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OPERATORS, FRAMES AND CONVERGENCE OF SEQUENCES OF

BESSEL SEQUENCES

Mohammad Ali Dehghan1, Mehdi Mesbah 2

Let H be a separable Hilbert space and let B be the set of all Bessel sequences in

H. We give a C∗-algebra structure to B and we study some properties of multiplication

and adjoint that we define there. By introducing the notion of convergence of a sequence

of elements in B, we determine whether important properties of the sequence is preserved

under the convergence. An interesting result in operator theory helps us to write a Bessel

sequence as a multiple of a sum of arbitrary finite number of orthonormal bases for H.

Some characterization of Riesz bases and classification of frames and dual frames with

respect to frame operators and positive operators are studied.
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1. Introduction

Frames were first introduced in 1952 by Duffin and Schaeffer [12] in the study of non-

harmonic Fourier series. After 30 years, Young [21], Daubechies, Grossmann and Meyer [10]

reintroduced frames and they used them as bases in Hilbert spaces and especially in L2(R).
In 1989, Grochenig [13] generalized frames to Banach spaces. Recent researches show that

frame theory has applications in pure and applied mathematics, harmonic analysis, engi-

neering, differential and operation equations, and even quantum communication.

Frames have basis-like properties without being bases. In a Hilbert space, a frame can

be used to find many different representations of a vector with respect to itself. In addition,

the construction of frames is easier than the construction of orthonormal bases. These and

many applications of frames demonstrate the interest of studying them. We will briefly

recall some definitions and basic properties of frames. For more details, see [7] and [15].

A frame for a nonzero separable Hilbert space H, is a sequence of elements {fk}∞k=1 in H,

for which there are positive constants A and B satisfying

A∥f∥2 ≤
∞∑
k=1

|< f, fk >|2 ≤ B∥f∥2,

for all f ∈ H. The numbers A and B are called lower and upper frame bounds, respectively.

If A = B, it is called a tight frame and for A = B = 1 it is a Parseval or a normalized tight

frame. A sequence F = {fk}∞k=1 in H is called a Bessel sequence with Bessel bound B if the

second part of the above inequality holds.

Proposition 1.1. Let F = {fk}∞k=1 be a sequence in H and TF : {ck}∞k=1 7−→
∑∞

k=1 ckfk,

be a relation from ℓ2(N) into H. Then
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(i) F is a Bessel sequence if and only if TF is a well-defined linear mapping from

ℓ2(N) into H;

(ii) F is a frame for H if and only if TF is a well-defined linear mapping from ℓ2(N)
onto H.

Indeed in each case of the above proposition TF is a bounded linear operator. The

operator TF in the Proposition 1.1 and its adjoint

T ∗
F : H −→ ℓ2(N), T ∗

F f = {< f, fk >}∞k=1,

are called the pre-frame operator (or the synthesis operator) and the analysis operator of

F , respectively. When F is a frame for H, the operator

SF : H −→ H, SF f = TFT
∗
F f =

∞∑
k=1

< f, fk >fk

is called the frame operator of F . The frame operator SF is bounded, invertible, self-adjoint

and positive. The sequence {S−1
F fk}∞k=1 is a frame with frame operator S−1

F . Clearly,

< SF f, f >=
∑∞

k=1 |< f, fk >|2, and for a Parseval frame F = {fk}∞k=1, SF = IH, where H

is a complex Hilbert space [7, Section 5.1].

By definition a Riesz basis for H is a sequence of the form {Uek}∞k=1, where {ek}∞k=1

is an orthonormal basis for H and U : H −→ H is a bounded bijective operator. A Reisz

basis for H is a Schauder basis which is also a frame for H, and then Proposition 1.1 implies

that F is a Riesz basis for H if and only if TF is an invertible operator from ℓ2(N) onto H.

A frame that is not a Reisz basis is said to be overcomplete( or redundant) [7, Section 5.2].

Let F = {fk}∞k=1 be a frame forH with the frame operator SF , then f =
∑∞

k=1< f, S−1
F fk >fk,

for all f ∈ H. The frame {S−1
F fk}∞k=1 is called the canonical dual frame of F . Whenever

F = {fk}∞k=1 is a frame for H, by definition a frame G = {gk}∞k=1 is a dual frame of

F if f =
∑∞

k=1< f, gk >fk, for all f ∈ H. It is well-known that if G is a dual frame

of F , then
∑∞

k=1< f, gk >fk =
∑∞

k=1< f, fk >gk for all f ∈ H . If F = {fk}∞k=1 is an

overcomplete frame for H, then there exist frames G = {gk}∞k=1 ̸= {S−1fk}∞k=1 for which

f =
∑∞

k=1< f, gk >fk, for all f ∈ H. A frame is a Riesz basis if and only if it has a unique

dual frame (see [7, Chapter 5] and [15, Chapter 2]).

We denote the set of all Bessel sequences for H by B and the set of all frames for H

by F. It is clear that B is a vector space and F is a subset of B, but F is not its subspace.

Recently, we observed that the authors in [9], by giving a structure of Banach space to B in

such a way that its norm topology induced by the operator norm topology on B(ℓ2(N),H),

determined the connected components of the set F in B, by an interesting technique. The

authors in [2], by a kind of continuation of the work [9] and using a bijection between B and

B(H), characterized some subsets of B associated to different classes of operators in B(H).

Here, by using a relatively different method with the works in [9] and [2], in Section 2,

we introduce and study convergence of a sequence of Bessel sequences in H. By using some

interesting results in operator theory we study some topological properties of important

subsets of B such as frames, Riesz bases and overcomplete frames and then we investigate

the convergence of sequences in these subsets of B. In Section 3 we give a structure of

C∗-algebra to B and we study some properties of multiplication and adjoint in B. By using

an important theorem in operator theory in Section 4 we show that a Bessel sequence can be

written as a multiple of a sum of arbitrary finite number of orthonormal bases in B. Finally,

in Section 5 according to invertible positive operators in B(H) we give a partition of frames

and we determine all classes of dual frames for frames with the same frame operator. Also

some characterization of Riesz bases will be studied in Section 5.
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2. Convergence of Sequences of Frames

For Hilbert spaces H and K, we denote by B(K,H) the Banach space of all bounded

operators from K into H, B(H) = B(H,H), by R(K,H) the set of all invertible operators

in B(K,H), R(H) = R(H,H), by O(K,H) the set of all non-invertible surjective operators

in B(K,H), O(H) = O(H,H), by F (K,H) the set of all surjective operators in B(K,H),

F (H) = F (H,H) and by U(K,H) the set of all surjective isometry operators in B(K,H)

and U(H) = U(H,H).

Now, we recall some elementary results from operator theory that for instance can be

found in [1] and [8].

Proposition 2.1. Let T be an operator in B(K,H), then

(i) T is a co-isometry (i.e. T ∗ is an isometry) if and only if TT ∗ = IH.

(ii) T is a surjective isometry if and only if TT ∗ = IH and T ∗T = IK .

Proposition 2.2. R(K,H), O(K,H) and F (K,H) are all open subsets of B(K,H) with

respect to the operator norm topology on B(K,H).

Let E0 = {e0n}∞n=1 be an arbitrary orthonormal basis for H. From now on we consider

E0 as a fixed orthonormal basis for H, and TE0 : {ck}∞k=1 7−→
∑∞

k=1 cke
0
n, which is clearly a

surjective isometry from ℓ2(N) onto H.

Because of ∥TE0∥ = ∥T−1
E0

∥ = 1, the assignment T 7−→ TT−1
E0

suggests an isometric

isomorphism from B(ℓ2(N),H) onto B(H) with respect to their corresponding operator

norms (∥T∥ = ∥TT−1
E0
TE0∥ ≤ ∥TT−1

E0
∥ ≤ ∥T∥).

For each T ∈ B(H)(or B(ℓ2(N),H)) we denote by nul(T ) and def(T ) the cardi-

nal numbers dimKerT and dimKerT ∗, respectively. Then it follows from the work of

Bouldin [4] that:

Proposition 2.3. Let T be in B(H)(or B(ℓ2(N),H)). T belongs to the closure (operator

norm closure) of R(H)(or R(ℓ2(N),H)) if and only if nul(T ) = def(T ) or the range of T

is not closed.

Now we define a norm on B that makes it into a Banach space. For each F in B we

define ∥F∥ := ∥TF ∥, where TF is the pre-frame operator of F . This is well-defined because

for each F in B , TF is unique. For each F and G in B, we have TF+G = TF + TG and this

together with the completeness of B(ℓ2(N),H) imply that (B, ∥.∥) is a Banach space, and

the mapping ψ : B → B(ℓ2(N),H) by ψ(F ) = TF is an isometric isomorphism.

Proposition 2.4. Let F be a Bessel sequence in B.

(i) F is a Parseval frame for H if and only if TF is a co-isometry in B(ℓ2(N),H).

(ii) F is an orthonormal basis for H if and only if TF is a surjective isometry in

B(ℓ2(N),H).

We denote the set of all overcomplete frames for H by O, the set of all Riesz bases

for H by R, the set of all Parseval frames for H by P and the set of all orthonormal bases

by U, then by Proposition 2.1 and Proposition 2.4, P = {F ∈ B : TFT
∗
F = IH} and

U = {F ∈ B : TFT
∗
F = IH, T

∗
FTF = Iℓ2(N)}.

Theorem 2.1. For Banach space (B, ∥.∥) we have:

(i) F, R and O are all open subsets of B.

(ii) P is a closed subset of B. Moreover, P is closed relative to F.

Proof. (i) It is an immediate consequence of Proposition 2.2 and considering of the isometric

isomorphism ψ from B onto B(ℓ2(N),H).
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(ii) We define S : B → B(H) by S(F ) = SF = TFT
∗
F , for each F in B. We consider

the operator norm topology on B(H). Let F0 ∈ B and ε > 0. Since ∥TF ∥ = ∥T ∗
F ∥, for each

F in B, we have

∥TFT ∗
F − TF0T

∗
F0
∥ ≤ ∥TF − TF0∥(1 + 2∥TF0∥),

for each F in B with ∥F − F0∥ < 1. Now by choosing δ = min{1, ε/(1 + 2∥F0∥)}, the

continuouity of S at F0 arises. Because of {IH} is closed in B(H), the continuouity of S on

B implies S−1({IH}) is closed in B. But since S−1({IH}) = {F ∈ B : TFT
∗
F = IH} = P,

P ⊂ F and F is open in B, we conclude that P is a closed subset of B and it is closed

relative to F. �

Theorem 2.2. (i) If F is in R̄, then F is not in O.

(ii) If F is in Ō, then F is not in R.

(iii) The set U ⊂ R is closed in B.

(iv) The set P \U ⊂ O is closed in B.

Proof. (i) Let F ∈ R̄, then TF ∈ R(ℓ2(N),H). If TF is surjective, then T ∗
F is injective and

since by Proposition 2.3, dimKerTF = dimKerT ∗
F , TF ∈ R(ℓ2(N),H). Hence F ∈ R and F

is not in O. If TF is not surjective, then F is not in F = R ∪O and so F is not in O.

(ii) Let F ∈ Ō. If F ∈ O, then F is not in R. If F is not in O, then F is a limit

point of O and each neighborhood of F must intersect O. Now by Theorem 2.1, R is open

in B, so F is not in R.

We have Ū ⊂ R̄ and P \U ⊂ Ō. Parts (i) and (ii) of the theorem imply R̄∩O = ϕ =

R ∩ Ō. Then Ū ∩ (P \U) = ϕ = (P \U) ∩U. By Theorem 2.1(ii), P = U ∪ (P \U) is a

closed set, so Ū and P \U are subsets of P. Two previous phrases imply Ū ⊂ U ⊂ R and

P \U ⊂ P \U ⊂ O. Hence U and P \U are closed in B, and we obtain (iii) and (iv). �

Now we give the definition of convergence of sequences in B.

Definition 2.1. Let {Fn}∞n=1 be a sequence of Bessel sequences in B.

(i) We say that {Fn}∞n=1 converges (uniformly) to some F in B and we write Fn −→ F

if TFn −→ TF with respect to operator norm topology in B(ℓ2(N),H).

(ii) We say that {Fn}∞n=1 converges strongly to some F in B and we write Fn−→stF

if and only if TFn(x) −→ TF (x), for all x ∈ ℓ2(N), the convergence occurring in the space

H, for any fixed x.

Now, a question which arises is to determine whether orthonormal basis, Riesz basis,

Parseval frame, overcomplete frame are preserved under the convergences.

Theorem 2.3. Let H be an infinite dimensional separable Hilbert space and let {Fn} be a

sequence of Bessel sequences in B such that Fn −→ F for some F ∈ B. Then:

(i) If each Fn is in R, then F is in R or F is in B \ F.
(ii) If each Fn is in O, then F is in O or F is in B \ F.
(iii) If each Fn is in P, then F is in P.

(iv) If each Fn is in U, then F is in U.

(v) If each Fn is in P \U, then F is in P \U.

Proof. (i) By definition, since {Fn}∞n=1 in R converges (uniformly) to some F in B, then F

is in R̄ , the norm closure of R. Hence Theorem 2.2(ii) implies that F ∈ R or F ∈ B \ F.
(ii) Similar to part (i), F ∈ Ō, and by Theorem 2.2(ii), F ∈ O or F ∈ B \ F.
Clearly, (iii) is a direct consequence of Theorem 2.1(ii). Moreover, parts (iv) and (v)

are also immediate consequences of parts (iii) and (iv) of Theorem 2.2, respectively.

�
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Proposition 2.5. Let each Fn = {fnk
}∞k=1 and F = {fk}∞k=1 be Bessel sequences in B.

Then Fn−→stF if and only if for each k ∈ N, fnk
−→ fk in H.

Proof. Since ∥TFnδk − TF δk∥ = ∥fnk
− fk∥, the result easily arises. �

While, the uniform limit of a sequence of overcomplete frames (Riesz basis) for H

could not be a Riesz basis(an overcomplete frame) for H, the strong limit of such sequences

could be.

Example 2.1. (i) Suppose F = {ek}∞k=1 be an orthonormal basis for H and Fn = {e1, ..., en−1, en, en, en+1, en+2, ...}
for each n ∈ N. Then each Fn is an overcomplete frame for H and for each k ∈ N,

∥TFnδk − TF δk∥ =


√
2 if n < k,

0 if n ≥ k.

(1)

So by Proposition 2.5, Fn−→stF .

(ii) Let F1 = {ek}∞k=1 be an orthonormal basis for H, and for each n ≥ 2, Fn =

{fnk
}∞k=1, where fn1 = en and

fnk
=


ek−1 if 2 ≤ k < n+ 1,

ek if k ≥ n+ 1.

(2)

Clearly, each Fn is a Riesz basis for H. Then in H,

fk := lim
n→∞

fnk
=


0 if k = 1,

ek−1 if k ≥ 2.

(3)

We set F = {fk}∞k=1, since fnk
−→ fk (k ∈ N), by Proposition 2.5, Fn−→stF , where

F is an overcomplete frame for H.

3. Multiplication and Adjoint of Frames

Here we decide to define a multiplication on the Banach space B(ℓ2(N),H) with

respect to the fixed orthonormal basis E0 that makes it into a Banach algebra. Naturally,

from the isometric isomorphism ψ : B(ℓ2(N),H) −→ B(H), T 7−→ TT−1
E0
, we can define the

multiplication of T and L in B(ℓ2(N),H) by

T ∗ L = ψ−1((TT−1
E0

)(LT−1
E0

)) = TT−1
E0

L.

Clearly the Banach space B(ℓ2(N),H) together with this multiplication is a complex

algebra and in addition its operator norm satisfies the multiplicative inequality, ∥T ∗ L∥ ≤
∥T∥∥L∥ (T,L ∈ B(ℓ2(N),H)).

Thus, B(ℓ2(N),H) is a Banach algebra. For T ∈ B(ℓ2(N),H), T ∗ TE0 = T = TE0 ∗ T
and ∥TE0∥ = 1 and it is clear that this unit element TE0 is unique. Indeed B(ℓ2(N),H) is

a non-commutative unital Banach algebra which is isometrically isomorphic to the Banach

algebra B(H).

Again, naturally from ψ, we can define an involution

~ : T 7−→ ψ−1((TT−1
E0

)∗) = TE0T
∗TE0 = T~

of B(ℓ2(N),H) into itself.

Proposition 3.1. B(ℓ2(N),H) is a C∗-algebra isometric ∗-isomorphic to B(H).
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Definition 3.1. Let F = {fk}∞k=1 and G = {gk}∞k=1 be two Bessel sequences in B with pre-

frame operators TF and TG, respectively. We define multiplication of F and G with respect

to E0, or E0-multiplication of F and G, to be the Bessel sequence F ∗G with the pre-frame

operator TF∗G = TFT
−1
E0
TG and we denote it by {fk ∗ gk}∞k=1.

Remark 3.1. Consider two Bessel sequences F = {fk}∞k=1 and G = {gk}∞k=1 in B, and the

orthonormal basis E0 = {e0k}∞k=1 for H. Then we have

gk =
∑∞

n=1 < gk, e
0
n > e0n, and fk ∗ gk =

∑∞
n=1 < gk, e

0
n > fn.

As an immediate consequence of the preceding definition, we can claim that the

multiplication ∗ preserves Riesz basis, orthonormal basis, Parseval frame and overcomplete

frame:

Theorem 3.1. Let F and G be in B. Then:

(i) If F and G are Riesz bases, then F ∗G and G ∗ F are Riesz bases.

(ii) If F and G are orthonormal bases, then F ∗G and G ∗ F are orthonormal bases.

(iii) If F and G are Parseval frames, then F ∗G and G ∗ F are Parseval frames.

(iv) If F and G are overcomplete frames, then F ∗ G and G ∗ F are overcomplete

frames.

Proof. (i) Since TF and TG the pre-frame operators of F and G, respectively, are invertible

in B(ℓ2(N),H), TF∗G = TFT
−1
E0
TG the pre-frame operator of F ∗ G is also invertible in

B(ℓ2(N),H).

(ii) By (i) F ∗ G is a Riesz basis. Clearly, the frame operator of F ∗ G, SF∗G = IH.

Hence F ∗G and similarly G ∗ F are orthonormal bases.

(iii) Since SF = IH and SG = IH, similar to the proof of (ii), we have SF∗G = IH
and hence F ∗G and similarly G ∗ F are Parseval frames.

(iv) Clearly, TF∗G = TFT
−1
E0
TG is surjective. But TF∗G is not injective, because of TG

is not. Hence F ∗G is an overcomplete frame. �

Corollary 3.1. If one of the frames F and G is overcomplete, then F ∗ G and G ∗ F are

overcomplete.

For each F in B, F ∗ E0 = E0 ∗ F = F and ∥E0∥ = ∥TE0∥ = 1. It is clear that B

can be considered as a unital Banach algebra with unit element E0. Moreover, for F in B

we define F~ to be the Bessel sequence in B with the pre-frame operator TF~ = TE0T
∗
FTE0

and we denote it by {f~k }∞k=1. Obviously ~ : F 7−→ F~ defines an involution of B into itself

and so we have:

Proposition 3.2. B is a C∗-algebra isometric ∗-isomorphic to B(ℓ2(N),H).

The following lemma which is the corollary of the Proposition 5.29 in [11] gives us an

interesting property of the collection of invertible operators on a Hilbert space.

Lemma 3.1. [11, Corollary 5.30] If H is a Hilbert space, then R(H) the collection of

invertible operators in B(H) is arcwise connected.

In particular, R(H) is connected and we have the following result.

Proposition 3.3. Let H be an infinite dimensional separable Hilbert space. The set F is

disconnected and R is a clopen (closed and open) connected component of F with respect to

the uniform topology on B.

Proof. By Theorem 2.1(i) F, R and O are open in B, so R and O are nonempty open

relative to F. Since F is the disjoint union of R and O, so F is disconnected. By Theorem
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2.2(i) (or directly from disconnectedness of F) R̄ ∩ O = ∅. Then R̄ ∩ F = R and R is

closed relative to F. Since by the result after Lemma 3.1 R(H) ⊂ B(H) is connected, so

Proposition 3.1 and Proposition 3.2 imply that R is connected. Moreover,the closure of R

relative to F is R. Hence R is a component of F and the proof is complete. �

Remark 3.2. For Bessel sequence F = {fk}∞k=1 in B,

f~k = TF~δk = TE0T
∗
F e

0
k = TE0(

∞∑
n=1

< T ∗
F e

0
k, δn > δn) =

∞∑
n=1

< e0k, fn > e0n.

An element T in the Banach algebra B(ℓ2(N),H) is invertible ( or more precisely, E0-

invertible) if and only if there is an element T
′
in B(ℓ2(N),H) such that T ∗T ′

= T
′∗T = TE0 .

Remark 3.3. Obviously T is invertible in the Banach space B(ℓ2(N),H)(i.e. there is an

element T
′ ∈ B(H, ℓ2(N)) such that TT

′
= IH and T

′
T = Iℓ2(N)) if and only if T is

E0-invertible in the Banach algebra B(ℓ2(N),H). It is clear that the E0- inverse of an

element T in the Banach algebra B(ℓ2(N),H) is unique and we denote it by T⊣. In fact

T⊣ = TE0T
−1TE0 .

Definition 3.2. A Bessel sequence F = {fk}∞k=1 in B is called invertible with respect to E0

or E0-invertible and its inverse is denoted by F⊣ = {f⊣k }∞k=1 if TF is E0- invertible in the

Banach algebra B(ℓ2(N),H).

Remark 3.4. F is E0- invertible in B if and only if F ∈ R.

Proposition 3.4. (i) (R, ∗) is a non-abelian group in B.

(ii) (U, ∗) is a subgroup of (R, ∗).

Proof. Let F , G be in R, then by Theorem 3.1(i) F ∗ G ∈ R. The binary operation ∗ is

associative in R, because of B is a Banach algebra. Since E0 is the unit element of B, it is

the identity element of R. For F in R, by the Remark 3.3, F is E0- invertible and so F⊣ is

E0- invertible. Hence F
⊣ is in R and (R, ∗) is group in B.

(ii) Let E and F be in U. Then E ∗ F⊣ corresponds to TE∗F⊣ in B(ℓ2(N),H). But

TE∗F⊣ = TET
−1
E0
TF⊣ = TET

−1
E0

(TE0T
−1
F TE0) = TET

−1
F TE0 ,

which is clearly a surjective isometry in B(ℓ2(N),H) and so E ∗ F⊣ is in U. Hence U is a

subgroup of R. �

Proposition 3.5. Let F = {fk}∞k=1 be a Riesz basis for H. Then we can write the E0-

inverse of F , F⊣ = {f⊣k }∞k=1, with f
⊣
k =

∑∞
n=1 < e0k, f̃n > e0n (k ∈ N), where, {f̃n}∞n=1 is the

unique dual frame of the Riesz basis F .

Proof. Let SF be the frame operator of F . Then the unique dual frame of F is {S−1
F fk}∞k=1 =

{f̃k}∞k=1, and since e0k =
∑∞

n=1 < e0k, S
−1fn > fn, we have

f⊣k =
∞∑

n=1

< e0k, f̃n > e0n.

�

Corollary 3.2. If F = {fk}∞k=1 is an orthonormal basis for H, then

F⊣ = {
∞∑

n=1

< e0k, fn > e0n}∞k=1,

and E⊣
0 = E0.
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4. Bessel Sequences and Orthonormal Bases

About unitary operators, there exist interesting well-known results in operator theory.

We present one of them in our manner that we want to use. It can be found in [14] and [16].

Theorem 4.1. Let H be a separable Hilbert space. If T ∈ B(H) and ∥T∥ ≤ 1 − 2
n (n =

3, 4, . . .), then T = 1
n (U1 + . . .+ Un) with U1, . . . , Un in U(H).

Similar to the work of Casazza [6], we have the following immediate consequences of

Theorem 4.1.

Proposition 4.1. Let F = {fk}∞k=1 be a Bessel sequence for H. Then for each 0 < ε < 1,

there are an integer n ≥ 3 and orthonormal bases Ei = {eik}∞k=1(i = 1, 2, 3, . . . , n) such that

fk = ∥F∥
εn (e1k + . . .+ enk ) (k ∈ N).

Proof. We have ∥F∥ = ∥TF ∥ = ∥TFT−1
E0

∥. If we set T = ε
TFT−1

E0

∥TFT−1
E0

∥ , then T ∈ B(H), ∥T∥ < 1

and so there is an integer n ≥ 3 such that ∥T∥ < 1 − 2
n . Now by Theorem 4.1, there are

unitary operators U1, . . . , Un in B(H) such that T = 1
n (U1 + . . .+ Un). Then

fk = TF δk = TFT
−1
E0
e0k =

∥F∥
εn

(U1e
0
k + . . .+ Une

0
k) =

∥F∥
εn

(e1k + . . .+ enk ),

where {eik}∞k=1 (i = 1, 2, . . . , n) are orthonormal bases for H. �

Proposition 4.2. Let F = {fk}∞k=1 be a Bessel sequence in B. Then for each integer n ≥ 3,

we can write F as a multiple of a sum of n orthonormal bases in B.

Proof. Let n ≥ 3 be an integer. We can choose 0 < ε < 1 such that ε ≤ 1 − 2
n . By setting

T = ε
TFT−1

E0

∥TFT−1
E0

∥ , we have T ∈ B(H) and ∥T∥ = ε ≤ 1 − 2
n . Now by Theorem 4.1, there are

unitary operators U1, . . . , Un such that T = 1
n (U1 + . . .+ Un), and since ∥F∥ = ∥TFT−1

E0
∥,

fk = TF δk =
∥F∥
εn

(e1k + e2k + ...+ enk ),

where, {Uie
0
k}∞k=1 = {eik}∞k=1 (i = 1, ..., n) are orthonormal bases for H. �

5. A Partition of Frames and some Characterization of Riesz Bases

In this section we will concern to an equivalence relation on the set of all frames F

for H and then we study some results about Riesz bases for H.

First we modify a result in [18] that we want to use it.

Proposition 5.1. Let {fk}∞k=1 be a frame for H with bounds A, B and that S is its frame

operator. Let L : H → H be a bounded operator. Then {Lfk}∞k=1 is a frame for H with

bounds ∥L†∥A, ∥L∥B if and only if L is surjective, where L† is the pseudo-inverse of L.

Moreover the frame operator for {Lfk}∞k=1 is LSL∗.

Proof. First, suppose that {Lfk}∞k=1 is a frame for H and SL is its frame operator. Let

f ∈ H, then

f =

∞∑
k=1

< f, S−1
L Lfk > Lfk, and {ck}∞k=1 = {< f, S−1

L Lfk >}∞k=1 ∈ ℓ2(N).

But TL{ck}∞k=1 =
∑∞

k=1 ckLfk ∈ H, where TL is the pre-frame operator of {Lfk}∞k=1. Since

{ck}∞k=1 ∈ ℓ2(N) and {fk}∞k=1 is a frame for H,
∑∞

k=1 ckfk converges unconditionally in H

and also the boundedness of L implies f = L(
∑∞

k=1 ckfk) and hence L is surjective. For
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the opposite implication, see [7, Corollary 5.3.2]. Now clearly, for all f ∈ H, SLf = LSL∗f.

Thus SL = LSL∗. �

Here we will attend to frames that have the same frame operator. As an immediate

consequence of Proposition 5.1 we have :

Proposition 5.2. Let {fk}∞k=1 be a frame for H with frame operator S. If L is a bounded

operator in which {Lfk}∞k=1 is also a frame for H, then {fk}∞k=1 and {Lfk}∞k=1 have the

same frame operator if and only if S = LSL∗.

Proposition 5.3. Let F = {fk}∞k=1 and G = {gk}∞k=1 be two frames for H with analysis

operators T ∗
F and T ∗

G, respectively. Then F and G have the same frame operator if and only

if ∥T ∗
F f∥ = ∥T ∗

Gf∥, for all f ∈ H.

Proof. The frame operators of F and G are SF = TFT
∗
F and SG = TGT

∗
G, respectively. Since

∥T ∗
F f∥2 =< T ∗

F f, T
∗
F f >=< TFT

∗
F f, f >=< SF f, f >, and ∥T ∗

Gf∥2 =< SGf, f >, for all

f ∈ H, the result is attained. �

Note: Since the subtraction of SF and SG is a self-adjoint operator, the proof of the

above proposition holds for the both cases of real and complex Hilbert spaces.

Definition 5.1. Let F and G be two elements of the set of all frames for H. We say that

F is in frame operator relation to G and we write F ∼ G if F and G have the same frame

operator S. Evidently, ∼ is an equivalence relation on F. We say F is frame operator

equivalent (or briefly f.o-equivalent ) to G if F ∼ G.

It is well-known that the frame operator of any frame is a bounded, invertible, self-

adjoint and positive operator. It is easily seen that every bounded, invertible, self-adjoint

and positive operator on H is the frame operator of some frame for H.

Proposition 5.4. Let S be a bounded, invertible, self-adjoint and positive operator on a

Hilbert space H and let {ek}∞k=1 be a Parseval frame for H. Then {fk}∞k=1 = {S1/2ek}∞k=1

is a frame for H with frame operator S.

Proof. The frame operator of the Parseval frame {ek}∞k=1 is the identity operator I : H → H.

By Proposition 5.1, {fk}∞k=1 = {S1/2ek}∞k=1 is a frame for H and its frame operator is

S1/2I(S1/2)∗ = S. �

Let F = {fk}∞k=1 be an element of F with the frame operator S. Since an element

of F is in the class [F ] if and only if its frame operator is S, we can represent [F ] by [S],

where [S] is the set of all frames in F with the same frame operator S. Now by Proposition

5.4, F =
∪
[S], where the union carry over all bounded, invertible, self-adjoint, and positive

operators on H.

Proposition 5.5. Let S be a bounded, invertible, self-adjoint and positive operator on a

Hilbert space H. Then

[S] = {{fk}∞k=1 : fk = S1/2ek and {ek}∞k=1 is a Parseval frame for H}

Proof. We must show that: (i) {fk}∞k=1 is a frame for H; (ii) S is the frame operator of

{fk}∞k=1; and (iii) every frame with frame operator S is of the form {S1/2ek}∞k=1, where

{ek}∞k=1 is a Parseval frame.

By Proposition 5.4, (i) and (ii) hold. Now, let {gk}∞k=1 be any frame for H with frame

operator S. Then {S−1/2gk}∞k=1 is a Parseval frame ( see, [7, Theorem 5.3.4]). For each

k ∈ N, set ek = S−1/2gk , then {gk}∞k=1 = {S1/2ek}∞k=1, where {ek}∞k=1 is a Parseval frame

for H and the proof is complete. �



84 Mohammad Ali Dehghan, Mehdi Mesbah

Remark 5.1. As an especial case of Proposition 5.5,

[I] = {{ek}∞k=1 : {ek}∞k=1 is a Parseval frame for H},

where I is the identity operator on H.

Remark 5.2. Let S and S
′
be two bounded, invertible, self-adjoint and positive operators

on a Hilbert space H. Then by definition of [S] and [S
′
] and the uniqueness of the frame

operator of a frame for H we have [S] = [S
′
] if and only if S = S

′
.

Now we give some characterizations of Riesz bases.

Theorem 5.1. A Riesz basis for H is a sequence of the form {Uek}∞k=1 , where {ek}∞k=1

is an orthonormal basis for H and U : H → H is a bounded, invertible, self-adjoint and

positive operator.

Proposition 5.6. Let {fk}∞k=1 and {gk}∞k=1 be two Riesz bases for H such that {fk}∞k=1 ∈ [S]

and {gk}∞k=1 ∈ [P ]. Then there exists a unitary operator U : H → H such that gk =

P 1/2US−1/2fk, ∀ k ∈ N.

Proof. Suppose that {fk}∞k=1 ∈ [S] and {gk}∞k=1 ∈ [P ] are Riesz bases for H. By the proof

of Theorem 5.1 , there exist orthonormal bases {ek}∞k=1 and {e′k}∞k=1 such that fk = S1/2ek
and gk = P 1/2e′k, ∀ k ∈ N. Now there exists a unitary operator U : H → H such that

Uek = e′k, ∀ k ∈ N (see [7, Theorem 3.2.7]). But ek = S−1/2fk , e′k = US−1/2fk, and so

P 1/2US−1/2fk = gk, ∀ k ∈ N. �

Corollary 5.1. Let {fk}∞k=1 be a Riesz basis for H with frame operator S. Then the Riesz

bases for H with the same frame operator S are precisely the family {S1/2US−1/2fk}∞k=1

where U : H → H is a unitary operator.

Let F = {fk}∞k=1 be a frame in the class [S]. We decide to find all of the classes of

its dual frames. To this end, first we state the following two lemmas [7, Lemma 5.7.2 and

Lemma 5.7.3] and then we give a theorem that is another characterization of Riesz bases in

terms of their pre-frame and frame operators.

Lemma 5.1. Let {fk}∞k=1 be a frame for H with pre-frame operator T and {δk}∞k=1 be

the canonical orthonormal basis for ℓ2(N). The dual frames for {fk}∞k=1 are precisely the

families {gk}∞k=1 = {V δk}∞k=1, where V : ℓ2(N) → H is a bounded left-inverse of T ∗.

Lemma 5.2. Let {fk}∞k=1 be a frame for H with pre-frame operator T .Then the bounded

left-inverses of T ∗ are precisely the operators having the form

S−1T +W (I − T ∗S−1T ),

where W : ℓ2(N) → H is a bounded operator and I denotes the identity operator on ℓ2(N).

Theorem 5.2. Let F = {fk}∞k=1 be a frame for H with frame operator S and pre-frame

operator T . Then F is a Riesz basis for H if and only if

T ∗S−1T = I.

Proof. Let G = {gk}∞k=1 be a dual frame for F with pre-frame operator T
′
and frame

operator S
′
. Then we have f =

∑∞
k=1 < f, gk > fk =

∑∞
k=1 < f, fk > gk, and T

′
T ∗f =

T
′
({< f, fk >}∞k=1) =

∑∞
k=1 < f, fk > gk = f, ∀f ∈ H. Thus T

′
T ∗ = I and T

′
is a

left-inverse of T ∗. Now, Lemma 5.2 implies that

T
′
= S−1T +W (I − T ∗S−1T ),
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for some bounded operator W : ℓ2(N) → H, and here I is the identity operator on ℓ2(N).
But since I, S−1 are self-adjoint and TT ∗ = S, straightforward calculation gives that

S
′
= T

′
T

′∗
= (S−1T +W (I − T ∗S−1T )(T ∗S−1 + (I − T ∗S−1T )W ∗)

= S−1 +W (I − T ∗S−1T )W ∗ (5.1).

From Lemma 5.1, we conclude that the set of all pre-frame operators of all dual frames

for F is the set of all bounded left inverses of T ∗. Hence the set of all frame operators of all

dual frames for F is

D = {S−1 +W (I − T ∗S−1T )W ∗ :W ∈ B(ℓ2(N),H)}.

Let F be a Riesz basis for H. Then the unique dual frame for F is the canonical dual frame

{S−1fk}∞k=1 with frame operator S−1 ( see [15, Corollary 2.26]). Therefore, in this case D =

{S−1}, andW (I−T ∗S−1T )W ∗ = 0, for all bounded operatorsW : ℓ2(N) → H (in particular

for the surjective isometry W : ℓ2(N) → H, {ck}∞k=1 7→
∑∞

k=1 ckek, where {ek}∞k=1 is an

orthonormal basis for H). Then we have T ∗S−1T = I. The converse implication is an

immediate consequence of (5.1) and the well-known fact that a Riesz basis is a frame which

has precisely one dual frame. �

By considering the proof of Theorem 5.2, we have the following corollary.

Corollary 5.2. Let F = {fk}∞k=1 be in [S] with pre-frame operator T . Then the classes

of dual frames for F are precisely the classes having the form [S−1 +W (I − T ∗S−1T )W ∗],

where W : ℓ2(N) → H is a bounded operator.
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