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INTELLIGENT FAULT DIAGNOSIS OF ROBOT BEARING
BASED ON MULTI-INFORMATION

Ziyue WU *, Yang LIU?, Xinxing LI?, Xingxing DU?, Bing WANG!

Based on the condition assessment of thin-walled robot bearing, a fault
diagnosis method based on multi-information fusion is proposed. The vibration data
and acoustic emission (AE) data of the thin-walled robot bearing are extracted and
constructed a fusion model of multi-feature data; finally, the self-organizing map
(SOM) neural network is used to assess the fusion model. With analysis and
verification of measured data, the method can assess the fault type of thin-walled
robot bearing effectively, and it provides a new reference for condition assessment
of thin-walled robot bearing.

Keywords: Robot bearing; Multi-information fusion; Fault diagnosis; Vibration;
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1. Introduction

Nowadays, robots have been developing towards being compact and
exquisite. As key components of robots, robot bearings’ stable and safe operation
is determinant to the overall performance of the robot. Therefore, the research on
robot bearings is highly valuable both theoretically and practically.

Among all kinds of bearings, thin-walled robot bearing has been highly
favored by the robot industry thanks to its unique traits, such as being light,
exquisite, and small. And so far, a great number of experts and scholars have
researched thoroughly on robot bearings. Cai [1] analyzed the structural design of
thin-walled bearings for industrial robots. Wang [2] analyzed and studied how
thin-walled bearing rings were positioned in rotating gas fields. Jiang [3] analyzed
the deformation, stress and load distribution of the inner and outer rings of
flexible bearings while also took pre-deformation, pre-stress and actual load
conditions of the inner and outer rings of flexible bearings into consideration.
Considering the serious problems during the heat treatment process of thin-walled
light series high-precision bearing rings, Jia [4] proposed to reduce the quenching
deformation rate of the thin-walled bearing rings by using a semi-automatic
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quenching press to optimize the quenching mold pressure. In order to accurately
obtain the surface circumferential stress distribution and deformation conditions
of the bearing rings, Kashif [5] developed a new equalization algorithm, based on
Newtonian mechanics. Ostapski [6,7] used the finite element method to analyze
the deformation and stress of flexible bearings under the application of a
symmetrical radial load in the long axis region. For now, these studies mainly
focus on the structure, performance, vibration characteristics, and application
prospects of robot bearings. In terms of fault diagnosis, Sui [8] studied the new
threshold de-noising method based on stationary wavelet and discussed the fault
feature extraction method based on image technology. Based on the detailed
discussion of the noise reduction, feature extraction, current research status of
compound and intelligent fault diagnosis of rolling bearings, Deng [9] deeply
investigated several key issues involved in the feature extraction and diagnosis of
rolling bearings faults with regard to the analysis and process method of vibration
signals. Taking rolling bearings as research subject, He [10] proposed a kernel
function Eigen-matrix combined with approximate diagonalization feature fusion
method. Combining with other signal processing methods and machine learning
methods, He further investigated feature extraction, fault identification, and
performance degradation evaluation of rolling bearings. Xue [11] deeply
investigated the AE signals of aero-engine rolling bearings faults and has greatly
improved the fault recognition rate. Taking rolling bearings, one of the most
common Yyet critical components of aero-engines, as research subject, after fully
studied the vibration mechanism and signal characteristics of rolling bearings and
investigated the research status of bearing fault diagnosis both internationally and
domestically, Jiang [12] proposed a fault diagnosis method for aero-engine
bearings based on texture features. Wang [13] studied the fault diagnosis
applications of rolling bearings based on sparsely expressed mechanical signal
processing methods. Baillie [14] compared three different autoregressive models,
namely linear autoregressive model, Back-Propagation (BP) neural network,
radial basis function network, and then applied the three models in bearing fault
diagnosis, respectively. Qiu [15] extracted the weak fault features of the bearing
under the strong noise interference by optimizing the correlation of Morlet
wavelets through the minimum Shannon entropy principle parameters and using
the singular value decomposition to select the appropriate wavelet transform
scale. Kumar [16] used discrete wavelet transform to detect the outer ring fault
size of the tapered roller bearings. Also, he managed to control the error within a
small range by using Sytnlet5 wavelet to extract the fault impact information in
the signals. Since single sensor identification has certain limitations and is
susceptible to the sampling environment, while multi-sensor identification
technology has diversified the source of information, increased the fault tolerance
of the system, and improved the confidence and reliability of the system, more
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and more scholars have conducted research on multi-sensor technology. Han [17]
studied the multi-sensor information fusion fault diagnosis method based on time
series analysis and stepwise variable prediction model (AR-SVPMCD)
technology. Based on Genetic Algorithm- Back Propagation (GA-BP) neural
network’s multi-sensor information fusion method, Li [18] collected vibration
signals of both normal and abnormal operating conditions by building signal
acquisition systems and arranging accelerometer sensors around bearings. Han
[19] comprehensively discussed collection, feature extraction and feature model
construction of both acceleration signals and acoustic emission signals of rolling
bearing faults and proposed a multi-information fusion method based on BP
neural network. Based on deep belief network and multi-sensor information
fusion technology, Yu [20] investigated fault diagnosis methods of rolling
bearings. However, the research on multi-sensor is mostly based on AR-
SVPMCD technology and BP neural network while few adopted SOM neural
network modeling technology for robot bearings. By analyzing two acoustic
emission characteristic signal parameters of ringing count and peak value of
rolling bearing with three kinds of faults, including inner ring, outer ring and
rolling body, Tandoh [21] studied the influence law of bearing structure
parameters and operation parameters on ringing count and peak value, and
concluded that it is more accurate to identify faults through peak value.
Choudhary [22] studied the relationship between faults and characteristic signals
of rolling bearings in different periods, and obtained that early faults of bearings
can be detected by ringing count and the development direction of faults can be
predicted at the same time. Liu [23] used the sparse expression algorithm to
optimize the weight matrix of the local linear embedding method, so as to realize
the manifold dimension reduction of fault signals that could better reveal the
signal characteristics, and optimize the fault diagnosis mode.

SOM neural network is a competitive neural network modeled on the self-
organizing mapping function of the human brain system and has a strong
classification characteristic for input vectors. Through its continuous learning
cycle, the probability distribution of input models and the space distribution
density of connection weights tend to be the same. In view of this, based on the
SOM neural network, multi-sensor identification technology is used in this paper
to investigate robot bearings faults. Firstly, the vibration information and AE
information of faults are extracted to construct the multi-characteristic neural
network information model. Then, the dimensional and dimensionless parameters
are used to realize the fault diagnosis of robot bearings through SOM neural
network.



16 Ziyue Wu, Yang Liu, Xinxing Li, Xingxing Du, Bing Wang

2. State feature parameter selection based on multi-information fusion

Since multi-information fusion technology has the characteristic that
multi-sensor measurement results complement each other and is able to diagnose
and decide the importance of variables, its information sources are diverse and the
possibility of being influenced by environment is rather low.

Among all information fusion technologies, vibration signal detection and
AE signal detection are being used most widely. Specifically, vibration signal
detection is the most widely used detection method in engineering. But solely
using vibration signal to detect faults in the early stages has been failing to
provide ideal results since vibration signals are not only insensitive to slight faults
in the early stages, but also easily influenced by the surrounding noise signals
significantly. However, AE signal, a fault caused by the rapid energy releasing of
the component’s own structure’s part material stress concentration, is known to be
almost insusceptible to surrounding environment. Therefore, AE signal has been
applied to the fault diagnosis of components in the early stages. Undoubtedly,
fusing vibration signals and AE signals will significantly improve the accuracy
and sensitivity of fault diagnosis. Thus, this paper extracts the state characteristic
parameters of rolling bearings’ vibration signals and AE signals.

Generally speaking, there are mainly two kinds of rolling bearings’
vibration signals. One is the vibration signal generated by the rolling bearing due
to its own structure being under working conditions and is therefore determined
by the structure of the bearing itself, and the other is caused by the faults of the
rolling bearing’s components under the working condition and is able to reflect
the form and degree of the bearing’s faults. AE signal are usually in three types,
namely burst type, continuous type, and a mixed type which combines both
signals. But in the actual use, the signals detected are often very complex and tend
to be mixed signals. For both vibration signals and AE signals, the most common
analytical methods are time domain analysis and frequency domain analysis.

Time domain analysis simply analyzes the collected signal directly on a
time axis. The whole process is simple and clear and is therefore easy to see the
dynamic situation of the signals in real time. Its characteristic parameters can be
divided into dimensional parameters and dimensionless parameters. Dimensional
parameters generally include mean value, root mean square value, variance,
standard deviation, and peak value. And dimensionless parameters generally
include waveform index, peak indexes, pulse index, kurtosis index, and margin
index. Taking some parameters as examples, some time domain analyses are
shown as follows.

Mean value is the average value of the collected sample signals and
therefore is able to reflect the overall trend of the signals. As the faults of bearings
evolve, the signal information collected by the sensors also differs, and the mean



Intelligent fault diagnosis of robot bearing based on multi-information 17

value can be used as one of the methods of diagnosing the faults of the rolling
bearings.

Mean square value is the average value of the total energy of the collected
signals. As the faults of rolling bearings occur, the signals collected by the sensor
are no longer stable, and the peak of the interval begins to appear. At this time, the
power of the signals will also begin to increase. Therefore, the diagnosis of
bearings’ faults can also be achieved by monitoring the mean square value of the
collected signals.

Autocorrelation function can reflect the degree of similarity between the
collected signals and retain the information of the amplitude of the original
collected signals. However, the phase information of the collected signals is not
indicated in the function. In the formula, T is the total time.

Cross-correlation function can not only retain the amplitude information of
the collected signals, but also reflect the phase information of the analyzed
signals. The original frequency information can be reflected on the frequency
spectrum. Therefore, this method is commonly used when conducting time
domain analysis of signals.

Frequency domain analysis analyzes the collected signals in the frequency
domain rather than the time domain and can clearly reflect the characteristics of
the bearings’ faults. Basic frequency domain analysis includes phase spectrum,
power spectrum, energy spectral density, coherence function and so forth. Some
frequency domain analyses are shown as follows.

Spectrum:

If the time domain signal X(t) satisfies the-Dirichlet condition [24], the
mathematical expression of the spectrum function is:

X(@)= [ x(tp"dt (1)

Where, the notation » represents the angular frequency, i is the imaginary unit.

Phase spectrum can be expressed as a module of the spectral function
X(w), which is called the amplitude spectrum of x(t).

Power spectrum:

Power spectrum represents the degree of energy distribution of the
collected signals in the frequency domain. Its mathematical expression is:

S,(@) =|F(@) = [ R (r)e™dt (2)
Where, R,(7) is the autocorrelation function of the signals.
Coherence function:
. @)
7S (@), (@) 3)
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The use of coherence function is similar to that of the correlation
coefficients of time domain analysis. Coherence function represents the
correlation between the signal output and the input signal. If the value of the
coherence function is small, then it indicates that the output signal is greatly
influenced by the external interference.

When analyzing a specific fault type of thin-walled robot bearings and
selecting relevant parameters, it is necessary to analyze which variables are able
to indicate the fault type and reflect the correlation between the fault type and the
selected parameters. Generally, as long as the state of the bearing itself changes,
all the relevant physical parameters will absolutely change accordingly. Thus,
sensitivity and stability should be take into account when selecting the parameters
in this paper. Based on the network structure of discussed, analyzing the time
domain parameters can perfectly meet the needs of fault diagnosis. Therefore,

apart from the aforementioned parameters, peak value Koens | pulse index I,

margin index L, kurtosis index K. of vibration signals and peak-to-peak value

Xp'p, kurtosis index K+ of AE signals are also selected as state characteristics

parameters. These parameters are represented as follows.

PEAK z ij (4)
X,p = max{xn}— min{x,} (5)
Kr = Nixn‘l/x 4RMS (6)
1 N
PEAK / NZ| | (7)

EA/[ | j ®)

In the formulas, {x,}(n=12,...,N) represents signals, and N equals the
number of sampling points. The signals are divided into n segments and
{x;}(i=12...n) represent the peak value of those n segments.

3. Construction of SOM neural network and information integration

Neural network, also called as the connection model, is a mathematical
algorithm created by imitating the neural network of the animal kingdom. It
processes complex information by correlating the complex nodes that are similar
to animal neurons within itself. Neural network needs to learn by certain rules
before it can judge or fully describe things or information. Although neural
networks have preliminary adaptive capabilities, the working efficiency and
accuracy of neural networks can be greatly influenced by learning samples. So, if
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the sample information is not comprehensive enough or contains some slight
deviations, the working efficiency of the neural network will be greatly reduced.

SOM neural network has the self-organizing mapping ability. Therefore, it
can model the competitive neural network of human brain system and has a strong
classification characteristic for input vectors [25]. In the competition layer map,
the input vector model of any dimension is transformed into discrete one-
dimensional or two-dimensional graphics, which then achieve topological stability
on the basis of the self-learning input vector model. Next, they are displayed in
the competitive layer in the form classified as one-dimensional or two-
dimensional through the autonomous learning of input vectors. Moreover, the
probability distribution of the input model and the spatial distribution density of
connection weights tend to be the same.

3.1 Network structure

As shown in Fig. 1, SOM network does not have a hidden layer while
consists of only an input layer and a competitive layer. The upper layer of the
network is a node matrix arranged by the output nodes (assuming the number of
the output nodes is m) in a two-dimensional form while the input nodes located
below. If the input vector consists of n elements, then the input port has a total of
n nodes. All input nodes and output nodes are connected by weights. Specifically,
in the two-dimensional plane, it is also possible that some output nodes are
partially connected with each other. Based on the self-organizing method of
Kohonen network, a large amount of sample training data is used to adjust the
weight of the network in order to make the output of the final network be able to
reflect the distribution of sample data.

The input layer consists of n one-dimensional neurons and each neuron is
connected by weight. The competitive layer, namely the output layer, consists of a
matrix of nodes whose quantity M equals m2. There are two kinds of weights in
SOM, connection weight and characteristic weight. The former is the response of
neurons to external inputs, and the latter determines the strength of the interaction
between neurons.

Competitive Layer
(Output Layer)

Input Layer

Fig. 1. Structure of SOM neural network
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3.2 SOM neural network algorithm

When the network starts training, certain output node can make a special
response to a certain pattern. When a certain type of data pattern is input, a certain
output node is given the maximum stimulus to indicate the area where the pattern
belongs to. And at the same time, some nodes around the winning node are given
greater stimuli. When the input mode moves from one mode area to the
neighboring mode area, the winning node on the two-dimensional plane also
moves from the original node to its neighboring node. In order to make the
neighboring output node in the two-dimensional output plane be able to make the
special respond to the type of similar input patterns, the neighboring node of the
winning node must be defined during the training process. Assuming that the
winning point is Nj, and its neighboring node at the time t is represented by
NE;j(t), which contains all nodes falling into the circle whose center is the node Nj
and the radius does not exceed a certain value. As the training process progresses,
the radius of NEj(t) gets smaller and smaller, until the winning node Nj is the only
node in the area. It means that in the initial stage of training, not only the weight
of the winning node is adjusted, its geometrically neighboring nodes in a rather
large range are also adjusted accordingly. Then, as the training process continues,
the weight vector connected to the output node becomes closer and closer to the
type of patterns it represents.

The specific algorithm flow is shown in Fig. 2:

P Calculate the
Initialization, and Y . .
- Input the Euclidean distances,
establish the winning : > - o
. = normalized sample find the winning
neighborhood
neuron
N
L r
Define the
Judge Adjust weights hi winning
neighborhood
r
End

Fig. 2. Algorithmic flow of SOM neural network

The algorithm mainly contains the following steps: Firstly, a continuous
input space of the active mode is produced according to a certain probability
distribution, and an initial winning neighborhood is established, then an initial
value is set for the learning rate. Secondly, a network topology is represented by a
grid of neurons defines a discrete output space. Thirdly, a time-varying
neighboring function is defined around the winning neuron. Finally, the learning
rate parameter decreases by time but will never decrease to zero.
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Following are the detailed steps of the algorithm.

(1) Initialization

Select a random value for the initial weight vector w;(0) . The only
limitation is that when j=12,...1 each initial weight vector must be different
with each other. | is the number of neurons in the network and needs to be kept at
a rather small weight.

(2) Normalize samples

Normalize the input vector X of SOM network and each neuron vector

w;(j=12...m) in the competitive layer and obtain >A< and w ;.
woW 9)
Vector % represents the active mode applied to the network and its

number of dimensions equals m.
(3) Find the winning neuron

Compare the similarity between y and neuron vectorsy ; (i=12...m)in

X=X
X

the competitive layer. The neuron of the highest similarity i(x) wins.
i(x) =arg min"x(n)—wj || j=12,..,1 (10)
(4) Adjust weight
The winning neuron should be identified firstly, the output of the winning
neuron is “1” and that of others are “0”.
Li=j~*
yi(t+l)—{0, P (11)
Only the winning neuron can adjust its weight vector ";-. Following is the
learning adjustment of its weight vector.
w; (n+1) = w; (n) +n(Mh; ;) (N(X(n) —w; (n)) (12)
Adjust the weight vector of all neurons. 7(n) is the learning efficiency and
its value range is 0<n(n) <1, h;;,(n) is the neighboring function of the winning
neuron i(x) . For better results, 7(n) and h;ix (M change dynamically during the
learning process. Learning efficiency decreases as the multi-dimensional learning
progresses, which means the degree of adjustment becomes smaller and smaller
and tends to the cluster center.
(5) Establish winning area
The normalized new vector must keep learning to re-normalize,
establishing winning area and repeating the calculation cycle until the learning
efficiency @ decreases to zero.
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3.3 Information integration

According to the data abstraction level, a multi-information integration
system can be divided into three layers, namely, data layer fusion, feature layer
fusion, and decision layer fusion. The multi-level information fusion model is

shown in Fig. 3.
DataLayet Fusion Feature Layer Fusion

lulti-3outce Reference
Information Iodel

v '

Preprocessing | Preprocessing

' '

Feature L Feature Frraluation
Extraction Extraction Conclusion

Decigion Layer Fusion

Feature
Extraction

Fig. 3 Multi-level information fusion model

This paper uses the SOM neural network algorithm to construct a rolling
bearing fault diagnosis method based on multi-sensor information fusion. The
specific steps are as follows:

(1) Collect the vibration signals and AE signals of the robot bearing by
using the vibration sensors and AE sensors placed in different positions, extract
the characteristic parameters of the signals, and realize data layer fusion.

(2) Normalize the extracted characteristic parameters, fuse the two
parameters and input them into SOM neural network as input vectors. Use the
characteristic parameters to train SOM neural network, give the optimal weight

vector Vi of SOM neural network and clustering centers, and achieve the fusion
of feature layers.

(3) Based on the fusion of feature layers, input the corresponding test
samples into the trained classifier to complete the extraction of characteristic
parameters, realize the fusion of decision layers, and finally achieve the
evaluation of the state of the robot bearing.

4. Robot bearing fault diagnosis experiment

Based on the aforementioned theories, this chapter takes robotic angular
contact ball bearings ZR71820TN/P4 as an example to demonstrate a diagnosis
experiment of its faults. The bearing material is GC15, the rolling body diameter
is $7.938 mm, the cage model is PA66-GF25 [26]. The main structural
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parameters and technical specifications of the experimental bearing are shown in
Table 1. And the built-up intelligent test bench for bearing performance is shown
in Fig. 4.

Table 1
Structural parameters and technical specifications of bearings

Parameter Value

External diameter/mm 125

Internal diameter/mm 100
Width/mm 13
Contact angle/ (°) 40
Number of rolling elements 38
Working speed/(r/min) 90

Rated dynamic load/kN 32.6

Fig. 4. Intelligent test bench for bearing performance

The vibration signal acquisition device is German m+p VibPilot-8 signal
acquisition device. The vibration sensor is Lens LCO0151T type acceleration
sensor with a sensitivity of 146.2 mV/g and a range of 33g. The AE signal
acquisition device and sensor are PCI-2AE collector and R50S-TCAE sensor,
respectively. Their measurement range is from 50 kHz to 700 kHz and the
resonant frequency is 500 kHz [27].

4.1 Experimental scheme and Network construction

YLP-MDF-152 type 3D fiber laser marking machine should be used to
fabricate the three most typical fault states of the robot bearing’s outer ring crack,
inner ring crack and inner ring pitting corrosion, respectively. The widths of the
outer ring crack and the inner ring crack are both 30 um, and the diameter of the
inner ring pitting is 50 um. When the rotation speed is 80r/min and the equivalent
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dynamic load is 7 kN, 4 sets of data were collected from the following four states,
normal state, outer ring crack, inner ring crack, inner ring pitting, respectively,
and a total of 16 sets of data were collected. Due to the limited size of the sample,
the network structure was designed as 4x4, consisting of 16 neurons in total. The
learning rate is 0.1. There are 500 training steps and 4 kinds of output states.

In the process of information fusion, considering the different physical
meanings of signals collected by multi-sensor and the possibility of interfering
SOM neural network, it is necessary to normalize the collected data [13].
Normalization can unify the physical quantities, avoid the possible no
convergence caused by singular values impacting the network, and also increase
the convergence speed of the network.

This paper uses formula (13) to normalize the collected data.

2x(X=X_.)
y=———mn’_q
Yimeax ~ Yemin

In the formula, x is raw data, y is normalized data with a range of [-1,1].

After normalizing the bearing’s normal state, outer ring crack, inner ring
crack, inner ring pitting, respectively, the results of the data normalization are
shown in Table 2.

(13)

Table 2
Operation sample data of the bearing
Beari Vibration data parameters AE data parameters
earing
state RMS c Kr | L RMS PEAK KR
-0.9892 0.9889 -0.9937 0.9822 0.9799 -0.5512 -0.9520 -0.9715
Normal -0.9911 0.4928 -1.0000 0.4849 0.4838 -0.5268 -1.0000 -1.0000
-0.9960 0.6085 -0.9982 0.6031 0.6022 -0.4358 -0.9729 -0.9927
Outer race 0.7857 -0.1524 0.5574 -0.0546 0.0123 0.2016 -0.0089 -0.0728
crack 0.8707 -0.5172 0.5388 -0.56251 -0.5285 -0.0683 -0.1185 -0.0502
0.8980 -0.7597 0.3053 -0.7614 -0.7631 0.2927 0.2914 0.7265
Inner race 1.0000 -1.0000 0.5575 -1.0000 -1.0000 -0.4374 -0.7815 -0.7789
crack 0.9859 -0.4638 0.5355 -0.4649 -0.4615 -0.4878 -0.7188 -0.7933
0.9868 -0.7976 0.5732 -0.7904 -0.7832 0.1057 0.0914 0.0139
Inner race 0.9906 -0.5951 0.2986 -0.5920 -0.5888 -1.0000 -0.8612 0.3554
pitting 0.9552 -0.4816 0.5347 -0.4404 -0.4123 -0.9008 -0.6355 0.8501
0.9664 -0.4883 1.0000 -0.4783 -0.4704 -0.8813 -0.9087 -0.5226

The data in Table 2 is input into the neural network for training. The input
vector model, designed as 12x8  consists of 12 sets of data and 8 parameters.
After 500 training steps in the network, the distribution of weight vectors is shown
in Fig. 5, and the weight no longer changes (The software tools used in this paper
is Matlab).




Intelligent fault diagnosis of robot bearing based on multi-information 25

Weight Vectors

Wi, 3)

0

W(i,2) WG 1)
Fig. 5. Distribution of weight vectors

Fig. 6 shows the Euclidean distances between neurons after training. For
each neuron, the darker surrounding color and the greater distance mean the lower
probability of “winning”, while the neuron whose surrounding color is lighter has
a greater possibility of “winning”. Then, the connection weight of the winning
neuron represents the cluster center of the state. Later, whenever a test sample is
input, the network will automatically match it with the previously classified
sample.

SOM Neighbor Weight Distances

Fig. 6. The distances between neurons

Fig. 7 shows the classification of the trained data by the network. Each of
the four neurons of darker color shows the number of input vectors it classifies,
and the relative number of each neuron is indicated by the size of the color stain.
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Fig. 7. The classification of input vectors by neurons

According to Fig. 6, the 12 sets of data of the operated sample are divided
into 4 categories by SOM neural network and each category contains 3 input
vectors.

4.2 Experimental predictions

After the training, first set up a test sample data (Table 3) to test the
diagnostic effect of SOM neural network.

Table 3
Test sample data for bearing
Bearing Vibration data parameters AE data parameters
state RMS c Kr | L RMS PEAK KR

Normal | -1.0000 | 1.0000 | -0.9978 | 1.0000 | 1.0000 | -0.4650 | -0.9834 | -0.9854
O“ggcfce 0.9009 | -0.5373 | 0.0290 | -0.5251 | -0.5173 | 0.2049 02024 | 0.4410
Innerrace | 0.9818 | -0.4705 | 0.4134 | -0.4582 | -0.4458 | 1.0000 1.0000 | 1.0000
'”Si'i{i;zce 0.967 | -0.8977 | 0.6765 | -0.8751 | -0.8570 | -0.9024 | -0.9487 | -0.5247

As shown in Fig. 8 (a), the bearing states are indicated by number from 1
to 16. Specifically, number 1 to 4, 5 to 8, 9 to 12, and 13 to 16 refer to normal
state, inner ring crack, inner ring pitting, and outer ring crack, respectively. When
a test sample is classified, its state can be easily determined by simply activating
the winning neuron and entering its neighborhood.

The data model is designed as 4x8. Fig. 8 (b) shows the classification
results after inputting the trained SOM neural network.
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Fig. 8. The results of state classification

According to Fig. 8, the test sample’s normal state, inner ring crack state,
inner ring pitting state, and outer ring crack state coincide with those were
indicated as “1”, “6”, “11”, and “16” in the running sample. The output results are
ideal since all four states are correctly determined.

5. Conclusions

The results of inputting the data integrated by vibration data and AE data
as input vectors into SOM neural network indicate the validity of the fault
diagnosis of robot bearings based on information-integrated SOM neural network.
This method not only makes full use of SOM neural network’s advantage of
reducing dimensions, but also proves the feasibility of combining dimensional
parameters and dimensionless parameters as input vectors when conducting time
domain analyses. Therefore, it can be concluded that this method has a practical
application value in the fault diagnosis of robot bearings.
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