U.P.B. Sci. Bull., Series A, Vol. 82, Iss. 4, 2020 ISSN 1223-7027

LINEAR DISCRETE MULTITIME MULTIPLE RECURRENCE

Cristian Ghiu®', Raluca Tuligd®, Constantin Udriste®

The multitime multiple recurrences are common in analysis of algorithms,
computational biology, information theory, queueing theory, filters theory, statis-
tical physics etc. The theoretical part about them is little or not known. There-
fore, the aim of our paper is to formulate and solve problems concerning nonau-
tonomous multitime multiple recurrence equations. Among other things, we dis-
cuss in detail the cases of linear recurrences with constant coefficients, highlighting
in particular the theorems of existence and uniqueness of solutions.
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1. Introduction

In this paper we shall refer to linear discrete multitime multiple recurrence,
giving original results regarding generic properties and existence and uniqueness
of solutions. Also, we seek to provide a fairly thorough and unified exposition
of efficient recurrence relations in both univariate and multivariate settings. The
scientific sources used in this paper are: filters theory [2], [8], general recurrence
theory [7], [1], [13], our results regarding the diagonal multitime recurrence [3] - [5],
and multitime dynamical systems [9]-[12].

Let m > 1 be an integer number. We denote 1 = (1,1,...,1) € Z™. Also, for
each o € {1,2,...,m}, we denote 1, = (0,...,0,1,0,...,0) € Z™, i.e., 1, has 1 on
the position a and 0 otherwise. We use the product order relation on Z™.

Let M be an arbitrary nonvoid set and t; € Z™ be a fixed element. We
consider the functions Fy: {t ez | t > tl} XM — M, ae{l,2,...,m}. We fix
to € Z™, tg > t1. A first order discrete multitime recurrence of the type

x(t+ 1) = Folt,z(t)), YteZ™, t>ty, Vae€{l,2,...,m}, (1)
is called a discrete multitime multiple recurrence.
This model of multiple recurrence can be justified by the fact that a completely
integrable first order PDE system

§;<t> = Xo(t2(1), t € R,
can be discretized as: z'(t + 1o) — 2'(t) = X' (¢, z(t)), t € Z™.
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The initial (Cauchy) condition, for the PDE system, is translated into initial condi-
tion for the multiple recurrence.

2. Linear discrete multitime multiple recurrence

Let K be a field. We denote by Z one of the sets Z™ or {t ez ‘ t> tl} (with
t1 € Z™). For each o € {1,2,...,m}, we consider the functions A,: Z — M, (K),
bo: Z2 — K™ = My, 1(K), which define the recurrence

z(t+1a) = Ag(t)z(t) + bo(t), Yae{l,2,...,m}, (2)
with the unknown function z: {t € Z ‘t > to} — K" = My1(K), to € Z. This is
a particular case of discrete multitime multiple recurrence (1), with M = K™ and
Fo(t,z) = Aq(t)x + by ().

Theorem 2.1. a) If, for any (to,x0) € Z x K™, there exists at least one function
x: {t ez ‘ t> to} — K™, which, for any t > to, verifies the recurrence (2) and the
condition x(ty) = xo, then
Aa(t +15)Ap(t) = Ap(t + 1a)Aa(t), (3)
Aot +15)ba(t) + ba(t +15) = Ag(t + 14)ba (1) + bt + 14), (4)
Vie Z, Vo,0€{1,2,...,m}.

b) If the relations (3), (4) are satisfied, then, for any (tg,z9) € Z x K™, there
exrists a unique function x: {t ez | t> to} — K", which, for any t > ty verifies the
recurrence (2) and the initial condition x(tp) = x¢.

Proof. a) One applies Proposition 1.1 from [6]. The relations (2) from [6] become
Aot +15)(Ap(t)z 4+ ba(t)) + ba(t +15) = Ag(t + 1a) (Aa(t)z + ba(t)) + bg(t + 1a),
Vo € K™, YVt > t.

In the case Z = Z", the point t; is arbitrary. We deduce that the foregoing
relations are true Vz € K™, Vt € Z. Setting = 0, we obtain the relations (4). It
follows that

Ao(t +1g)Ag(t)x = Ag(t + 14) An(t)x, Vre K", Vte Z. (5)

For j € {1,2,...,n}, let ¢; = (0,...,0,1,0,...,0)" be the column of K"

which has 1 on the position j and 0 in rest. From (5) it follows:

An(t+15)Ap(t)- (el €y ... en> = Ag(t+14)Aa(t)- (el ey ... en), equivalent
to Aa(t+15)Ag(t) L, = Ag(t + 1a)Aa(t) Iy, i.e., the relations (3).

From paper [6] — Theorem 3.1 it follows b). O
Theorem 2.2. For each a € {1,2,...,m}, we consider the functions

Ag: 2 — Mp(K), by: Z™ — K™, which define the recurrence (2).

The following statements are equivalent:
i) For any a € {1,2,...,m} and any t € Z™, the matriz Ay(t) is invertible and
YVt e Z™, Vo, 5 € {1,2,...,m} the relations (3), (4) hold.
i1) For any pair (to,xo) € Z™ x K™, and any ag € {1,2,...,m}, there exists at least
one function x: {t ezm ‘ t>tg— 1a0} — K™, which, for anyt >ty — 14,, verifies
the relations (2), and also the condition xz(ty) = xg.
iii) For any pair (to,zo) € Z™ x K", and any ag € {1,2,...,m}, there exists a
unique function x: {t € Zm’t >ty — 1a0} — K", which, for any t > tog — 1g,,
verifies the relations (2), and also the condition x(ty) = x¢.
iv) For any to,t1 € Z™, with t; < to, and for any xo € K", there erists a unique
function x: {t ezm } t> t1} — K™, which, for any t > t1, verifies the relations (2),
and also the condition xz(tg) = xg.



Linear discrete multitime multiple recurrence 31

v) For any pair (to,x9) € Z™ x K™, there exists a unique function z: Z™ — K",
which, for any t € Z™, verifies the relations (2), and also the condition x(tg) = 0.

Proof. The equivalence of the statements i), iii), i), v) follows from [6] — Theo-
rem 3.2. Since the implication #ii) = i) is obvious, it is sufficient to prove the
implication 1) = 7).

i1) = 1): The relations (3), (4) follow from Theorem 2.1.

Let Foy: Z™ x K™ — K", Fp(t,x) = Aa(t)x + ba(t), V(t,z) € Z™ x K™. Let
ap € {1,2,...,m} and tp € Z™. Let y € K". There exists a function x(-) which
verifies (2), Vt >ty — 14, and the condition x(ty) = y.

For t = tg—14,, one obtains y = F (to— 1oy, ©(to—la,))- Since y is arbitrary,
it follows that Fi,(to — la,,-) is surjective, which is equivalent to that the matrix
Aq,(to — 1o, ) is invertible. Since tg is arbitrary, it follows that, for any ¢ € Z™, the

matrices A,,(t) are invertible; here also ag € {1,2,...,m} is arbitrary. O
Remark 2.1. If the functions Ay (-) and by () are constants, then the relations (3),
(4) become ApAg = AgA, (6)

(Ao — I)bsg = (Ag — I)ba. (7)

3. Fundamental (transition) matrix

We denote by Z one of the sets Z™ or {t € Z™ |t > t1} (with t; € Z™).
Consider the functions Ay: Z — M, (K), a € {1,2,...,m}, which define the
linear homogeneous recurrence
z(t+ 1) = Ap(t)z(t), Vae{l,2,...,m}, (8)
with the unknown function z: {t ez ‘ t> tg} — K" = Mp1(K), to € Z.

Proposition 3.1. Suppose that the relations (3) hold true.
For each ty € Z and Xo € M, (K) there exists a unique matriz solution
X:{teZz | t >t} — My(K) of the recurrence
X(t+1y) =Aa(t)X(t), Vae{l,2,...,m}, (9)
with the condition X (tg) = Xo.

Proof. For the n recurrences which are equivalent to the matrix recurrence, we apply
Theorem 2.1. ]

For cach tg € Z, we denote x(-,t0): {t € Z ‘t > to} — My(K), the unique
matrix solution of the recurrence (9) which verifies X (tg) = I,.

Definition 3.1. Suppose that the relations (3) hold true.
The matriz function x(-,-): {(t,;s) € Z x Z|t > s} — My(K) is called
fundamental (transition) matrixz associated to the linear homogeneous recurrence (8).

For a € {1,...,m} and k € N, we define the function Cq j: Z — M, (K),

Coi(t) = { [T Aalt+ (=) 10) if k=1 0
= I if k=0.

Proposition 3.2. Suppose that the relations (3) hold true.
The matriz functions x(-) and Cq (-) have the properties:
a) x(t,s)x(s,r) = x(t,r), Vt,s,r € Z, witht > s>r.
b) x(s,s8) =1,, Vse€Z.
c) x(t+k-14,8) =Cq i(t) - x(t,s), Vke N, Vt,s € Z, witht > s.
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d) Co ik (t) =x(t+Ek-14,t), VkeN, Vt € Z.

e) Co k(t+p-15)Cs, p( ) =Cj, p(t-f- k-14)Cq k(t), Vk,pe N, Vt € Z.

) For anyt s € Z with t > s, we have
x(t,s) = H Copo—sa(sh, oy s 40T ™) Oy pm_gm (s, 82, ..., 8™ s™).

g) For any t,s € Z with t > s, the fundamental matriz x(t,s) is invertible if
and only if, for any o € {1,2,...,m} and any t € Z, the matriz Ay (t) is invertible.

h) For any o € {1,2,...,m}, any k € N and for any t € Z, Cy (t) is
invertible if and only if, for any a € {1,2,...,m} and any t € Z, the matriz A, (t)
1s invertible.

i) If Va € {1,2,...,m}, Vt € Z, the matrix A,(t) is invertible, then
Vt, s, tg € Z, with t > s > to, we have x(t,s) = x(t,t0)x(s,t0)

J) If Vo € {1,2,...,m}, the matriz functions Ay(-) are constant, then

Co k(1) = AX Vk eN,Vt € Z™, VYa € {1,2,...,m},

x(t,s) = Agtl_sl)AgLsz) . Aﬁf{”*sm), Vt,s € Z™, witht > s.

Proof. b) It follows directly from the definition of the function x(-,-).

a) We fix s,r, with s > r. Let Y7, Ya: {t € Z‘t > s} — M, (K),

}/1(75) = X(t7 S)X(S’ T)v YQ(t) = X(t,T), Vi > s.

Then Yi(t + 15) = x(t + 1a, s)x(s,7) = Aa(t)x(t, s)x(s,7) = Aa(t)Y1(1);

Yi(s) = x(5, $)x(5,7) = Tnx(s,7) = x(5,7) = Ya(s).

It follows that the functions Y7 (-) and Y3(-) are both solutions of the recurrence
(9) and coincide for ¢t = s. From uniqueness property, it follows that Y7 (-) and Ya(-)
coincide; hence x(t,s)x(s,r) = x(t,7), Vt > s.

¢) Induction after k. For k = 0, the statement is obvious.

For k = 1: the equality x(t + 1a,s) = Cq,1(t) - X(t, s) is equivalent to

X(t+ 1a,8) = Aa(t)x(t, s), that is true, according to the definition of x(-, s).
Let k > 2. Suppose the statement is true for £ — 1 and we shall prove for k.

Xt+k-1a,8) = Ag(t+ (k—1) - 1o)x(t+ (k —1) - 14, )

=Aa(t+ (k—1) 14)Co x—1(t) - x(¢, s)

=Au(t+ (k=1)-14) - Aa(t+ (k—2) - 14) - ... - An(t + 14) An(t) - (¢, 9)

= a,k(t)X(tv 3)'

d) In the equality from the step c), we set s =¢. We obtain x(t + k - 14,t) =
Ca,k(t)X(ta t) = Ca,k(t)'

e) We use the step d). Cqo i (t +p-15)Cp p(t) =

=x{t+p-lg+k-lo,t+p-1g)x(t+p-15t)=x{t+p-1g+ k- 14,1).

Analogously, one shows that Cg ,(t + k- 14)C4 k(t) x(t+k-1a+p-1g,1).

f) One uses the step ¢): x(t,5) = x(t — (t' —s') -1, + (t* —s1) - 11,5) =

= it — (' —s) 1)yt — () — ) 11.5) =

= Cl7t1_s1(sl,t2, - ,tm)x((sl,tQ, co, ™), s) =

= Cl’tl_sl(sl,tQ, e ,tm)x((sl,tz, co,t™M) — (t2 — 82) <19 + (t2 — 32) . 12,5) =

=Cpp_ga(sh 2, ™) C 2 (8", 8%, ™) — (2 — §%) - 1o)-

x((sh 8%, 1) — (7 — %) 1g,8) =

= C17t1_31(51,t2, . tm)C’th_sz(sl, 263 ,tm)x((sl, S35, 5) etc.

g) and h) If all the matrices x(-,-) are invertible, then from the equality

X(t+ 1a,8) = Aa(t)x(t, s) it follows that A,(t) is invertible.
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If all matrices A,(t) are invertible, then C, (t) is invertible since Cy, 1(t) is
either I,,, or a product of the matrices Aq(+).

If all the matrices C,, k(t) are invertible, then x(t, s) is invertible since x(t, s)
is a product of matrices C,, (), according to the step f).

i) The matrix x(s,tp) is invertible. From the relation

x(t,s)x(s,t0) = x(t,t0), we obtain x(t,5) = x(t, t0)x(s,t0) "

4) The relation Cy, 1 (t) = AL follows directly from the definition of Cy, 1(t).
The second equality required is obtained using the step f). O

The following result can be proved easily by direct computation.

Proposition 3.3. We denote by Z one of the sets Z™ or {t ezZm ‘t > t1} (with
11 € Zm).

We consider the functions Ay: Z2 — Mu(K), a € {1,2,...,m}, for which
the relations (3) are satisfied. Let (tg,x9) € Z x K™. Then, the unique function
x: {t ez | t> to} — K" = My 1(K), which, for any t > to, verifies the recurrence
(8) and the initial condition xz(ty) = xo, is

a;(t) = X(t,to)wo, Vit > t().

IfVa € {1,2,...,m}, the matriz functions A,(-) are constant, then
(t'—t) 4 (t*~t3) (™ —tg")
$(t) == Al A2 el Am o, Vit 2 to. (11)

Remark 3.1. Let us suppose that Aa(-), ba(-) verify the relations (3) and (4). Let
Tk {t €z ‘ t> to} — K™ be a particular solution of the recurrence (2).

Note that for any other solution of the recurrence (2), x: {t €z ‘ t> tg} —
K™, the function z(-) — y(-) is a solution of the recurrence (8). Hence, according to
Proposition 3.3, we find z(t) — y(t) = x(t,t0) (z(to) — y(to)), Vt > to.

It follows that the unique function x: {t €z ‘ t > tg} — K", which, for any
t > to, verifies the recurrence (2) and the initial condition x(ty) = xo, is

() = x(t,t0) (z0 — y(to)) +y(t), Vt>to.
Theorem 3.1. We consider the functions Ay : {t ez ‘ t > tg} — My (K), a €
{1,2,...,m} (with to € Z™), for which the relations (3) are satisfied. We denote

V(ty) = {x: {t ezZm ‘ t> to} — K" ‘ x is solution of the recurrence (8)}

a) The set V(to) is a K - vector space of dimension n.

b) Let {Ul,UQ, . ,vn} be a basis of K™. For j € {1,2,...,n}, we consider

yj: {t €Z™ |t > to} — K™ as solution of the recurrence (8)

which verifies y;j(to) = v;. Then the set {y1(-),y2(:),...,yn(-)} is a basis of the
vector space V (tp).

¢) If z1(t), z2(t), ..., zn(t) are the columns of the matriz x(t,ty) (fort > to), then
{z1(-),22(:),--.,2a(")} is a basis of the vector space V(to).

Proof. a) and b): One verifies automatically that V (¢y) is a vector space.

Let z(-) € V(o) and let zy = x(tp). There exist a1, ag, ..., a, € K such that
To = ai1V1 + a2V2 + ...+ ApUp.

Let y(-) = a1y1(-) + agy2(:) + ... + anyn(-). Obvious that y(-) € V(tp). We
find: y(to) = a1y1(to) + a2ya(to) + . .. + anyn(to) = a1v1 + agva + ... + apv, = xp.
Since z(-) and y(-) are solutions of the recurrence (8) and z(ty) = y(to) = =o,
by uniqueness property (Theorem 2.1), it follows that z(-) = y(-); consequently



34 Cristian Ghiu, Raluca Tuliga, Constantin Udriste

z(-) = a1y () + a2y2(-) + - . . + anyn(-). We have proved that {y1(-), y2(-),. .., yn(-)}
is a system of generators for the vector space V (tg).

Let ai, ag, ..., a, € K such that a1y1(-) + agy2(:) + ... + apyn(:) = 0, ie.
n

a1y1(t) + agy2(t) + ...+ apyn(t) = 0, Vt > tg. For t = ty, we obtain Zajyj(to) =0,
n Jj=1

ie., Zajvj = 0. Consequently a; = 0, Vj. Hence yi(-),42(-),...,yn(:) are linearly

j=1
independent, i.e., {yl(-),yg(-), ... ,yn(-)} is a basis of the vector space V(tp); the
dimension of this space is obviously n.
c¢) Let {61,62, .. .,en} be the canonical basis of the space K™. Hence I, =

(61 e ... en). From the definition of the matrix x(¢, o), it follows that z;(-) is the

solution of the recurrence (8) which verifies z;(tg) = e;, Vj. According to step b), it
follows that {21(-),22(-),...,2n(")} is a basis of the vector space V (to). O

3.1. Case of non-degenerate matrices

In this subsection, we consider the functions A, : Z™ — M, (K),

a € {1,2,...,m}, such that for any o € {1,2,...,m} and any ¢ € Z™, the matrix
A (t) is invertible and Vt € Z™, Vo, f € {1,2,...,m} the relations (3) hold.

According to Theorem 2.2, for any pair (tg,xo) € Z™ x K", there exists a

unique function x: Z™ — K™, which verifies the recurrence
x(t+1y) = Ag(W)x(t), VteZ™, VYaec{l,2,...,m}, (12)
and the condition z(ty) = xo.

In this case the fundamental matrix can be defined on the set Z"™ x Z™. For
eachtg € Z™, x(-,to): Z™ — M, (K) is the unique matrix solution of the recurrence
X(t+1a) = Aa(t) X (t), Va € {1,2,...,m}, which verifies X (t9) = I,,. In this way we
obtain the fundamental matrix associated to the recurrence (12), i.e., the function
X(+y ) ZM X 2™ — My(K).

The statements in Proposition 3.2 are maintained with few changes.

The statement a) rewrites x(¢, s)x(s,r) = x(t,r), Vt,s,r € Z™. The proof is
similar to those given in the proof of Proposition 3.2.

The point i) becomes x(t,s) = x(t,t0)x(s,t0) ", Vt,s,tqg € Z™. For tg = t,
we obtain x(t,s) = x(s,t)"%, Vt,s € Z™.

One can easily show that the point j) can be completed in this way:

if Va € {1,2,...,m}, the matriz functions A,(-) are constant, then
_ p(th=sh) 4 (t7=s?) (t™—s™) m
x(t,s) = Aj A, co Ay , Vt,seZ™.

The analog of Proposition 3.3 is:
The solution of the recurrence (12) which verifies x(ty) = xo, is
x: 2™ — K", x(t) = x(t, to)ze, VteZ™.

IfVa € {1,2,...,m}, the matriz functions A,(-) are constants, then
(t'—t5) 4 (*~t3) (™ —tg") m
z(t) = A} A, co A xg, VteZ™.

Let tg € Z™. We denote W (t9) = {x: 7" — K" ‘ x is solution of the recurrence (12)}.

With a proof similar to those for Theorem 3.1, we obtain:
a) The set W (tg) is a K - vector space of dimension n.
b) Let {’1)1,1}2, .. ,vn} be a basis of K™. For j € {1,2,...,n}, we consider
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yj: Z™ — K™ as solution of the recurrence (12) which verifies y;(to) = v;. Then the
set {y1(-),2(-), ..., yn(-)} is a basis of the space W (to).

c) If z1(t), z2(t), ..., zn(t) are the columns of the matriz fundamental x(t,to), then
{z1(-),22(:), ..., 2a(")} is a basis of the space W (to).

4. Solving the linear discrete multitime multiple recurrence
with constant coefficients

Let A1, Ao, ..., Ay € M, (K) be constant matrices such that A, Ag = AgA,,
Vo, 5 € {1,2,...,m}. Let ty € Z™ and zp € K™. According to Proposition 3.3, the
function z: {t € Z™ |t > to} — K", given by the formula (11), is the solution of

the recurrence 2(t+1a) = Aaz(t), Yae{1,2,...,m}, (13)
which verifies xz(tg) = zo. If Va, A, is invertible, then according to results in
Subsection 3.1, the recurrence (13) has a unique solution x: Z™ — K™ which verifies
x(tp) = xo. This is defined by the same formula (11), but for any t € Z™.

We shall use the following result.

Theorem 4.1. Let K be a field and let F # (0, F C M, (K), such that any two
matrices from F commute. If any matriz in F is diagonalizable (over K ), then there
exists an invertible matrizc T € M, (K), such that VA € F, AD(A) € M, (K), D(A)
diagonal matriz, for which A = TD(A)T~!.

We shall denote by diag(dy;ds;...;d,) € M, (K), the diagonal matrix, which
has on the principal diagonal the elements di,do, ..., d,, in this order.

If the matrix A € M,,(K) has the columns ¢1, g2, ..., ¢,, we shall denote

A= col(qi;q2;- - -3 qn)-
Theorem 4.2. Let Ay, Ag, ..., Ay € My (K) be diagonalizable matrices (over K ),
such that AqAg = AgAq, Yo, B € {1,2,...,m}.

Let T = col(vy;v2;...50,) € My (K) be an invertible matriz such that

Ay =T -diag(M.a; Aoas -3 na) - T Yae{1,2,...,m},
where M o, A2.as - -+, Ana € K (such T exists, according to Theorem 4.1).

Then, Y(to,x0) € Z™ x K", the solution of the recurrence (13), which verifies

x(to) = o, is x: {teZm\t>to}—>K

ZCJ(H/\N Doy, vt =10, (14)

where (c1,¢a,...,¢5) =T~ xo.

If Vo, the matriz A, is invertible, then the recurrence (13) has a unique so-
lution z: Z™ — K™ which verifies x(ty) = xo. This solution is defined also by the
formula (14), but for any t € Z'™.

Proof. According to formula (11), for any ¢ > ¢y, we have

z(t) = ( ﬁ Agkftg)xg = ( ﬁ (T - diag(M a3 A2as- -3 Ana) - Tﬁl)ta_tg>x0

a=1

o o ta oo _
(Hdmg Lo F )\2a D Vg O))-T 120

= col(v1;v9;...;Up dmg(H)\t o H)\t _ta,. H/\f;l,c:tg) Tt

a=1
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:COZ<(Of[1)\§aat8>Ula(H)\ta ta)vg;... (H)\ta ta> )-(01,02,...,%)—r

= Z CJ( H Ata_ta)

If all the matrlces A, are invertible, then we saw that the formula (11) is true
for any t € Z™. But A, is invertible iff A\;, # 0, Vj = 1,n. We notice easily that in
this case all equalities above are true for any t € Z™. O

Remark 4.1. If T = col(vi;ve;...5v,) € My (K) is the invertible matriz which
appears in Theorem 4.2, then {'01,2)2, .. .,vn} is a basis of K", and each v; is an
eigenvector for all the matrices Aq.

Remark 4.2. In the condz’tz’ons of Theorem 4.2, the fundamental matriz is

Xt to (Hdmg 1, e )\;aat a"-;)\ﬁlaojtg)>’T_1, \V/tzto

If all the mat?“zces A are invertible, then the foregoing formula is true for any
(t,to) czZ™ x Zm. oy
For A € M,,(K) and k € N, we denote S(k; A) = {In +A+O“. + A i :5&

Theorem 4.3. For a € {1,2,...,m}, we consider the matrices A, € My(K),
by € K" = M, 1(K) such that

AaAﬁ = AﬁAa, Va, 3 € {1,2,...,m} (15)
(I — Au)bg = (I, — Ag)ba, Va,B€{1,2,...,m}. (16)

Let (to,xo) € Z™ x K™. The solution of the recurrence
x(t+ 1) = Apgz(t) + b, Vae{l,2,...,m}, (17)

which verifies x(ty) = xo, is the function x: {t ezm | t > tg} — K", defined for
any t > tg by

(HA to)m + S(t! —tg; Ay) b1+Z<HAta_t0> —tﬁ ; Ag)bg,

1
if m > 2, respectively x(t) = Ai Oz + S(th — to, A1)by, if m=1.

Proof. According to Theorem 2.1 and Remark 2.1 it follows that the recurrence (17)
has a unique solution which verifies x(t9) = xo.

We prove the statement by induction on m, the number of components of ¢.
For m = 1, one verifies immediately, by direct computations, that for any ¢t > tg,
the function x(t) verifies the recurrence (17) and the condition z(ty) = zp.

Let m > 2. Suppose the statement is true for m — 1 and we shall prove it for
m. We denote t = (2,...,t™); to = (t3,...,t0).

Let (f) = z(t}, 1) = z(t$, 12, ..., t™). If t! > t}, then

z(t) = z(thf) = Ajz(t! — 1,8) + by = A3x(t! —2,1) + A1by + by =

= = Ar -k D+ A A by =

th—td 1 7 th—tl—1

=.. _A x(ty,t) + A bi+ ...+ A1 + b0y

= AT - S(¢ — th; Ap)by.

We have proved that if ¢! > t{, then z(t) = Ail_téaﬁ(f) + St — td; Ar)by;
relation which is verified immediately for ¢! = t{.
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For a € {2,...,m}, we denote 1, = (0,...,0,1,0,...,0) € Z™ ! hence
lo = (0,14). For a > 2 and t' = t}, the relations (17) become: z((t},1) + (0, 1a)) =
Az (t, 1) + ba, ie., Z(t + 14) = AgZ(t) + b, VE > 1o, Yo € {2,...,m}.

Obviously Z(tg) = z(t§,t0) = z(to) = wo. Since t has m — 1 components, from
the mductlon hypothesis follows that V¢ > to we have

(HAt 4 )x S — 12 Ay) b2+Z(HAt - ) S(t8 — 7 Ag)bs,

if m > 3, respectively () = At; o9 + S(t2 — 13 Ag)bg, if m=2.
Hence, if m > 3, for any ¢ > ¢y, we have z(t) = Ai ~lg T(f) + St —td; A)by

- Ail_t(1)< H Aff‘tg)xo A TS 2 An)by
G t! t: fa to—ty

+Y A 0( 11 4« )S(tﬁ — 10 Ag)bs + S(t' — t§; A1)y
£B=3 a=2

- (ﬁAZa_t8>x + St tO,A1 )by +Z<HAt % ) _tﬁ s Ag)bg.
a=1

If m = 2, for any ¢t > tg, we have z(t) = Ail 0F() + St —td; A1)by =

= AL Ay g+ AT RS — 135 Av)by + S(t — 1 A)b =

Theorem 4.4. Consider the matrices Ay € My (K), by € K" = My, 1(K), which
for any o, B € {1,2,...,m} satisfy the conditions (15) and (16).

a) Suppose there exists an index oy € {1,2,...,m}, for which the matrix
I, — Aq, is invertible. Let v € K", such that (I, — Aay)v = bay, i-€.
v = (I, — Aay) 'bay- Then

(In — Ag)v =by, Vae{l,2,...,m}. (18)

b) Suppose there exists v € K", such that, for any o € {1,2,...,m}, the
relations (18) are true.

Let (tg,z9) € Z"™ x K™. Then, the solution of the recurrence (17), which
verifies x(tg) = xo, is the functz’on T {t AL ‘t > to} — K™, defined for any

b= to by ( H Ata_t°> Ty —v) + v. (19)

If furthermore, Vo, the matm:c Ay is invertible, then the recurrence (17) has a
unique solution x: Z™ — K™, which verifies x(tg) = xo. This is defined also by the
formula (19), but for any t € Z™.

Proof. a) From the relation (I,, — Aq)bay = (In — Aay)ba it follows the equality:
(I, — Ax) (I, — Any)v = (In — Aag)ba = (I, — Any)(In — Aa)v = (I — Agag)ba-
Since I, — Aq, is invertible, we obtain (I, — Ay )v = bg.

b) Let z(-) be the solution of the recurrence (17), which verifies z(tg) = xo.
We denote y(+) = x(-) — v, i.e. z(-) =y(-) +v. We have

Yt +1a) +v=Aa(y(t) + v) + ba, VYae{l,2,...,m},

= y(t+1a) = Aqy(t) — (In — Ao)v + bo, Ya € {1,2,...,m}.

Since the relations (18) are true, it follows that y(-) is the solution of the
recurrence (13) which verifies y(ty) = z¢9 — v. According to Proposition 3.3, Vt > tg
we have
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)= (T1457%) - (o — o). (20)

From the equality y(t) = z(t) — v, We obtain the relation (19).

If Vo, the matrix A, is invertible, then according to the remarks in Subsec-
tion 3.1, it follows that the relation (20) is true for any ¢ € Z™; consequently, also
the formula (19) is valid for any ¢t € Z™. O
Remark 4.3. The statement: “there exists v € K™, such that, for any «, the rela-
tions (18) are true” is equivalent to the fact that the recurrence (17) has a constant
solution z(-) = v.

5. Recurrences on a monoid

Let M be a nonvoid set, let (N, -,E) be a monoid and let ¢: N x M — M be
an action of the monoid N on the set M, i.e.

©(AB,z) = ¢(A, (B,x)), ¢(e,z) =z, VA BE€EN,Vzel. (21)

For any A € N, x € M, we denote ¢(A,x) = Ax (not to be confused with the
operation of monoid N). The relations (21) become

(AB)x = A(Bz), ex =z, VYA,B¢& N,Vxe M.

We denote by Z one of the sets Z™ or {t ez ‘ t> tl} (with t; € Z™).

For each o € {1,2,...,m}, we consider the functions A,: Z — N, which

define the recurrence 2t + 1) = Au(Dz(t), Vae{1,2,...,m}, (22)
with the unknown function z: {t € Z ’ t> tg} — M, tyg € Z.
Remark 5.1. For (N, -,E) = §Mn(K), ~,In), M = K" = M,,1(K) and the action

o: Mu(K)x K" — K", @p(A,z)=Az, VAe M,(K), Vx e K",
the recurrence (22) becomes the recurrence (8).

With a similar proof with those in Theorem 2.1, it follows
Theorem 5.1. a) If, for any (to,z0) € Z X M, there exists at least one function
x: {t S } t> to} — M, which, for anyt > ty, verifies the recurrence (22) and the
condition x(ty) = xo, then

Aot +15)Ag(t)xr = Ag(t + 14)Ana(t)z, (23)
Vte Z, Ve e M, Yo, € {1,2,...,m}.

b) If the relations (23), are satisfied, then, for any (to,z9) € Z x M, there
exrists a unique function x: {t €EZ ‘ t> tg} — M, which, for any t > ty verifies the
recurrence (22) and the condition x(ty) = xg.

Now we consider the action of the monoid N on himself, £: N x N — N, defined
by (A, X)=A-X, VA X €N (“-”is the operation considered on N).

In this case, being given the functions A,: Z2 — N, a € {1,2,...,m}, the

analogue of the recurrence (22) is
X(t+1,) =Aa(t)X(t), Vae{l,2,...,m}, (24)
with the unknown function X : {t ez ‘ t> to} — N, tg € Z.

By doing like in the proof of Theorem 2.1, it is shown that
Theorem 5.2. a) If, for any ty € Z, there exists at least one function
X: {t ez ! t> tg} — N, which, for any t > tg, verifies the recurrence (24) and the
condition X (to) = E, then

Aot +15)Ap(t) = A(t + 1a)Aal(t), (25)
Vte Z, Vo, € {1,2,...,m}.

b) If the relations (25), are satisfied, then, for any (tg, Xo) € Z X N, there
erists a unique function x: {t €z ‘ t> to} — N, which, for any t > ty verifies the
recurrence (24) and the condition X (tg) = Xo.
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Definition 5.1. Suppose that the functions Ay: 2 — N, a € {1,2,...,m}, verify
the relations (25).

For each tg € Z, we denote x(-,tg): {t czZ ’ t> tg} — N the unique solution
of the recurrence (24) which verifies X (tg) = E.

The function x(-,-): {(t,s) € Z x Z|t > s} — N s called the fundamental
(transition) function associated to the recurrence (22).

This is the analog of the fundamental solution associated to the recurrence
(8), introduced in Definition 3.1.

For a € {1,2,...,m} and k € N, we consider the function C, : Z — N,

defined formally by the relation (10), replacing I,, with E, but now A,: Z — N,
hence A,(+) are not matrix functions.
Remark 5.2. If the functions Ay: Z — N, o € {1,2,...,m}, verify the relations
(25), then Proposition 3.2 can be rewritten with the help of Aa(-), Co k(+), x(-,-)
discussed in this section (instead of matrices); the proof is identically to those in
Proposition 3.2.

Analogous to Proposition 3.3, we have
Proposition 5.1. We consider the functions Ay: Z — N, a € {1,2,...,m}, for

which the relations (25) are satisfied. Let (to,z9) € Z x M. Then, the unique
function x: {t S } t> to} — M, which, for anyt > to, verifies the recurrence (22)
and the condition x(ty) = xq, is

z(t) = x(t,to)xo, Vt > to.

IfVa € {1,2,...,m}, the functions A,(-) are constant, then

(th—tg) 4 (#*—t3) (" —tg")

x(t):Al 0A2 O-...-Am 0$0, VtZtQ.

We return to the recurrence (2), i.e. x(t + 1) = Aa(t)z(t) + ba(t); where K
is a field and Ay: Z2 — M, (K), by: £ — K™ = M,,1(K) verify the relations (3)
and (4). Let z: {t € Z™ |t > to} — K" the function which, for any ¢ > t, verifies
the recurrence (2) and the condition x(tg) = xo (to € Z, xg € K").

We shall assume in addition that Va € {1,2,...,m}, Vt € Z, the matrix
A, (t) is invertible. Let x(-,-) be the transition (fundamental) matrix associated to
the linear homogeneous recurrence (8). According to Proposition 3.2, V¢t > s, the
matrix x (¢, s) is invertible. Since Yt > tg, x(t + 1o, to) = Aa(t)x(t, to) or
A (t) = x(t + 1o, to)x(t, o) 7}, it follows that the equality (2) is equivalent to

B+ o) = X(E+ Lo o) X(E t0) L2 (2) + ba(1)

= X(t+ Lo, to) Tx(t 4+ 1a) = x(t,t0) 12 (t) + x(t + 1oy to) ' ba(t).
Let Z: {t € Z™ |t > to} — K", &(t) = x(t, to) " a(t), Vt > to. Fora € {1,2,...,m},
let Ag: {teZ™[t>to} — K", Au(t) = x(t + La,to) 'balt), V> to.

We have Z(to) = x(to,to) " (to) = z(to).

From the above it follows that z(-) is a solution of the recurrence (2) which
verifies (o) = o, if and only if Z(-) is the solution of the recurrence

T(t+ 1o) = Ao(t) +2(t), Vt>ty, VYae{l,2,...,m}, (26)

which verifies Z(tg) = xo. We find that the recurrence (26) is of type (22), where:
(N,‘,E) = (K”,—i—,O), M = N = K™ and the action is

V: K" x K" - K", ¢(A,7)=A+2%, VAecK" VieK"

The relation (25) corresponding to the recurrence (26) is: ga(t—klg)—kgg(t) =
Ag(t+15) + Aa(t) == X(t + 15 + La,to) 'balt + 1) + x(t + 15,0) " bs(t)
= X(t+ 15+ Lo, t0) " bal(t + 1) + x(t + 15,t0) "'ba(t) = x(t + 1o + 1g,t0) "
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b(t+1a) +x(t+ Lo, to) tbalt) <= balt+15) + x(t+ 1o+ 15, t0)x(t + 15, t0) " bs(t)
= ba(t+1a) +X(t+ Lo+ 1a,t0)X(E+ Loy to) Tha(t) <= Aa(t+15)bs(t) +balt+15) =
Apg(t + 14)ba(t) + bg(t + 14); and this is the relation (4), which is satisfied.

Let X(-,-): {(t,s) € Z™ x Z™|t > s > to} — K" be the fundamental
function associated to the recurrence (26). According to Proposition 5.1, we have
z(t) = x(t,t0) + 0. Since x(t) = x(t,t0)x(t), it follows that

z(t) = x(t, to)wo + x(t,t0) X (£, to)-

According to Remark 5.2, the matrix x(¢,%9) writes as a sum of matrices

(~7ak() (analogue of the relation in the step f) of Propositign 3.2, but with the

operation “+ 7 instead of multiplication), and: 6a,k(t) = Z Aot + (k—3) 1),
j=1

if k> 1, and Cq,o(t) = 0; i.e. the analogue of the formula (10).

Acknowledgments

The work has been funded by the Sectoral Operational Programme Human
Resources Development 2007-2013 of the Ministry of European Funds through the
Financial Agreement POSDRU/159/1.5/S/132395.

Partially supported by Academy of Romanian Scientists. Special thanks goes
to Prof. Dr. Ionel Tevy, who was willing to participate in our discussions about
multivariate sequences and to suggest the name “multiple recurrences”.

REFERENCES

[1] M. Bousquet-Mélou, M. Petkoviek, Linear recurrences with constant coefficients: the multi-
variate case, Discrete Mathematics, 225(2000), No. 1, 51-75.
[2] E. Fornasini, G. Marchesini, Doubly-indexed dynamical systems: state-space models and
structural models, Math. Systems Theory, 12(1978), 59-72.
[3] C. Ghiu, R. Tuliga, C. Udriste and I. Tevy, Discrete diagonal recurrences and discrete minimal
submanifolds, Balkan J. Geom. Appl., 20(2015), No. 1, 49-64.
[4] C. Ghiu, R. Tuliga, C. Udriste, I. Tevy, Multitime Samuelson-Hicks diagonal recurrence, BSG
Proceedings, 22(2015), 28-37.
[5] C. Ghiu, R. Tuliga, C. Udriste, I. Tevy, Floquet theory for multitime linear diagonal recur-
rence, U.P.B. Sci. Bul. Series A, 78(2016), No. 2, 3-8.
[6] C. Ghiu, R. Tuligd, C. Udriste, Discrete multiple recurrence, U.P.B. Sci. Bul. Series A,
81(2019), No. 4, 25-38.
[7] H. Hauser, C. Koutschan, Multivariate linear recurrences and power series division, Discrete
Mathematics, 312(2012), 3553-3560.
[8] V. Prepelita, Multiple (n, m)-hybrid Laplace Transformation and applications to multidimen-
sional hybrid systems. Part I, U.P.B. Sci. Bull. Series A, 72(2010), No. 2, 105-120.
[9] C. Udriste, Multitime maximum principle for curvilinear integral cost, Balkan J. Geom. Appl.,
16(2011), No. 1, 128-149.
[10] C. Udriste, A. Bejenaru, Multitime optimal control with area integral costs on boundary,
Balkan J. Geom. Appl, 16(2011), No. 2, 138-154.
[11] C. Udriste, I. Tevy, Multitime dynamic programming for multiple integral actions, Journal of
Global Optimization, 51(2011), No. 2, 345-360.
[12] C. Udriste, Minimal submanifolds and harmonic maps through multitime maximum principle,
Balkan J. Geom. Appl., 18(2013), No. 2, 69-82.
[13] Jr. Webber, L. Charles, N. Marvan (Eds.), Recurrence Quantification Analysis, Springer, 2015.



