
U.P.B. Sci. Bull., Series D, Vol. 82, Iss. 3, 2020                                                     ISSN 1454-2358 

INTELLIGENT FAULT DIAGNOSIS OF ROBOT BEARING 

BASED ON MULTI-INFORMATION 

Ziyue WU 1,*, Yang LIU1, Xinxing LI2, Xingxing DU3, Bing WANG1 

Based on the condition assessment of thin-walled robot bearing, a fault 

diagnosis method based on multi-information fusion is proposed. The vibration data 

and acoustic emission (AE) data of the thin-walled robot bearing are extracted and 

constructed a fusion model of multi-feature data; finally, the self-organizing map 

(SOM) neural network is used to assess the fusion model. With analysis and 

verification of measured data, the method can assess the fault type of thin-walled 

robot bearing effectively, and it provides a new reference for condition assessment 

of thin-walled robot bearing. 

Keywords: Robot bearing; Multi-information fusion; Fault diagnosis; Vibration; 

AE; SOM neural network 

1. Introduction 

Nowadays, robots have been developing towards being compact and 

exquisite. As key components of robots, robot bearings’ stable and safe operation 

is determinant to the overall performance of the robot. Therefore, the research on 

robot bearings is highly valuable both theoretically and practically. 

Among all kinds of bearings, thin-walled robot bearing has been highly 

favored by the robot industry thanks to its unique traits, such as being light, 

exquisite, and small. And so far, a great number of experts and scholars have 

researched thoroughly on robot bearings. Cai [1] analyzed the structural design of 

thin-walled bearings for industrial robots. Wang [2] analyzed and studied how 

thin-walled bearing rings were positioned in rotating gas fields. Jiang [3] analyzed 

the deformation, stress and load distribution of the inner and outer rings of 

flexible bearings while also took pre-deformation, pre-stress and actual load 

conditions of the inner and outer rings of flexible bearings into consideration. 

Considering the serious problems during the heat treatment process of thin-walled 

light series high-precision bearing rings, Jia [4] proposed to reduce the quenching 

deformation rate of the thin-walled bearing rings by using a semi-automatic 
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quenching press to optimize the quenching mold pressure. In order to accurately 

obtain the surface circumferential stress distribution and deformation conditions 

of the bearing rings, Kashif [5] developed a new equalization algorithm, based on 

Newtonian mechanics. Ostapski [6,7] used the finite element method to analyze 

the deformation and stress of flexible bearings under the application of a 

symmetrical radial load in the long axis region. For now, these studies mainly 

focus on the structure, performance, vibration characteristics, and application 

prospects of robot bearings. In terms of fault diagnosis, Sui [8] studied the new 

threshold de-noising method based on stationary wavelet and discussed the fault 

feature extraction method based on image technology. Based on the detailed 

discussion of the noise reduction, feature extraction, current research status of 

compound and intelligent fault diagnosis of rolling bearings, Deng [9] deeply 

investigated several key issues involved in the feature extraction and diagnosis of 

rolling bearings faults with regard to the analysis and process method of vibration 

signals. Taking rolling bearings as research subject, He [10] proposed a kernel 

function Eigen-matrix combined with approximate diagonalization feature fusion 

method. Combining with other signal processing methods and machine learning 

methods, He further investigated feature extraction, fault identification, and 

performance degradation evaluation of rolling bearings. Xue [11] deeply 

investigated the AE signals of aero-engine rolling bearings faults and has greatly 

improved the fault recognition rate. Taking rolling bearings, one of the most 

common yet critical components of aero-engines, as research subject, after fully 

studied the vibration mechanism and signal characteristics of rolling bearings and 

investigated the research status of bearing fault diagnosis both internationally and 

domestically, Jiang [12] proposed a fault diagnosis method for aero-engine 

bearings based on texture features. Wang [13] studied the fault diagnosis 

applications of rolling bearings based on sparsely expressed mechanical signal 

processing methods. Baillie [14] compared three different autoregressive models, 

namely linear autoregressive model, Back-Propagation (BP) neural network, 

radial basis function network, and then applied the three models in bearing fault 

diagnosis, respectively. Qiu [15] extracted the weak fault features of the bearing 

under the strong noise interference by optimizing the correlation of Morlet 

wavelets through the minimum Shannon entropy principle parameters and using 

the singular value decomposition to select the appropriate wavelet transform 

scale. Kumar [16] used discrete wavelet transform to detect the outer ring fault 

size of the tapered roller bearings. Also, he managed to control the error within a 

small range by using Sytnlet5 wavelet to extract the fault impact information in 

the signals. Since single sensor identification has certain limitations and is 

susceptible to the sampling environment, while multi-sensor identification 

technology has diversified the source of information, increased the fault tolerance 

of the system, and improved the confidence and reliability of the system, more 
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and more scholars have conducted research on multi-sensor technology. Han [17] 

studied the multi-sensor information fusion fault diagnosis method based on time 

series analysis and stepwise variable prediction model (AR-SVPMCD) 

technology. Based on Genetic Algorithm- Back Propagation (GA-BP) neural 

network’s multi-sensor information fusion method, Li [18] collected vibration 

signals of both normal and abnormal operating conditions by building signal 

acquisition systems and arranging accelerometer sensors around bearings. Han 

[19] comprehensively discussed collection, feature extraction and feature model 

construction of both acceleration signals and acoustic emission signals of rolling 

bearing faults and proposed a multi-information fusion method based on BP 

neural network. Based on deep belief network and multi-sensor information 

fusion technology, Yu [20] investigated fault diagnosis methods of rolling 

bearings. However, the research on multi-sensor is mostly based on AR-

SVPMCD technology and BP neural network while few adopted SOM neural 

network modeling technology for robot bearings. By analyzing two acoustic 

emission characteristic signal parameters of ringing count and peak value of 

rolling bearing with three kinds of faults, including inner ring, outer ring and 

rolling body, Tandoh [21] studied the influence law of bearing structure 

parameters and operation parameters on ringing count and peak value, and 

concluded that it is more accurate to identify faults through peak value. 

Choudhary [22] studied the relationship between faults and characteristic signals 

of rolling bearings in different periods, and obtained that early faults of bearings 

can be detected by ringing count and the development direction of faults can be 

predicted at the same time. Liu [23] used the sparse expression algorithm to 

optimize the weight matrix of the local linear embedding method, so as to realize 

the manifold dimension reduction of fault signals that could better reveal the 

signal characteristics, and optimize the fault diagnosis mode. 

SOM neural network is a competitive neural network modeled on the self-

organizing mapping function of the human brain system and has a strong 

classification characteristic for input vectors. Through its continuous learning 

cycle, the probability distribution of input models and the space distribution 

density of connection weights tend to be the same. In view of this, based on the 

SOM neural network, multi-sensor identification technology is used in this paper 

to investigate robot bearings faults. Firstly, the vibration information and AE 

information of faults are extracted to construct the multi-characteristic neural 

network information model. Then, the dimensional and dimensionless parameters 

are used to realize the fault diagnosis of robot bearings through SOM neural 

network.  
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2. State feature parameter selection based on multi-information fusion 

Since multi-information fusion technology has the characteristic that 

multi-sensor measurement results complement each other and is able to diagnose 

and decide the importance of variables, its information sources are diverse and the 

possibility of being influenced by environment is rather low. 

Among all information fusion technologies, vibration signal detection and 

AE signal detection are being used most widely. Specifically, vibration signal 

detection is the most widely used detection method in engineering. But solely 

using vibration signal to detect faults in the early stages has been failing to 

provide ideal results since vibration signals are not only insensitive to slight faults 

in the early stages, but also easily influenced by the surrounding noise signals 

significantly. However, AE signal, a fault caused by the rapid energy releasing of 

the component’s own structure’s part material stress concentration, is known to be 

almost insusceptible to surrounding environment. Therefore, AE signal has been 

applied to the fault diagnosis of components in the early stages. Undoubtedly, 

fusing vibration signals and AE signals will significantly improve the accuracy 

and sensitivity of fault diagnosis. Thus, this paper extracts the state characteristic 

parameters of rolling bearings’ vibration signals and AE signals. 

Generally speaking, there are mainly two kinds of rolling bearings’ 

vibration signals. One is the vibration signal generated by the rolling bearing due 

to its own structure being under working conditions and is therefore determined 

by the structure of the bearing itself, and the other is caused by the faults of the 

rolling bearing’s components under the working condition and is able to reflect 

the form and degree of the bearing’s faults. AE signal are usually in three types, 

namely burst type, continuous type, and a mixed type which combines both 

signals. But in the actual use, the signals detected are often very complex and tend 

to be mixed signals. For both vibration signals and AE signals, the most common 

analytical methods are time domain analysis and frequency domain analysis. 

Time domain analysis simply analyzes the collected signal directly on a 

time axis. The whole process is simple and clear and is therefore easy to see the 

dynamic situation of the signals in real time. Its characteristic parameters can be 

divided into dimensional parameters and dimensionless parameters. Dimensional 

parameters generally include mean value, root mean square value, variance, 

standard deviation, and peak value. And dimensionless parameters generally 

include waveform index, peak indexes, pulse index, kurtosis index, and margin 

index. Taking some parameters as examples, some time domain analyses are 

shown as follows. 

Mean value is the average value of the collected sample signals and 

therefore is able to reflect the overall trend of the signals. As the faults of bearings 

evolve, the signal information collected by the sensors also differs, and the mean 
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value can be used as one of the methods of diagnosing the faults of the rolling 

bearings. 

Mean square value is the average value of the total energy of the collected 

signals. As the faults of rolling bearings occur, the signals collected by the sensor 

are no longer stable, and the peak of the interval begins to appear. At this time, the 

power of the signals will also begin to increase. Therefore, the diagnosis of 

bearings’ faults can also be achieved by monitoring the mean square value of the 

collected signals. 

Autocorrelation function can reflect the degree of similarity between the 

collected signals and retain the information of the amplitude of the original 

collected signals. However, the phase information of the collected signals is not 

indicated in the function. In the formula, T is the total time. 

Cross-correlation function can not only retain the amplitude information of 

the collected signals, but also reflect the phase information of the analyzed 

signals. The original frequency information can be reflected on the frequency 

spectrum. Therefore, this method is commonly used when conducting time 

domain analysis of signals. 

Frequency domain analysis analyzes the collected signals in the frequency 

domain rather than the time domain and can clearly reflect the characteristics of 

the bearings’ faults. Basic frequency domain analysis includes phase spectrum, 

power spectrum, energy spectral density, coherence function and so forth. Some 

frequency domain analyses are shown as follows. 

Spectrum:  

If the time domain signal ( )x t  satisfies the Dirichlet condition [24], the 

mathematical expression of the spectrum function is: 

            ( )( ) d
+

−

−
= 

i tX x t e t                                            (1) 

Where, the notation represents the angular frequency, i is the imaginary unit. 

Phase spectrum can be expressed as a module of the spectral function 
( )X  , which is called the amplitude spectrum of ( )x t . 

Power spectrum:  

Power spectrum represents the degree of energy distribution of the 

collected signals in the frequency domain. Its mathematical expression is: 
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Where, ( )xR   is the autocorrelation function of the signals. 
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The use of coherence function is similar to that of the correlation 

coefficients of time domain analysis. Coherence function represents the 

correlation between the signal output and the input signal. If the value of the 

coherence function is small, then it indicates that the output signal is greatly 

influenced by the external interference. 

When analyzing a specific fault type of thin-walled robot bearings and 

selecting relevant parameters, it is necessary to analyze which variables are able 

to indicate the fault type and reflect the correlation between the fault type and the 

selected parameters. Generally, as long as the state of the bearing itself changes, 

all the relevant physical parameters will absolutely change accordingly. Thus, 

sensitivity and stability should be take into account when selecting the parameters 

in this paper. Based on the network structure of discussed, analyzing the time 

domain parameters can perfectly meet the needs of fault diagnosis. Therefore, 

apart from the aforementioned parameters, peak value PEAKX , pulse index I, 

margin index L, kurtosis index rK  of vibration signals and peak-to-peak value 

p-pX
, kurtosis index rK  of AE signals are also selected as state characteristics 

parameters. These parameters are represented as follows. 
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In the formulas,  n (n 1,2,..., N)=x  represents signals, and N equals the 

number of sampling points. The signals are divided into n segments and 

 ( 1,2,... )=pjx j n  represent the peak value of those n segments. 

3. Construction of SOM neural network and information integration 

Neural network, also called as the connection model, is a mathematical 

algorithm created by imitating the neural network of the animal kingdom. It 

processes complex information by correlating the complex nodes that are similar 

to animal neurons within itself. Neural network needs to learn by certain rules 

before it can judge or fully describe things or information. Although neural 

networks have preliminary adaptive capabilities, the working efficiency and 

accuracy of neural networks can be greatly influenced by learning samples. So, if 
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the sample information is not comprehensive enough or contains some slight 

deviations, the working efficiency of the neural network will be greatly reduced. 

SOM neural network has the self-organizing mapping ability. Therefore, it 

can model the competitive neural network of human brain system and has a strong 

classification characteristic for input vectors [25]. In the competition layer map, 

the input vector model of any dimension is transformed into discrete one-

dimensional or two-dimensional graphics, which then achieve topological stability 

on the basis of the self-learning input vector model. Next, they are displayed in 

the competitive layer in the form classified as one-dimensional or two-

dimensional through the autonomous learning of input vectors. Moreover, the 

probability distribution of the input model and the spatial distribution density of 

connection weights tend to be the same. 

3.1 Network structure 

As shown in Fig. 1, SOM network does not have a hidden layer while 

consists of only an input layer and a competitive layer. The upper layer of the 

network is a node matrix arranged by the output nodes (assuming the number of 

the output nodes is m) in a two-dimensional form while the input nodes located 

below. If the input vector consists of n elements, then the input port has a total of 

n nodes. All input nodes and output nodes are connected by weights. Specifically, 

in the two-dimensional plane, it is also possible that some output nodes are 

partially connected with each other. Based on the self-organizing method of 

Kohonen network, a large amount of sample training data is used to adjust the 

weight of the network in order to make the output of the final network be able to 

reflect the distribution of sample data. 

The input layer consists of n one-dimensional neurons and each neuron is 

connected by weight. The competitive layer, namely the output layer, consists of a 

matrix of nodes whose quantity M equals m2. There are two kinds of weights in 

SOM, connection weight and characteristic weight. The former is the response of 

neurons to external inputs, and the latter determines the strength of the interaction 

between neurons. 

 

 
Fig. 1. Structure of SOM neural network 
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3.2 SOM neural network algorithm 

When the network starts training, certain output node can make a special 

response to a certain pattern. When a certain type of data pattern is input, a certain 

output node is given the maximum stimulus to indicate the area where the pattern 

belongs to. And at the same time, some nodes around the winning node are given 

greater stimuli. When the input mode moves from one mode area to the 

neighboring mode area, the winning node on the two-dimensional plane also 

moves from the original node to its neighboring node. In order to make the 

neighboring output node in the two-dimensional output plane be able to make the 

special respond to the type of similar input patterns, the neighboring node of the 

winning node must be defined during the training process. Assuming that the 

winning point is Nj, and its neighboring node at the time t is represented by 

NEj(t), which contains all nodes falling into the circle whose center is the node Nj 

and the radius does not exceed a certain value. As the training process progresses, 

the radius of NEj(t) gets smaller and smaller, until the winning node Nj is the only 

node in the area. It means that in the initial stage of training, not only the weight 

of the winning node is adjusted, its geometrically neighboring nodes in a rather 

large range are also adjusted accordingly. Then, as the training process continues, 

the weight vector connected to the output node becomes closer and closer to the 

type of patterns it represents. 

The specific algorithm flow is shown in Fig. 2: 

 
Fig. 2. Algorithmic flow of SOM neural network 

 

The algorithm mainly contains the following steps: Firstly, a continuous 

input space of the active mode is produced according to a certain probability 

distribution, and an initial winning neighborhood is established, then an initial 

value is set for the learning rate. Secondly, a network topology is represented by a 

grid of neurons defines a discrete output space. Thirdly, a time-varying 

neighboring function is defined around the winning neuron. Finally, the learning 

rate parameter decreases by time but will never decrease to zero. 
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Following are the detailed steps of the algorithm. 

(1) Initialization 

Select a random value for the initial weight vector (0)jw . The only 

limitation is that when 1, 2, ...,j l= , each initial weight vector must be different 

with each other. l is the number of neurons in the network and needs to be kept at 

a rather small weight.  

(2) Normalize samples 

Normalize the input vector X of SOM network and each neuron vector 
( )mjw j ,...,2,1=  in the competitive layer and obtain 


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

. 
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Vector 
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X  represents the active mode applied to the network and its 

number of dimensions equals m.  

(3) Find the winning neuron 

Compare the similarity between 


X  and neuron vectors jW
 ( )mj ,...,2,1= in 

the competitive layer. The neuron of the highest similarity ( )i x  wins. 

( ) arg min ( ) , 1, 2, ...,ji x x n w j l= − =                               (10) 

(4) Adjust weight 

The winning neuron should be identified firstly, the output of the winning 

neuron is “1” and that of others are “0”. 
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Only the winning neuron can adjust its weight vector . Following is the 

learning adjustment of its weight vector. 
, ( )( 1) ( ) ( ) ( )( ( ) ( ))j j j i x jw n w n n h n x n w n+ = + −                               (12) 

Adjust the weight vector of all neurons. ( )n  is the learning efficiency and 

its value range is 0 ( ) 1n  . , ( ) ( )j i xh n  is the neighboring function of the winning 

neuron ( )i x . For better results, ( )n  and , ( ) ( )j i xh n  change dynamically during the 

learning process. Learning efficiency decreases as the multi-dimensional learning 

progresses, which means the degree of adjustment becomes smaller and smaller 

and tends to the cluster center. 

(5) Establish winning area 

The normalized new vector must keep learning to re-normalize, 

establishing winning area and repeating the calculation cycle until the learning 

efficiency a  decreases to zero. 
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3.3 Information integration 

According to the data abstraction level, a multi-information integration 

system can be divided into three layers, namely, data layer fusion, feature layer 

fusion, and decision layer fusion. The multi-level information fusion model is 

shown in Fig. 3. 

 
Fig. 3 Multi-level information fusion model 

 

This paper uses the SOM neural network algorithm to construct a rolling 

bearing fault diagnosis method based on multi-sensor information fusion. The 

specific steps are as follows: 

(1) Collect the vibration signals and AE signals of the robot bearing by 

using the vibration sensors and AE sensors placed in different positions, extract 

the characteristic parameters of the signals, and realize data layer fusion. 

(2) Normalize the extracted characteristic parameters, fuse the two 

parameters and input them into SOM neural network as input vectors. Use the 

characteristic parameters to train SOM neural network, give the optimal weight 

vector jW
 of SOM neural network and clustering centers, and achieve the fusion 

of feature layers. 

(3) Based on the fusion of feature layers, input the corresponding test 

samples into the trained classifier to complete the extraction of characteristic 

parameters, realize the fusion of decision layers, and finally achieve the 

evaluation of the state of the robot bearing. 

4. Robot bearing fault diagnosis experiment 

Based on the aforementioned theories, this chapter takes robotic angular 

contact ball bearings ZR71820TN/P4 as an example to demonstrate a diagnosis 

experiment of its faults. The bearing material is GC15, the rolling body diameter 

is ф7.938 mm, the cage model is PA66-GF25 [26]. The main structural 
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parameters and technical specifications of the experimental bearing are shown in 

Table 1. And the built-up intelligent test bench for bearing performance is shown 

in Fig. 4. 

 
Table 1 

Structural parameters and technical specifications of bearings 

Parameter Value 

External diameter/mm 125 

Internal diameter/mm 100 

Width/mm 13 

Contact angle/ (°) 40 

Number of rolling elements 38 

Working speed/(r/min) 90 

Rated dynamic load/kN 32.6 

 

 
 

Fig. 4. Intelligent test bench for bearing performance 

 

The vibration signal acquisition device is German m+p VibPilot-8 signal 

acquisition device. The vibration sensor is Lens LC0151T type acceleration 

sensor with a sensitivity of 146.2 mV/g and a range of 33g. The AE signal 

acquisition device and sensor are PCI-2AE collector and R50S-TCAE sensor, 

respectively. Their measurement range is from 50 kHz to 700 kHz and the 

resonant frequency is 500 kHz [27]. 

4.1 Experimental scheme and Network construction 

YLP-MDF-152 type 3D fiber laser marking machine should be used to 

fabricate the three most typical fault states of the robot bearing’s outer ring crack, 

inner ring crack and inner ring pitting corrosion, respectively. The widths of the 

outer ring crack and the inner ring crack are both 30 μm, and the diameter of the 

inner ring pitting is 50 μm. When the rotation speed is 80r/min and the equivalent 
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dynamic load is 7 kN, 4 sets of data were collected from the following four states, 

normal state, outer ring crack, inner ring crack, inner ring pitting, respectively, 

and a total of 16 sets of data were collected. Due to the limited size of the sample, 

the network structure was designed as 4x4, consisting of 16 neurons in total. The 

learning rate is 0.1. There are 500 training steps and 4 kinds of output states. 

In the process of information fusion, considering the different physical 

meanings of signals collected by multi-sensor and the possibility of interfering 

SOM neural network, it is necessary to normalize the collected data [13]. 

Normalization can unify the physical quantities, avoid the possible no 

convergence caused by singular values impacting the network, and also increase 

the convergence speed of the network. 

This paper uses formula (13) to normalize the collected data. 

min

max min

2 ( )
1

x x
y

y y

 −
= −

−
 

(13) 

In the formula, x is raw data, y is normalized data with a range of [-1,1]. 

After normalizing the bearing’s normal state, outer ring crack, inner ring 

crack, inner ring pitting, respectively, the results of the data normalization are 

shown in Table 2.  

 
Table 2 

Operation sample data of the bearing 

Bearing 

state 

Vibration data parameters AE data parameters 

RMS C Kr I L RMS PEAK KR 

Normal 

-0.9892 0.9889 -0.9937 0.9822 0.9799 -0.5512 -0.9520 -0.9715 

-0.9911 0.4928 -1.0000 0.4849 0.4838 -0.5268 -1.0000 -1.0000 

-0.9960 0.6085 -0.9982 0.6031 0.6022 -0.4358 -0.9729 -0.9927 

Outer race 

crack 

0.7857 -0.1524 0.5574 -0.0546 0.0123 0.2016 -0.0089 -0.0728 

0.8707 -0.5172 0.5388 -0.5251 -0.5285 -0.0683 -0.1185 -0.0502 

0.8980 -0.7597 0.3053 -0.7614 -0.7631 0.2927 0.2914 0.7265 

Inner race 

crack 

1.0000 -1.0000 0.5575 -1.0000 -1.0000 -0.4374 -0.7815 -0.7789 

0.9859 -0.4638 0.5355 -0.4649 -0.4615 -0.4878 -0.7188 -0.7933 

0.9868 -0.7976 0.5732 -0.7904 -0.7832 0.1057 0.0914 0.0139 

Inner race 

pitting 

0.9906 -0.5951 0.2986 -0.5920 -0.5888 -1.0000 -0.8612 0.3554 

0.9552 -0.4816 0.5347 -0.4404 -0.4123 -0.9008 -0.6355 0.8501 

0.9664 -0.4883 1.0000 -0.4783 -0.4704 -0.8813 -0.9087 -0.5226 

 

The data in Table 2 is input into the neural network for training. The input 

vector model, designed as 12 8 , consists of 12 sets of data and 8 parameters. 

After 500 training steps in the network, the distribution of weight vectors is shown 

in Fig. 5, and the weight no longer changes (The software tools used in this paper 

is Matlab).  
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Fig. 5. Distribution of weight vectors 

 

Fig. 6 shows the Euclidean distances between neurons after training. For 

each neuron, the darker surrounding color and the greater distance mean the lower 

probability of “winning”, while the neuron whose surrounding color is lighter has 

a greater possibility of “winning”. Then, the connection weight of the winning 

neuron represents the cluster center of the state. Later, whenever a test sample is 

input, the network will automatically match it with the previously classified 

sample. 

 
Fig. 6. The distances between neurons 

 

Fig. 7 shows the classification of the trained data by the network. Each of 

the four neurons of darker color shows the number of input vectors it classifies, 

and the relative number of each neuron is indicated by the size of the color stain.  
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Fig. 7. The classification of input vectors by neurons 

 

According to Fig. 6, the 12 sets of data of the operated sample are divided 

into 4 categories by SOM neural network and each category contains 3 input 

vectors. 

4.2 Experimental predictions 

After the training, first set up a test sample data (Table 3) to test the 

diagnostic effect of SOM neural network. 

 
Table 3 

Test sample data for bearing 

Bearing 

state 

Vibration data parameters AE data parameters 

RMS C Kr I L RMS PEAK KR 

Normal -1.0000 1.0000 -0.9978 1.0000 1.0000 -0.4650 -0.9834 -0.9854 

Outer race 

crack 
0.9009 -0.5373 0.0290 -0.5251 -0.5173 0.2049 0.2024 0.4410 

Inner race 0.9818 -0.4705 0.4134 -0.4582 -0.4458 1.0000 1.0000 1.0000 

Inner race 

pitting 
0.967 -0.8977 0.6765 -0.8751 -0.8570 -0.9024 -0.9487 -0.5247 

 

As shown in Fig. 8 (a), the bearing states are indicated by number from 1 

to 16. Specifically, number 1 to 4, 5 to 8, 9 to 12, and 13 to 16 refer to normal 

state, inner ring crack, inner ring pitting, and outer ring crack, respectively. When 

a test sample is classified, its state can be easily determined by simply activating 

the winning neuron and entering its neighborhood. 

The data model is designed as 4x8. Fig. 8 (b) shows the classification 

results after inputting the trained SOM neural network.  
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(a)                                                (b) 

Fig. 8. The results of state classification 

 

According to Fig. 8, the test sample’s normal state, inner ring crack state, 

inner ring pitting state, and outer ring crack state coincide with those were 

indicated as “1”, “6”, “11”, and “16” in the running sample. The output results are 

ideal since all four states are correctly determined. 

5. Conclusions 

The results of inputting the data integrated by vibration data and AE data 

as input vectors into SOM neural network indicate the validity of the fault 

diagnosis of robot bearings based on information-integrated SOM neural network. 

This method not only makes full use of SOM neural network’s advantage of 

reducing dimensions, but also proves the feasibility of combining dimensional 

parameters and dimensionless parameters as input vectors when conducting time 

domain analyses. Therefore, it can be concluded that this method has a practical 

application value in the fault diagnosis of robot bearings. 
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