µ,m, ξ) ∈ γ − UCV.

Proof. To prove that G(λ, µ,m, ξ) ∈ γ − UCV from Lemma 3.2, we have to prove that
∞∑
n=2

n[n(1 + γ)− γ]
Γ(µ)mn

n!Wλ,µ(m)Γ(λ(n− 1) + µ)
≤ 1.

Now
∞∑
n=2

n[n(1 + γ)− γ]
Γ(µ)mn

n!Wλ,µ(m)Γ(λ(n− 1) + µ)

=
1

Wλ,µ(m)

∞∑
n=2

[(γ + 1)(n− 1) + 1]
Γ(µ)mn

(n− 1)!Wλ,µ(m)Γ(λ(n− 1) + µ)

=
1

Wλ,µ(m)

[
(γ + 1)

∞∑
n=2

Γ(µ)mn

(n− 2)!Γ(λ(n− 1) + µ)
+

∞∑
n=2

Γ(µ)mn

(n− 1)!Γ(λ(n− 1) + µ)

]

=
1

Wλ,µ(m)
[(γ + 1)m

Γ(µ)

Γ (µ+ λ)
Wλ,µ+λ(m) + Wλ,µ(m)−m]

≤1, from (12).

Thus, the proof of Theorem 6.1 is complete. �

Theorem 6.2. Let λ, µ,m > 0 and for some γ (0 ≤ γ < 1) the inequality

Γ(µ)(γ + 2)mWλ,µ+λ(m) ≤Wλ,µ(m)Γ (µ+ λ)

is satisfied then G(λ, µ,m, ξ) ∈ γ − UCV.

Proof. To prove that G(λ, µ,m, ξ) ∈ γ − UCV it is sufficient to prove that
∞∑
n=2

n(n− 1)
Γ(µ)mn

n!Wλ,µ(m)Γ(λ(n− 1) + µ)
≤ 1

γ + 2
.

Now
∞∑
n=2

n(n− 1)
Γ(µ)mn

n!Wλ,µ(m)Γ(λ(n− 1) + µ)

=

∞∑
n=2

Γ(µ)mn

(n− 2)!Γ(λ(n− 1) + µ)

=
1

Wλ,µ(m)
m

Γ(µ)

Γ (µ+ λ)
Wλ,µ+λ(m),

≤ 1

γ + 2
, by the given hypothesis.

Thus the proof of Theorem 6.2 is established. �
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Theorem 6.3. If λ, µ,m > 0 and for some δ > 0 the inequality (14) is satisfied then
G(λ, µ,m, ξ) ∈ Cδ.

Proof. The proof of above theorem is similar to that of Theorem 6.1. Therefore, we omit
the details involved. �
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