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MINIMIZATION OF PRODUCTION TIME IN TURNING
PROCESS CONSIDERING TOOL LIFE AND OTHER NON-
LINEAR CONSTRAINTS USING PARETO TECHNIQUE

Milo§ MADIC?, Miroslav RADOVANOVICZ, Marko KOVACEVIC?

Increase of machining efficiency in turning processes requires optimization
of cutting parameters with respect to different process performances. Over the past
years a number of optimization methods and algorithms for solving different turning
optimization problems have been proposed. This study promotes the use parameter
free optimization approach for solving multi-objective turning optimization
problems with several non-linear constraints. The proposed optimization approach
was used for determining optimal turning regimes, in terms of cutting speed, feed
rate and depth of cut, so as to simultaneously minimize production time and used
tool life while considering process constraints such as cutting force and cutting
power. The obtained optimization solutions were compared with those obtained by
the previous researchers using different optimization approaches. Demonstration of
effectiveness of the proposed optimization approach was also illustrated while
solving the extended multi-objective turning optimization problem in which surface
roughness constraint was included. Finally, considering the set of Pareto
optimization solutions, data for cutting tool and costs related to cutting tool, labor
and overhead, analysis of total cost was shown.

Keywords: Turning, multi-objective optimization, non-linear constraints, Pareto
front, production time, tool life.

1. Introduction

Turning is one of the oldest and most widespread materials machining
technology based on material removal from the workpiece in the form of chips by
using cutting tool with defined cutting geometry [1]. It represents a complex
machining process in which different performances, such as quality, production
time, productivity and production costs, are influenced in a varying amount of
different turning parameters including cutting speed, feed rate, depth of cut,
cutting tool properties, workpiece material properties, cutting fluid properties, etc.

[2].
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In order to ensure machining effectiveness and manage to achieve
appropriate balance between opposite performances, such as machining cost,
production time and machining quality, optimization of turning parameters is of
crucial importance. In most cases skilled machine operators select turning
parameter and cutting tools based on the acquired knowledge and experience as
well as considering cutting tool recommendations. Such approach is usually
conservative and results in underutilization of the machine tool and cutting tool
performances. Although such determined machining regimes are not even near
optimal they are acceptable in most cases for machining of small series of parts or
individual parts. However, in cases of machining of large series of parts and when
there is a need to satisfy given quality characteristics, optimization of turning
regimes is crucial for improving machining efficiency in terms of production time
and cost. In such cases each performance would be taken as mathematical
function of the set of turning parameters, but considering at the same time certain
process constraints such as tool life, cutting forces, available machine tool power,
cutting temperature etc. Establishing mathematical relationships between turning
parameters and process performances, as well as turning parameters and process
constraints, creates a basis for definition of different turning optimization
problems for given turning operation.

The conventional approaches for solving turning optimization problems
include analytical methods, differential calculus, application of Lagrange
multipliers method, random searches, simplex search method, pattern search
method, gradient methods and mathematical programming methods [3-10]. In
recent years modern approaches are usually based on the application of meta-
heuristic algorithms including genetic algorithm [11-13], simulated annealing
[14], harmony search algorithm [15], cuckoo search algorithm [16], flower
pollination algorithm [17], teaching-learning-based optimization algorithm [2],
particle swarm optimization [18, 19], ant colony optimization [20], scatter search
[21], artificial bee colony [22], firefly algorithm [23], etc.

An increasing number of applications of metaheuristics results from the
fact that by applying them, the previous optimization solutions have been
improved. One more reason is that conventional approaches usually have slow
convergence speed and require much computing time [13], whereby the optimal
solution convergence process depends on the chosen initial solution [24].
However, the application of metaheuristics is not without shortcomings. Among
others, one of the biggest shortcomings is that the optimality of the determined
optimization solution is impossible to prove [25]. As proved by Venkata Rao and
Kalyankar [2], many of those meta-heuristic algorithms were not handled properly
and their results were not valid (feasible). Moreover, since all these algorithms
belong to the probabilistic algorithms, fine tuning of algorithm-specific control
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parameters may be of crucial importance to decrease computation time, escape
from local minima and handle properly given optimization constraints [2, 26].

Considering above-mentioned this study proposes the use of parameter
free optimization approach based the hybridization of exhaustive iterative search
and the epsilon-constraint method. As it guaranties the optimality, in the given
discrete optimization hyper-space all solutions, constraints can be easily verified
making it very transparent and easy for practical use. In the present study, the
multi-objective turning optimization model, proposed by Sardinas et al. [11], is
adopted for determining of optimal turning parameter values for simultaneous
minimization of production time and used tool life. The multi-objective turning
optimization problem was formulated considering process constraints such as
cutting force and cutting power. Demonstration of the effectiveness of the
proposed optimization approach was illustrated while solving the extended multi-
objective turning optimization problem in which surface roughness constraint was
included. Finally, using the data for specific cutting tool and costs related to
cutting tool, labor and overhead, a cost analysis complementing the Pareto front
information, proposed by Sardinas et al. [11], for aiding the decision-making
process was implemented.

2. Multi-objective turning optimization problem formulation

The proposed optimization approach for solving multi-objective turning
optimization problems with non-linear constraints was demonstrated considering
the initial multi-objective turning optimization model given by Sardinas et al. [11]
and the obtained optimization results were discussed and compared with results
obtained by previous researchers. Moreover, the initial multi-objective turning
optimization model was expanded by including the additional constraint, i.e.
constraint on surface finish since it is inevitable part in each part drawing.

Sardinas et al. [11] applied genetic algorithm for selection of cutting
parameters, i.e. cutting speed, feed rate and depth of cut, so as to minimize two
mutually conflicting objectives, production time and used tool life. Production
time which counts for entire time required for cutting is given by:

z(min) = z4 +%[1+TTTCJ+TO 1)

where 7s is the set-up time, zrc is the tool changing time, 7o is the tool idle time, V
is the volume of the removed material, T is the tool life and M is the material
removal rate.

As the second objective, Sardinas et al. [11] considered used tool life, i.e.
the part of the entire tool life which is being consumed during the actual
machining process. The model for used tool life is given as:
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(%) = %100% 2)

Taylor’s tool life equation, relating the cutting parameters and tool life is
given by the following power model:

T(min)=CT-v“~fﬁ-a75 3

where v is the cutting speed, f is the feed rate, ap is the depth of cut, and «, £, y and
Cr are empirical constants.

For estimation of production time and used tool life Sardinas et al. [11]
used the following model for calculation of the material removal rate:

M (mm*/min) =1000-v- f -a,, (4)

The optimization problem formulation by Sardinas et al. [11] involved two
important process constraints related to a given machine tool, i.e. cutting force
and cutting power constraints. The cutting force must not be greater than a certain
maximum value (Fmax) Which, besides the selected cutting regime, depends on the
strength and stability of the given machine tool and cutting tool characteristics.
The cutting force can be computed from empirical model in the following form:

F.(N)=Cg v* - 7.l (5)

where a’, £’, y”and Cr are empirical constants.

During turning process the cutting power must not exceed the machine
tool motor power (Pm) considering transmission efficiency (7). Cutting power can
be calculated taking into account cutting speed and cutting force by the following
model:

P(kw) = e < Fn 71 (6)
60000 100

Due to the techno-technological limitations of the machine tool, cutting
tool features as well as due to the machining safety, the main cutting parameter
values are limited by the bottom and upper allowable limit:

Vmin < V(M/min) < Vo,
frin < f(mm/rev) < fax (7)
ap <ap (mm) < ap.

ax

The upper and lower limits of the main turning parameters such as cutting
speed, feed rate and depth of cut, empirical constants for the cutting force and tool
life  mathematical models, which were obtained after an experimental
investigation by Sardinas et al. [11], as well as other necessary optimization data
are summarized in Table 1. Beside these data, the data that were included in the
extended multi-objective optimization model were provided. These data are
related to tool nose radius (re), maximal surface roughness (Ramax), cost for each
tool edge (z:), labor cost (z.) and overhead cost (zo). One has to note that labor
cost is calculated assuming labor expenses of 50 EUR for eight working hours.
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After setting the values from Table 1 and normalizing constraints the final
formulation of the multi-objective turning optimization problem can be reduced

to:

Minimize: z(min)=0.2 + 219912 (1+ %) and (%) = 219912 100%
‘ap T v f ap-T
6.56. f0-917 411
Subject to: g; (N) = W <5000 (cutting force constraint) (8)
0o (KW) = V-Fe < 7.5 (cutting power constraint)
2 60000
Table 1
Multi-objective optimization model data
Parameter Value Parameter Value
Vimin 250 m/min Pm 10 kW
Vimax 400 m/min n 75%
fmin 0.15 mm/rev Fmax 5000 N
fmax 0.55 mm/rev Ts 0.15 min
Apmin 0.5 mm T7C 0.2 min
Apmax 6 mm 70 0.05 min
Ramax 3.2 um re 1.2 mm
o -3.46 Zt 5 EUR
B -0.696 Z 0.104 EUR/min
y -0.46 Zo 0.1 EUR/min
a’ -0.286 Cr 5.48-10°
yis 0.917 Cr 6.56-10°
y’ 1.1 \ 219912 mm?®

As in other machining operations the turned part must meet certain quality
characteristics. In that sense it is common that surface roughness must be smaller
than the specified maximal value (Rumax). The two most important parameters
which affect surface roughness are tool nose radius (rg) and feed rate (f). Their
effects are usually combined into a theoretical surface roughness mathematical
model in the form:

2
125f )

< Ra max

Ra (um) = r
E

After setting the values from Table 1 and including the surface roughness
constraint one obtains the extended multi-objective turning optimization problem
which is now formulated as:
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Minimize: z(min)=0.2+222912(1, 923 2nd sop) = ~229912 1095
v-f-a T v f T

6.56. f 0917 .11
028 <5000 (cutting force constraint) (10)
— v-Fe
~ 60000
g3 (um) =104.17- f2<32 (surface roughness constraint)
Formulations in Equations 8 and 10 represent nonlinearly constrained
multi-objective turning optimization problems with three continuous independent
variables.

Subject to: g;(N) =

g, (kW) < 7.5 (cutting power constraint)

3. Applied optimization approach

To handle optimization problems, as given in Equations 8 and 10, in this
study an optimization approach based on the hybridization of exhaustive iterative
search and the epsilon-constraint method was proposed. Its effective
implementation was realized in the specialized software tool “BRUTOMIZER”
[27]. This approach was attempted as it represents a parameter free optimization
approach which guaranties the optimality of the determined solutions at the cost
of performing a large number of computations that are, however, executed very
fast.

When solving an optimization problem exhaustive iterative search
systematically searches all possible solutions without the use of any heuristic only
by optimization problem’s formulation. It is one of the simplest optimization
algorithms for implementation that always finds the solution if one exists [28].
The algorithm can tackle a wide variety of problems, however is inefficient, i.e.
takes a lot of computational time for its solving. Thus its application is justified
for solving small/medium scale optimization problems where the number of
possible solutions is limited. The greatest advantage is that it guaranties the
optimality of the determined solution. In such way it is often used as a baseline
method when benchmarking other optimization algorithms or metaheuristics.

A typical Pareto multi-objective optimization problem considers a number
of objective functions which are to be maximized or minimized. In the epsilon-
constraint method the idea is to optimize one of the objective functions using the
other objective functions as constraints incorporating them in the constraint part
of the multi-objective problem formulation [29]. Thus, the mathematical
formulation can be expressed as:
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Maximize: f;(x)
Subject to: f, (x) < &y,
fa(x) <&, (11)

fn(X) < éem, xeX

where x=(x1, X2, ..., Xn) is the n-dimensional vector of decision variables, fi(x),
f2(x), ..., fm(X) are m objective functions and X is the feasible region.

Dimensional representation of the epsilon-constraint method in the case of
two objective functions which are to be minimized is given in Fig. 1.

The set of solutions laying on the curve between points A and B represents
the set of non-inferior solutions, i.e. Pareto optimal solutions, since an
improvement in one objective function requires a degradation in the other
objective function. A specific convenience of the epsilon-constraint method is that
it is possible to control the number of the generated non-inferior (efficient)
solutions by properly adjusting the number of grid points in each one of the
objective function ranges [29]. Moreover, in comparison to widely applied
weighted sum method, the epsilon-constraint method can identify a number non-
inferior solutions on a non-convex boundary.

Finally, as noted by Mavrotas [29], effective application of the epsilon-
constraint method requires the calculation of the range of the objective functions
over the non-inferior set and the guarantee of efficiency of the obtained solution.
In order to tackle these issues in this study, for the generation of the sets of non-
inferior solutions, the epsilon-constraint method was hybridized with exhaustive
iterative search ensuring at the same time optimality of the determined solutions.

A

f, Minimize: f(x)

Subject to : £, (x)s €, xeX

Objective function
space

Noninferior solutions

& f,
Fig. 1. Geometrical representation of the e-constraint method in the case of two objective
functions
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4. Results and discussion

In order to minimize both objectives (production time and used tool life)
Sardinas et al. [11], applied genetic algorithm for determination of a set of Pareto
set consisting of 14 combinations of optimal values of cutting parameter values.
However, as proved by Venkata Rao and Kalyankar [2], only six optimization
solutions are feasible, whereas the other eight violate cutting power constraint.
The Pareto front generated with the optimization solutions determined by the
proposed optimization approach and the feasible optimization solutions by
Sardinas et al. [11] are given in Figure 2.

From Figure 2 it is clear that the proposed optimization approach made a
considerable improvement in optimization results. The optimization solutions,
obtained using the proposed optimization approach, are not dominated by any
other solution obtained by GA. Moreover, improvement in the distribution of
optimization solutions can be easily perceived. It could be observed that
production time is decreased from 0.91 min to 0.855 min, however at the same
time the used tool life is increased from 4.02% to 9.5%. On the other hand, on the
far right side of the Pareto front, the used tool life can be decreased to about 2.13
% at the cost of increasing production time to 1.12 min. It has to be noted that, in
general, all solutions in the Pareto fronts are optimal solutions depending upon the
requirement of decision maker (Table 2).

=—GA =—=—Proposed optimization approach

10
9 ‘\
.8
S 7 \
£ 6 \\
S 5 \
S 4
g 3 AN
o, M
1
0
07 0.8 0.9 1 11 1.2

Production time (min)

Fig. 2. Comparison of Pareto fronts obtained by Sardinas et al. [11] and the proposed
optimization approach
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Table 2
Pareto optimal solutions determined using the proposed optimization approach

Pareto solution Producti(_)n time | Used tool life v f ap

7 (min) £ (%) (m/min) | (mm/rev) | (mm)

1 0.85445 9.489256 400 0.55 1.573
2 0.86 8.78 389 0.55 1.6

3 0.88 6.58 300 0.55 1.71

4 0.9 5.03 319 0.55 1.82

5 0.94 3.02 266 0.55 2.05
6 0.96 2.52 250 0.53 2.2

7 0.98 2.47 250 0.46 2.47

8 1 2.41 250 0.39 2.84

9 1.02 2.36 250 0.34 3.18

10 1.04 2.32 250 0.3 3.53

11 1.05 2.27 250 0.26 3.98

12 1.08 2.22 250 0.22 4.58

13 1.1 2.17 250 0.19 5.17

14 1.12 2.13 250 0.17 5.68

The results from Table 2 were compared with the optimization solution of
Venkata Rao and Kalyankar [2] and Deb abd Datta [30], who applied the TLBO
algorithm and multi-objective genetic algorithm (NSGA-II), respectively. It can
be shown that the proposed optimization approach as the TLBO and NSGA-II
algorithm determined the same solution, i.e. solution 1 (Table 2). Therefore,
considering the obtained optimization results, one can argue that the proposed
optimization approach proved its effectiveness for solving constrained multi-
objective turning optimization problem.

Now the extended nonlinearly constrained multi-objective turning
optimization problem (Equation 10) was solved using the proposed optimization
approach. The set of optimization solutions upon which the Pareto front may be
generated is given in Table 3. When comparing the obtained results (Table 3) and
the results obtained without inclusion of surface roughness constraint (Table 2) it
could be observed that because feed rate above 0.17 mm/rev is not allowable,
minimal production time is increased to 1 min. This, relatively small increase, was
obtained because somewhat smaller cutting speed is used (368 m/min instead of
400 m/min), however tripled depth of cut value is used (4.42 mm instead of 1.573
mm).

Table 3
Pareto optimal solutions while solving the extended multi-objective problem
Pareto solution Productio_n time, | Used tool life, v f a, (mm)
7 (min) £ (%) (m/min) | (mm/rev) | “P
1 1 6.32 368 0.17 4.42
2 1.03 4.98 338 0.17 4.67
3 1.05 4.09 315 0.17 4.88
4 1.07 3.33 293 0.17 5.12
5 1.09 2.73 273 0.17 5.36
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6 1.11 2.28 256 0.17 5.59
7 1.13 2.11 250 0.17 5.97
8 1.13 2.12 250 0.16 5.93
9 1.15 2.15 250 0.16 5.81

Finally, one can calculate the total production cost which consists of tool
cost, labour cost and overhead cost. It is clear that the tool cost is directly related
to the used tool life, whereas the production time affects both labour and overhead
cost. Therefore the total production cost models is as:

Ziotal EUR) =& -2, +7-2) +7-2, (12)

Considering the obtained set of optimization solutions (Table 3) and by
using the given optimization data (Table 1) one can generate Pareto front of total
cost with respect to labour and overhead cost separately (Figure 3). One can
observe a continuous increase in labour and overhead cost. However, in the case
of tool cost, for the first 7 Pareto solutions there is a decrease in tool cost and
afterwards tool cost tends to increase. Hence, the Pareto solution 7 has the
smallest total production cost of 0.336 EUR and this solution corresponds to the
minimal used tool life of 2.11% which can be beneficial for the workshops with
small and discontinuous productions. However, as noted by Sardinas et al. [11] in
special conditions production time may be far more important with respect to tool
life and/or total production cost. Consequently, in some circumstances, selection
of the Pareto solution 1 is justified.

m Tool cost (EUR)  ® Labour and overhead cost (EUR)
0.6

0.5

0.4

0.3 7

0.2

Total cost (EUR)

0.1 1

0-
1 2 3 4 5 6 7 8 9
Pareto solution
Fig. 3. Pareto front of total cost

5. Conclusions

This study proposed the use of optimization approach based on the
hybridization of exhaustive iterative search and the epsilon-constraint method for
solving turning multi-objective optimization problems with several non-linear
constraints. The multi-objective optimization problem for simultaneous
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minimization of production time and used tool life was considered for
demonstration of the effectiveness of the proposed approach as well as to compare
the optimization results with those previously obtained using different
optimization approaches. It has been observed that the proposed approach is able
to solve complex turning multi-objective optimization problems, handle non-
linear constraints and provide feasible set of well distributed Pareto optimization
solutions within reasonable computational time. The proposed optimization
approach allows the user to specify the number of sub-segments and thus the
number of Pareto optimization solutions as well as to include specific machine
tool limitations regarding the allowable values of cutting parameters making it
more convenient approach for determination of turning regimes. Finally, it has to
be noted that the optimality of Pareto optimization solutions is guaranteed.
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