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OPERATORS, FRAMES AND CONVERGENCE OF SEQUENCES OF
BESSEL SEQUENCES

Mohammad Ali Dehghan®, Mehdi Mesbah 2

Let H be a separable Hilbert space and let B be the set of all Bessel sequences in
H. We give a C*-algebra structure to B and we study some properties of multiplication
and adjoint that we define there. By introducing the notion of convergence of a sequence
of elements in B, we determine whether important properties of the sequence is preserved
under the convergence. An interesting result in operator theory helps us to write a Bessel
sequence as a multiple of a sum of arbitrary finite number of orthonormal bases for .
Some characterization of Riesz bases and classification of frames and dual frames with
respect to frame operators and positive operators are studied.
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1. Introduction

Frames were first introduced in 1952 by Duffin and Schaeffer [12] in the study of non-
harmonic Fourier series. After 30 years, Young [21], Daubechies, Grossmann and Meyer [10]
reintroduced frames and they used them as bases in Hilbert spaces and especially in L?(R).
In 1989, Grochenig [13] generalized frames to Banach spaces. Recent researches show that
frame theory has applications in pure and applied mathematics, harmonic analysis, engi-
neering, differential and operation equations, and even quantum communication.

Frames have basis-like properties without being bases. In a Hilbert space, a frame can
be used to find many different representations of a vector with respect to itself. In addition,
the construction of frames is easier than the construction of orthonormal bases. These and
many applications of frames demonstrate the interest of studying them. We will briefly
recall some definitions and basic properties of frames. For more details, see [7] and [15].

A frame for a nonzero separable Hilbert space 3, is a sequence of elements {fx}5, in X,
for which there are positive constants A and B satisfying

AIFIP <D 1< £, fe > < BISIP,
k=1

for all f € . The numbers A and B are called lower and upper frame bounds, respectively.
If A= B, it is called a tight frame and for A = B =1 it is a Parseval or a normalized tight
frame. A sequence F' = {f;}72, in H is called a Bessel sequence with Bessel bound B if the
second part of the above inequality holds.

Proposition 1.1. Let F = {f;}32, be a sequence in H and Tp : {cp}72y — D pey kS
be a relation from (%(N) into 3. Then
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(i) F is a Bessel sequence if and only if Tr is a well-defined linear mapping from
2(N) into H;

(ii) F is a frame for 3 if and only if Tr is a well-defined linear mapping from ¢?(N)
onto J.

Indeed in each case of the above proposition Tx is a bounded linear operator. The
operator T in the Proposition 1.1 and its adjoint

TF*‘%—>€2(N)7 T;‘f:{< fafk: >}ZO:17

are called the pre-frame operator (or the synthesis operator) and the analysis operator of
F, respectively. When F' is a frame for 3, the operator

o0
Sp:H — 3,  Spf=TeTpf =Y <f fx>/
k=1
is called the frame operator of F'. The frame operator Sg is bounded, invertible, self-adjoint
and positive. The sequence {Sp'fx}3, is a frame with frame operator Sp'. Clearly,
< Spfof>=> 1 |< [, fx >|?, and for a Parseval frame F = {f;}72,, Sk = I3, where H
is a complex Hilbert space [7, Section 5.1].

By definition a Riesz basis for H is a sequence of the form {Uex}{2, where {e;}32,
is an orthonormal basis for H and U : H — H is a bounded bijective operator. A Reisz
basis for H is a Schauder basis which is also a frame for H, and then Proposition 1.1 implies
that F' is a Riesz basis for H if and only if Tr is an invertible operator from ¢?(N) onto H.
A frame that is not a Reisz basis is said to be overcomplete( or redundant) [7, Section 5.2].

Let F = {fx}?2, be a frame for J{ with the frame operator Sg, then f = >"3° | < f, Sz' fx > fx,
for all f € H. The frame {S;'f}72, is called the canonical dual frame of F. Whenever
F = {fe}2, is a frame for H, by definition a frame G = {gx}7>, is a dual frame of
Fif f =370 ,</f.gk>fk forall f € H. It is well-known that if G is a dual frame
of F, then > 22 < fogx >fi = Dper < fofu >gx for all f € H . If F = {fp}3>, is an
overcomplete frame for H, then there exist frames G = {gx}72; # {S™ fi}2, for which
f=> 1y < f.gr >fi forall f €. A frame is a Riesz basis if and only if it has a unique
dual frame (see [7, Chapter 5] and [15, Chapter 2]).

We denote the set of all Bessel sequences for H by B and the set of all frames for H
by F. It is clear that B is a vector space and F' is a subset of B, but F' is not its subspace.
Recently, we observed that the authors in [9], by giving a structure of Banach space to B in
such a way that its norm topology induced by the operator norm topology on B(¢?(N), (),
determined the connected components of the set F in B, by an interesting technique. The
authors in [2], by a kind of continuation of the work [9] and using a bijection between B and
B(3), characterized some subsets of B associated to different classes of operators in B(J).

Here, by using a relatively different method with the works in [9] and [2], in Section 2,
we introduce and study convergence of a sequence of Bessel sequences in H. By using some
interesting results in operator theory we study some topological properties of important
subsets of B such as frames, Riesz bases and overcomplete frames and then we investigate
the convergence of sequences in these subsets of B. In Section 3 we give a structure of
C*-algebra to B and we study some properties of multiplication and adjoint in B. By using
an important theorem in operator theory in Section 4 we show that a Bessel sequence can be
written as a multiple of a sum of arbitrary finite number of orthonormal bases in B. Finally,
in Section 5 according to invertible positive operators in B(H) we give a partition of frames
and we determine all classes of dual frames for frames with the same frame operator. Also
some characterization of Riesz bases will be studied in Section 5.
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2. Convergence of Sequences of Frames

For Hilbert spaces H and K, we denote by B(K,H) the Banach space of all bounded
operators from K into H, B(H) = B(H,H), by R(K,H) the set of all invertible operators
in B(K,H), R(K) = R(H,H), by O(K,H) the set of all non-invertible surjective operators
in B(K,H), O(H) = O(H,H), by F(K,H) the set of all surjective operators in B(K,H),
F(H) = F(H,H) and by U(K,H) the set of all surjective isometry operators in B(K, XH)
and U(H) = U(H, H).

Now, we recall some elementary results from operator theory that for instance can be
found in [1] and [8].

Proposition 2.1. Let T be an operator in B(K,H), then
(i) T is a co-isometry (i.e. T* is an isometry) if and only if TT* = Is.
(i1) T is a surjective isometry if and only if TT* = Iy¢ and T*T = I .

Proposition 2.2. R(K,H), O(K,H) and F(K,H) are all open subsets of B(K,H) with
respect to the operator norm topology on B(K,X).

Let Ey = {e9}22, be an arbitrary orthonormal basis for 3. From now on we consider
Ey as a fixed orthonormal basis for H, and T, : {cx}72, — D opey ckes, which is clearly a
surjective isometry from ¢%(N) onto .

Because of |Tg,| = HTE;H = 1, the assignment T — TTE(,l suggests an isometric
isomorphism from B(¢*(N),H) onto B(H) with respect to their corresponding operator
norms (|[T)] = |TT5 T, || < ITT52 ] < |T).

For each T € B(H)(or B(¢?*(N),H)) we denote by nul(T) and def(T) the cardi-
nal numbers dim KerT and dim KerT™, respectively. Then it follows from the work of
Bouldin [4] that:

Proposition 2.3. Let T be in B(H)(or B(¢*(N),H)). T belongs to the closure (operator
norm closure) of R(H)(or R((*(N),H)) if and only if nul(T) = def(T) or the range of T

1s not closed.

Now we define a norm on B that makes it into a Banach space. For each F' in B we
define ||F|| := ||TF||, where TF is the pre-frame operator of F. This is well-defined because
for each F' in B | Tp is unique. For each F' and G in B, we have Tr o = Tr + T and this
together with the completeness of B(¢?(N), ) imply that (B, ||.||) is a Banach space, and
the mapping ¢ : B — B(¢%(N), H) by (F) = Tr is an isometric isomorphism.

Proposition 2.4. Let F' be a Bessel sequence in B.
(i) F is a Parseval frame for H if and only if Tr is a co-isometry in B(¢*(N), 3).
(i) F is an orthonormal basis for H if and only if Tr is a surjective isometry in
B({?*(N), H).

We denote the set of all overcomplete frames for H by O, the set of all Riesz bases
for H by R, the set of all Parseval frames for H by P and the set of all orthonormal bases
by U, then by Proposition 2.1 and Proposition 2.4, P = {F € B : TpTj = I3} and
U={FeB:TpT; =I5, TpTr = L2 }-

Theorem 2.1. For Banach space (B, ||.||) we have:
(i) F, R and O are all open subsets of B.
(i) P is a closed subset of B. Moreover, P is closed relative to F.

Proof. (i) It is an immediate consequence of Proposition 2.2 and considering of the isometric
isomorphism ¢ from B onto B(¢?(N), H).
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(ii) We define 8 : B — B(H) by 8(F) = Sp = TpTh, for each F' in B. We consider
the operator norm topology on B(H). Let Fy € B and € > 0. Since [|TF| = ||T5]|, for each
F in B, we have

ITeTr = Tr T, | < Tr = Try[I(1 + 2[5, ),
for each F' in B with ||[F' — Fy|| < 1. Now by choosing § = min{l,e/(1 + 2||Fol|)}, the
continuouity of 8§ at Fy arises. Because of {I5¢} is closed in B(H), the continuouity of 8§ on
B implies 871 ({I5¢}) is closed in B. But since 87 '({I5c}) = {F € B : TpTs = I} = P,
P C F and F is open in B, we conclude that P is a closed subset of B and it is closed
relative to F. O

Theorem 2.2. (i) If F is in R, then F is not in O.
(ii) If F is in O, then F is not in R.
(iti) The set U C R is closed in B.
(iv) The set P\ U C O is closed in B.

Proof. (i) Let F € R, then Tr € R(¢2(N),H). If Tr is surjective, then T} is injective and
since by Proposition 2.3, dimKerTr = dimKerT}, Tr € R((?(N),H). Hence F € R and F
is not in O. If TF is not surjective, then F' is not in F = R U O and so F is not in O.

(ii) Let F € O. If F € O, then F is not in R. If F' is not in O, then F is a limit
point of O and each neighborhood of F must intersect O. Now by Theorem 2.1, R is open
in B, so F is not in R.

We have U € R and P\ U C O. Parts (i) and (ii) of the theorem imply RNO = ¢ =
RNO. Then UN(P\U) =¢ = (P\U)NU. By Theorem 2.1(ii), P=UU (P\U) is a
closed set, so U and P \ U are subsets of P. Two previous phrases imply U ¢ U C R and
P\UCP\UCO. Hence U and P\ U are closed in B, and we obtain (iii) and (iv). O

Now we give the definition of convergence of sequences in B.

Definition 2.1. Let {F,}>2; be a sequence of Bessel sequences in B.

(i) We say that { F;,}22, converges (uniformly) to some F in B and we write F,, — F
if Tr, — Tr with respect to operator norm topology in B(¢*(N), ).

(ii) We say that {F,}°2, converges strongly to some F in B and we write F,,—*'F
if and only if Tr, (v) — Tr(x), for all x € (*(N), the convergence occurring in the space
H, for any fized x.

Now, a question which arises is to determine whether orthonormal basis, Riesz basis,
Parseval frame, overcomplete frame are preserved under the convergences.

Theorem 2.3. Let H be an infinite dimensional separable Hilbert space and let {F,} be a
sequence of Bessel sequences in B such that F,, — F for some F € B. Then:

(i) If each F,, is in R, then F is in R or F is in B\ F.

(i1) If each F,, is in O, then F isin O or F is in B\ F.

(#ii) If each F, is in P, then F is in P.

(iv) If each F,, is in U, then F is in U.

(v) If each F,, is in P\ U, then F is in P\ U.

Proof. (i) By definition, since {F},}22; in R converges (uniformly) to some F' in B, then F'

is in R , the norm closure of R. Hence Theorem 2.2(ii) implies that F € R or F € B\ F.
(ii) Similar to part (i), F' € O, and by Theorem 2.2(ii), F € O or F € B\ F.
Clearly, (iii) is a direct consequence of Theorem 2.1(ii). Moreover, parts (iv) and (v)

are also immediate consequences of parts (iii) and (iv) of Theorem 2.2, respectively.
O



Operators, Frames and Convergence of Sequences of Bessel Sequences 79

Proposition 2.5. Let each F, = {fn, }32, and F = {f,}72, be Bessel sequences in B.
Then F,—5'F if and only if for each k € N, f,, — fr in 3.

Proof. Since ||Tg, 0 — Trokll = || fn, — fl|, the result easily arises. O

While, the uniform limit of a sequence of overcomplete frames (Riesz basis) for H
could not be a Riesz basis(an overcomplete frame) for H, the strong limit of such sequences
could be.

Example 2.1. (i) Suppose F' = {ex}32, be an orthonormal basis for H and F,, = {e1, ..., €n—1,€n, €n, Ent1, €nt2, ...}
for each n € N. Then each F,, is an overcomplete frame for H and for each k € N,

V2 if n<k,
|TF, 0k — Trok|| = (1)
0 if n>k.

So by Proposition 2.5, F,—'F.
(it) Let Fy = {ex}32, be an orthonormal basis for H, and for each n > 2, F,, =
{fre 132, where f,, =e, and

€k—1 if 2<k<n+41,
ek if k>n+1.
Clearly, each F, is a Riesz basis for H. Then in I,
0 if k=1,
fi = lim f, = (3)
€k—1 if k>2.

We set F = {fx}32,, since fn, — fi (k € N), by Proposition 2.5, F,,—*'F, where
F' is an overcomplete frame for H.

3. Multiplication and Adjoint of Frames

Here we decide to define a multiplication on the Banach space B((?(N),3) with
respect to the fixed orthonormal basis Fy that makes it into a Banach algebra. Naturally,
from the isometric isomorphism v : B(¢?(N),H) — B(H), T — TTLTOI, we can define the
multiplication of T and L in B(¢?(N), ) by

T+«L=vy "((ITTg)(LTg)) =TTy L.

Clearly the Banach space B(£?(N), H) together with this multiplication is a complex
algebra and in addition its operator norm satisfies the multiplicative inequality, ||7 * L|| <
ITIIILIF (T, L € B((N), ).

Thus, B(¢?(N), H) is a Banach algebra. For T' € B({*(N),H), T+ Tg, =T = T, x T
and ||Tg,|| = 1 and it is clear that this unit element T, is unique. Indeed B(¢*(N),¥H) is
a non-commutative unital Banach algebra which is isometrically isomorphic to the Banach
algebra B(H).

Again, naturally from v, we can define an involution

®: T+ (TTg))*) = Tg,T*Tg, = T%
of B(¢*(N), ) into itself.

Proposition 3.1. B(¢*(N),H) is a C*-algebra isometric *-isomorphic to B(XH).
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Definition 3.1. Let F = {f;}72, and G = {gr}32, be two Bessel sequences in B with pre-
frame operators Tr and Tg, respectively. We define multiplication of F' and G with respect
to Ey, or Eg-multiplication of F' and G, to be the Bessel sequence F x G with the pre-frame
operator Tr.q = TFTgolTG and we denote it by {fi * gi}7 ;-

Remark 3.1. Consider two Bessel sequences F' = {f}32, and G = {gx}32, in B, and the
orthonormal basis Eg = {€)}2, for H. Then we have

gk = 2211 < glme?L > 6917 and fk * gk = Z:;ozl < gkae% > fn

As an immediate consequence of the preceding definition, we can claim that the
multiplication * preserves Riesz basis, orthonormal basis, Parseval frame and overcomplete
frame:

Theorem 3.1. Let F' and G be in B. Then:
(i) If F and G are Riesz bases, then F «+ G and G « F are Riesz bases.
(ii) If F and G are orthonormal bases, then F x G and G * F' are orthonormal bases.
(iti) If F and G are Parseval frames, then F x G and G x F are Parseval frames.
(iv) If F and G are overcomplete frames, then F x G and G x F are overcomplete
frames.

Proof. (i) Since Tr and T the pre-frame operators of F' and G, respectively, are invertible
in B((?(N),H), Tr.qg = TFTE?OlTG the pre-frame operator of F' *x G is also invertible in
B(£?(N), H).

(ii) By (i) F * G is a Riesz basis. Clearly, the frame operator of F x G, Sp.q = I.
Hence F * G and similarly G * F' are orthonormal bases.

(iii) Since Sp = Iy and S¢ = Iy, similar to the proof of (ii), we have Sp.q = I
and hence F' x G and similarly G x F' are Parseval frames.

(iv) Clearly, Trvg = TFTEOITG is surjective. But Tr.¢ is not injective, because of T
is not. Hence F * G is an overcomplete frame. ]

Corollary 3.1. If one of the frames F and G is overcomplete, then F x G and G x F' are
overcomplete.

For each F'in B, F « By = FEg x F = F and |Ey|| = ||[Tg,|| = 1. Tt is clear that B
can be considered as a unital Banach algebra with unit element Fy. Moreover, for F' in B
we define F'® to be the Bessel sequence in B with the pre-frame operator Tre = Tg, T Tk,
and we denote it by {fZ}72,. Obviously ® : F —— F'® defines an involution of B into itself
and so we have:

Proposition 3.2. B is a C*-algebra isometric x-isomorphic to B(£*(N), H).

The following lemma which is the corollary of the Proposition 5.29 in [11] gives us an
interesting property of the collection of invertible operators on a Hilbert space.
Lemma 3.1. [11, Corollary 5.30] If H is a Hilbert space, then R(H) the collection of
invertible operators in B(H) is arcwise connected.

In particular, R(H) is connected and we have the following result.

Proposition 3.3. Let H be an infinite dimensional separable Hilbert space. The set F is
disconnected and R is a clopen (closed and open) connected component of F with respect to
the uniform topology on B.

Proof. By Theorem 2.1(i) F, R and O are open in B, so R and O are nonempty open
relative to F. Since F is the disjoint union of R and O, so F is disconnected. By Theorem
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2.2(i) (or directly from disconnectedness of F) RN O = (). Then RNF = R and R is
closed relative to F. Since by the result after Lemma 3.1 R(H) C B(H) is connected, so
Proposition 3.1 and Proposition 3.2 imply that R is connected. Moreover,the closure of R
relative to F is R. Hence R is a component of F and the proof is complete. O

Remark 3.2. For Bessel sequence F = {fy}32, in B,

(o] oo
f@ =Tpedy = T, Tipeh = T, (> < TR, 0n > 0n) =) <€ fu>el
n=1

n=1

An element T in the Banach algebra B(¢?(N), ) is invertible ( or more precisely, Eo-
invertible) if and only if there is an element 7" in B(¢*(N), ) such that T+T = T"sT = Tg,.

Remark 3.3. Obviously T is invertible in the Banach space B(¢(*(N),H) (i.e. there is an
element T' € B(H,(%(N)) such that TT = Iy and T'T = Ip2vy) if and only if T is
Eqy-invertible in the Banach algebra B((*(N),H). It is clear that the Eg- inverse of an
element T in the Banach algebra B(¢*(N),H) is unique and we denote it by T™. In fact
T = TEOTilTEO.

Definition 3.2. A Bessel sequence F' = {f;}72, in B is called invertible with respect to Ey
or Eg-invertible and its inverse is denoted by F~ = {f)}32, if Tr is Eo- invertible in the
Banach algebra B(¢%(N), K).

Remark 3.4. F is Ey- invertible in B if and only if F' € R.

Proposition 3.4. (i) (R,*) is a non-abelian group in B.
(i1) (U,x) is a subgroup of (R, *).

Proof. Let F, G be in R, then by Theorem 3.1(i) F' * G € R. The binary operation * is
associative in R, because of B is a Banach algebra. Since Ej is the unit element of B, it is
the identity element of R. For F in R, by the Remark 3.3, F' is Eo- invertible and so F™ is
Eq- invertible. Hence F™is in R and (R, %) is group in B.

(ii) Let E and F be in U. Then E % F corresponds to T, p- in B(¢2(N), H). But

Tgp+ = TeTp Tes = TeTp (Te, Tr ' Try) = TeTr Ty,

which is clearly a surjective isometry in B(¢2(N),H) and so E * F™ is in U. Hence U is a
subgroup of R. O

Proposition 3.5. Let F' = {fx}3, be a Riesz basis for H. Then we can write the Ey-
inverse of F, ™ = {f1}32,, with fi; =500 < €Y, fr, > €% (k € N), where, {f,}52, is the
unique dual frame of the Riesz basis F.

Proof. Let Sp be the frame operator of F.. Then the unique dual frame of F is {Sp' fx }32, =
{fi}32, and since €) = > | < e, S7'f, > f,, we have

oo
§ ~
fo = E <eg,fn>eg.

n=1

Corollary 3.2. If F = {fi}32, is an orthonormal basis for H, then
F= {Z < e%afn > 691}120:1’
n=1

and Ey' = Ey.
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4. Bessel Sequences and Orthonormal Bases

About unitary operators, there exist interesting well-known results in operator theory.
We present one of them in our manner that we want to use. It can be found in [14] and [16].

Theorem 4.1. Let H be a separable Hilbert space. If T € B(H) and |T|| <1-2 (n =
3,4,...), then T = L(Uy + ...+ U,) with Uy, ..., U, in U(H).

Similar to the work of Casazza [6], we have the following immediate consequences of
Theorem 4.1.

Proposition 4.1. Let F = {f,}2, be a Bessel sequence for H. Then for each 0 < e <1,
there are an integer n > 3 and orthonormal bases E; = {e}}32,(i =1,2,3,...,n) such that

F
fo=1le} +...+ep) (keN).
Proof. We have |F|| = || T || = |Te T} Tf we set T = s% then T € B(H), |T] < 1
F Eg
and so there is an integer n > 3 such that ||T|| < 1 — 2. Now by Theorem 4.1, there are
unitary operators Uy, ..., U, in B(H) such that T = 1(U; + ...+ U,). Then

_ F F .
fr = TRy = TFTEoleg = %(Uleg +o A Ue)) = %(e}g +...+ep),
where {e}}?2, (i =1,2,...,n) are orthonormal bases for H. O

Proposition 4.2. Let F' = {f;,}7°, be a Bessel sequence in B. Then for each integer n > 3,
we can write F as a multiple of a sum of n orthonormal bases in B.

Proof. Let n > 3 be an integer. We can choose 0 < ¢ < 1 such that e <1 — % By setting

T = 5%, we have T € B(H) and |T|| = < 1 — 2. Now by Theorem 4.1, there are
FTg,

unitary operators Uy, ..., U, such that T = 1(U; +...+ U,), and since ||F|| = ||TFTE?01||,
F
fi =Trby = %(e}g +ep+ .. tep),
where, {U;e2}2°, = {et}22, (i =1,...,n) are orthonormal bases for K. O

5. A Partition of Frames and some Characterization of Riesz Bases

In this section we will concern to an equivalence relation on the set of all frames F'
for H and then we study some results about Riesz bases for H.
First we modify a result in [18] that we want to use it.

Proposition 5.1. Let {fi}32, be a frame for H with bounds A, B and that S is its frame
operator. Let L : 5 — H be a bounded operator. Then {Lfy}3, is a frame for 3 with
bounds ||LT||A,||L||B if and only if L is surjective, where LT is the pseudo-inverse of L.
Moreover the frame operator for {Lfy}72 is LSL*.

Proof. First, suppose that {Lfr}72, is a frame for I and Sy, is its frame operator. Let
f € 3, then

o0
F=Y_<[.S;'Lfi> Lfx, and {ex}32, = {< £, 5, Lfx >}32, € (N).
k=1
But Tr{ci}2, = > peq ¢k Lfi € H, where T}, is the pre-frame operator of {Lf}72 ;. Since

{er}e, € 2(N) and {fx}72, is a frame for H, Y72 | ¢ fi, converges unconditionally in H
and also the boundedness of L implies f = L(}_;-, ¢k fx) and hence L is surjective. For
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the opposite implication, see [7, Corollary 5.3.2]. Now clearly, for all f € H, Sy f = LSL*f.
Thus Sy, = LSL*. O

Here we will attend to frames that have the same frame operator. As an immediate
consequence of Proposition 5.1 we have :

Proposition 5.2. Let {fi}7°, be a frame for H with frame operator S. If L is a bounded
operator in which {Lfy}72, is also a frame for I, then {fi}7>, and {Lfr}?2, have the
same frame operator if and only if S = LSL*.

Proposition 5.3. Let F = {fi}2, and G = {gx}32, be two frames for H with analysis
operators Th and TE, respectively. Then F' and G have the same frame operator if and only

if \Tfl = T& s, for all f e H.

Proof. The frame operators of F' and G are Sp = TrTy and Sg = TgT¢, respectively. Since
ITEfI? =< Tpf, Tipf >=< TpThf, [ >=< Spf, f >, and ||T5f||? =< Saf, f >, for all
f € H, the result is attained. O

Note: Since the subtraction of Sr and S¢ is a self-adjoint operator, the proof of the
above proposition holds for the both cases of real and complex Hilbert spaces.

Definition 5.1. Let F and G be two elements of the set of all frames for H. We say that
F' is in frame operator relation to G and we write F' ~ G if F and G have the same frame
operator S. FEuvidently, ~ is an equivalence relation on F. We say F is frame operator
equivalent (or briefly f.o-equivalent ) to G if F ~ G.

It is well-known that the frame operator of any frame is a bounded, invertible, self-
adjoint and positive operator. It is easily seen that every bounded, invertible, self-adjoint
and positive operator on H is the frame operator of some frame for J.

Proposition 5.4. Let S be a bounded, invertible, self-adjoint and positive operator on a
Hilbert space 3 and let {ex}32, be a Parseval frame for 3. Then {fi}3, = {SY?ex}32,
1s a frame for H with frame operator S.

Proof. The frame operator of the Parseval frame {ej, }? ; is the identity operator I : H — .
By Proposition 5.1, {f,}52, = {S¥/2e;}3, is a frame for I and its frame operator is
S21(S1/2)x = 8. O

Let F' = {fx}72, be an element of F with the frame operator S. Since an element
of F is in the class [F] if and only if its frame operator is S, we can represent [F| by [S],
where [S] is the set of all frames in F with the same frame operator S. Now by Proposition
5.4, F = J[S], where the union carry over all bounded, invertible, self-adjoint, and positive
operators on K.

Proposition 5.5. Let S be a bounded, invertible, self-adjoint and positive operator on a
Hilbert space H. Then

[S] = {{/i}2, : fo = SY2%e;, and {ex}>, is a Parseval frame for ¥}

Proof. We must show that: (i) {fx}p2, is a frame for 3(; (ii) S is the frame operator of
{fx}32,; and (iii) every frame with frame operator S is of the form {S/2¢;}?2 ,, where
{ex}72, is a Parseval frame.

By Proposition 5.4, (i) and (ii) hold. Now, let {gr}?2, be any frame for H with frame
operator S. Then {S™1/2g;19° | is a Parseval frame ( see, [7, Theorem 5.3.4]). For each
k€N, set e, = S7/2gy , then {g}5, = {SY2e,}52 ., where {e;}72, is a Parseval frame
for H and the proof is complete. O
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Remark 5.1. As an especial case of Proposition 5.5,
1] = {{er}2q : {ex}tiey @s a Parseval frame for 3},
where I is the identity operator on J.

Remark 5.2. Let S and S' be two bounded, invertible, self-adjoint and positive operators
on a Hilbert space H. Then by definition of [S] and [S'] and the uniqueness of the frame
operator of a frame for H we have [S] = [S'] if and only if S = 5.

Now we give some characterizations of Riesz bases.

Theorem 5.1. A Riesz basis for H is a sequence of the form {Ue}2 | , where {ex}72
s an orthonormal basis for H and U : H — H is a bounded, invertible, self-adjoint and
positive operator.

Proposition 5.6. Let { f;}72; and {gi}52 be two Riesz bases for H such that { fi.}32, € [S]
and {gix}72, € [P]. Then there exists a unitary operator U : 3 — I such that gi =
PY2US—12f., V¥ keN.

Proof. Suppose that {f;}72, € [S] and {gx}32, € [P] are Riesz bases for 3. By the proof
of Theorem 5.1 , there exist orthonormal bases {ej,}32, and {e}}3%, such that f = S'/2¢y,
and g = Pl/zejc, V k € N. Now there exists a unitary operator U : H{ — I such that
Uer = e}, ¥k €N (see [7, Theorem 3.2.7]). But e, = S™Y2f; , e} = US™V/2f;, and so
PY2US Y2 f =g, VEEN. O

Corollary 5.1. Let {fi}32, be a Riesz basis for H with frame operator S. Then the Riesz
bases for 3 with the same frame operator S are precisely the family {51/2U571/2fk}zo:1
where U : H — H is a unitary operator.

Let F' = {fx}?2, be a frame in the class [S]. We decide to find all of the classes of
its dual frames. To this end, first we state the following two lemmas [7, Lemma 5.7.2 and
Lemma 5.7.3] and then we give a theorem that is another characterization of Riesz bases in
terms of their pre-frame and frame operators.

Lemma 5.1. Let {fi}32, be a frame for H with pre-frame operator T and {0;}7, be
the canomical orthonormal basis for (*(N). The dual frames for {fy}32, are precisely the
families {gx}32, = {V o}, where V : £>(N) — H is a bounded left-inverse of T*.

Lemma 5.2. Let {fx}32, be a frame for H with pre-frame operator T.Then the bounded
left-inverses of T are precisely the operators having the form

ST+ W(I —T*S™'T),
where W : £2(N) — H is a bounded operator and I denotes the identity operator on ¢*(N).

Theorem 5.2. Let F = {f;}%2, be a frame for H with frame operator S and pre-frame
operator T'. Then F' is a Riesz basis for H if and only if

T*S™1T =1T.

Proof. Let G = {gi}2, be a dual frame for F' with pre-frame operator T' and frame
operator S'. Then we have f = Sy < foge > =2 pey < fofx > gk, and T'T*f =
TU< fif >32) =S, < fife>g=f VfeH Thus TT* =T and T is a
left-inverse of T*. Now, Lemma 5.2 implies that

T =S 'T+W(I—T*S™'T),
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for some bounded operator W : £2(N) — H, and here [ is the identity operator on £%(N).
But since I, S~ are self-adjoint and TT* = S, straightforward calculation gives that

S =TT =(S'T+W(I-T*S'T)T*S™ ' + (I —T*S™'T)W*)
=S +w(I-Trstnyw* (5.1).

From Lemma 5.1, we conclude that the set of all pre-frame operators of all dual frames
for F' is the set of all bounded left inverses of T*. Hence the set of all frame operators of all
dual frames for F' is

D={S'+W{I-T*S'T)W*: W € B({*(N),H)}.

Let F be a Riesz basis for H. Then the unique dual frame for F' is the canonical dual frame
{S71fi.}22, with frame operator S~ ( see [15, Corollary 2.26]). Therefore, in this case D =
{S71}, and W(I-T*S~1T)W* = 0, for all bounded operators W : ¢*(N) — K (in particular
for the surjective isometry W : (2(N) — H, {ci}72; — > poy cker, where {e}5° | is an
orthonormal basis for #). Then we have T*S~'T = I. The converse implication is an
immediate consequence of (5.1) and the well-known fact that a Riesz basis is a frame which
has precisely one dual frame. |

By considering the proof of Theorem 5.2, we have the following corollary.

Corollary 5.2. Let F = {f,}72, be in [S] with pre-frame operator T. Then the classes
of dual frames for F' are precisely the classes having the form [S™' + W (I — T*S~'*TYW*],
where W : 2(N) — 3 is a bounded operator.
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