
U.P.B. Sci. Bull., Series C, Vol. 70, No. 3, 2008                                                      ISSN 1454-234x 
 

DESIGN AND IMPLEMENTATION OF A  
DICTIONARY-BASED ARCHIVER 

Radu RĂDESCU1 

Acest articol îşi propune să prezinte un arhivator de uz general construit 
folosind tehnica de translaţie cu ajutorul dicţionarului. Contribuţia originală constă în 
metoda de arhivare a indecşilor astfel obţinuţi Acest arhivator se poate folosi pentru 
realizarea compresiei fără pierderi aplicate oricăror tipuri de fişiere. Aplicaţia creată 
poate oferi concluzii utile privind performanţele de compresie şi influenţa 
dicţionarului ales asupra parametrilor. 

This paper intends to present a common use archiver, made up following the 
dictionary technique. The original contribution of the paper resides in using the index 
archiving method. This archiver is useful in order to accomplish the lossless 
compression for any file types. The application can offer useful conclusions regarding 
the compression performances (compression ratio and packing time) and the influence 
of the chosen dictionary over the parameters. 

Key words: data lossless compression, dictionary codes, archive characters 

1. Introduction 

The archivers using dictionary techniques [1], [2], [3] can be very efficient, 
especially when using some files that have different words very often repeated. This 
happens because the archivers generate their dictionary during the archiving 
process, the program „learning” new words this way. Because the application can 
make an archive that contains more files, this has to be very well configured, so that 
during the unpacking of the files it can be separated with lossless information. 
 

2. Structure of the archived file 
 
 For the beginning, the header file structure is presented: 

• 3 bytes to store 3 letters (CBA). These letters are used as the 
identification of the archive. It is very important to verify these 
characters in order not to let the archiver to try unpacking a file that is 
not a CBA archive. 

• 2 bytes to store the maximum length of the dictionary. 

                                                            
1 Reader, Dept. of Applied Electronics and Information Engineering, University “Politehnica” of 
Bucharest, Romania 



Radu Rădescu 
 
22

• 2 bytes to store the minimum length of the dictionary. 
• 1 byte to store the settings. This byte is used to store 3 binary 

validation variables: 
o 1 bit for the path of the file; 
o 1 bit for the unpacked size of the file; 
o 1 bit for the password. 

• 1 byte to store the length of the password (optionally). 
• n bytes to store the password,  n being the length of the password (optionally). 
• 2 bytes to store the number of files. 

After describing the header of the files, it repeats the following sequence for 
every new added archive file: 

• 2 bytes to store the length of the string that contains the path of the file 
(optionally). 

• s bytes for the s characters of the string that contains the path of the 
file (optionally). 

• 1 byte for the length of the file name. 
• f bytes for the f characters of the file name. 
• 4 bytes to store the unpacked size of the file (optionally). 
• 1 byte for the archiver type. Some files can only be copied in the archive, 

because their archiving would cause the increasing of the file size. 
• 4 bytes for the size of the packed file. 
• nr bytes for the nr characters of the packed file. 

 
3. Packing and unpacking of the files 

 
 The packing and the unpacking of the files contain two big stages. 
 

3.1. Transformation of the initial characters into dictionary codes 
 
 This stage is accomplished using the Lempel-Ziv-Welch (LZW) dictionary 
compression [1], [2], [3], [4], [7], [8]. Initially, it begins with a 257-word 
dictionary, i.e., the 256 ASCII characters and a special word that indicates the end 
of the file. Opposed to the classical version of this method, a dictionary limitation 
appears in the described application. Therefore, when getting to a maximum size 
of the dictionary, this one will be deleted to a minimum value. The user can set 
both the maximum and minimum values. According to the chosen values, the 
number of the packed files and the compression time change. The choice of a too 
large maximum value of the dictionary results in a very long waiting time, getting 
a too small dimension improvement. The optimal values for the two limitation 
dictionary variables are different from one file to another. 



Design and implementation of a dictionary-based archiver 23

3.2. Transformation of the dictionary codes into archive characters 
 
 This method relies on tackling from two different perspectives of two 
strings of numbers, having the same basic table. Dictionary codes greater than 256 
elements cannot be written in the archive using only one byte. Therefore, it is 
necessary to have a 2 bytes space. This space is too large comparing it to the 
necessary one, especially in the initial phases, where the dictionary has not a large 
size. 
 From the first steps, the dictionary has a maximum of 512 elements, and 
the dictionary code can be written on 9 bits from the 16 available bits. Hence, 7 
out of the 16 available bits remain unused, meaning almost half of the overall 
space. Grouping 8 codewords, 8 × 9 bits = 72 bits are needed. It can be written on 
72 bits / 8 bits = 9 bytes, comparing to the 16 bytes usually needed. This is 
available for dictionary codes stored on more than 9 bits too, reducing the gained 
from the classical alternative. 

Table 1 refers to the transformation of codewords (the dictionary indexes) 
into archive characters. 
 

Table 1 
Transformation of dictionary codes into archive characters 

Codewords 161 231 44 182 14 93 152 137 241 Archive characters 
423 1 1 0 1 0 0 1 1 1 
137 0 1 0 0 0 1 0 0 1 
481 1 1 1 1 0 0 0 0 1 
45 0 0 0 1 0 1 1 0 1 
94 0 0 1 0 1 1 1 1 0 
248 0 1 1 1 1 1 0 0 0 
176 0 1 0 1 1 0 0 0 0 
395 1 1 0 0 0 1 0 1 1 

 
Initially, it works with a 257-word dictionary (256 characters + 1 end of 

file control character). Table 1 is, in fact, an example in which the dictionary has a 
number of words ≤ 512. On the first column (423, 137, 481, 45, ...) there are the 
codewords (dictionary indexes), which have values up to 512, so that can be 
written on 9 bits. An archive character has 8 bits and because of this reason cannot 
be written directly, because it would not be efficiently. The codewords (423, 137, 
481, 45, ...) are binary written on the rows. 

In order to have the certainty to obtain archive characters (8 bits), 8 
codewords are used: 

 
(8 codewords) × (9 bits) = (9 archive characters) × (8 bits).   (1) 



Radu Rădescu 
 
24

The first row (161, 231, 44, 182, ...) contains the character words obtained 
by transforming every column from binary to the 10th base.  

For example, 
 

161 = 1 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20. (2) 
 
 It works similarly for the other values: 231, 44, 182, ... . 
 

In the case in which the dictionary has between 512 and 1024 words, the 
procedure is similar, Table 1 having 8 rows, but one extra column, because every 
dictionary word needs 10 bits (10 columns): 

 
(8 codewords) × (10 bits) = (10 archive characters) × (8 bits).  (3) 

 
4. Experimental results 
 
In order to test the application, different file types are used, in order to 

remark the behavior of the archive [5], [6], [9], [10].  
In Table 2, the characteristics of the files used in compression testing are 

presented. 
 

Table 2 
Experimental files 

File type File no. Min. size KB Max. size KB Total size B Average size B 
XLS 6 1.08 84.5 224420 37403 
DOC 3 44 77.5 199680 66560 
PPS 2 111 179 296960 148480 
PAS 6 0.53 1.81 6247 1041 
EXE 6 11.4 83.8 195050 32508 
RAR 3 16.7 100 163185 54395 
BMP 5 1.24 47.5 120148 24030 
WAV 4 1.16 78.9 97286 24322 
DLL 6 7 69 147968 24661 
MID 3 21.5 39.1 86425 28808 

 
Next, the results of the compression are shown according to the maximum 

size of the dictionary. 
 The compression ratio and the compression time are calculated for the 
next pair of values representing the minimum size and the maximum size of the 
dictionary, expressed in number of words: (256, 512), (256, 640), (256, 768), and 
(256, 1024). 

The corresponding values are represented in Table 3÷6. 



Design and implementation of a dictionary-based archiver 25

Table 3 
Compression ratio, compression time, and compression speed for parameters (256, 512) 

File type Dimension B Compression ratio % Compression time ms Compression speed KB/s 
XLS 111924 49.87 42 5.22 
DOC 82044 41.09 33 5.91 
PPS 257445 86.69 70 4.14 
PAS 3717 59.50 2 3.05 
EXE 153063 78.47 45 4.23 
RAR 163185 100.00 44 3.62 
BMP 70209 58.44 24 4.89 
WAV 96723 99.42 26 3.65 
DLL 108927 73.62 33 4.38 
MID 70956 82.10 20 4.22 

 
Table 4 

Compression ratio, compression time, and compression speed for parameters (256, 640) 
File type Dimension B Compression ratio % Compression time ms Compression speed KB/s 

XLS 103614 46.17 42 5.22 
DOC 79726 39.93 35 5.57 
PPS 264199 88.97 73 3.97 
PAS 3458 55.35 2 3.05 
EXE 152520 78.20 45 4.23 
RAR 163185 100.00 45 3.54 
BMP 68126 56.70 24 4.89 
WAV 96506 99.20 27 3.52 
DLL 107743 72.82 34 4.25 
MID 69431 80.34 20 4.22 
 

Table 5 
Compression ratio, compression time, and compression speed for parameters (256, 768) 

File type Dimension B Compression ratio % Compression time ms Compression speed KB/s 
XLS 97888 43.62 42 5.22 
DOC 77860 38.99 36 5.42 
PPS 266541 89.76 78 3.72 
PAS 3414 54.65 1 6.10 
EXE 151155 77.50 46 4.14 
RAR 163185 100.00 48 3.32 
BMP 66000 54.93 25 4.69 
WAV 96292 98.98 28 3.39 
DLL 106453 71.94 36 4.01 
MID 67374 77.96 22 3.84 

 



Radu Rădescu 
 
26

Table 6 
Compression ratio, compression time, and compression speed for parameters (256, 1024) 

File type Dimension B Compression ratio % Compression time ms Compression speed KB/s 
XLS 90852 40.48 45 4.87 
DOC 76123 38.12 39 5.00 
PPS 268006 90.25 87 3.33 
PAS 3396 54.36 3 2.03 
EXE 150764 77.30 48 3.97 
RAR 163185 100.00 53 3.01 
BMP 64273 53.49 27 4.35 
WAV 96056 98.74 30 3.17 
DLL 15846 10.71 39 3.71 
MID 66594 77.05 23 3.67 

 
From the obtained values, the diagrams shown in Figs. 1÷4 are derived. 
 

 
 

Fig. 1. Compression speed for different file types (KB/s). 
 

 
 

Fig. 2. Compression ratio for different file types (%). 



Design and implementation of a dictionary-based archiver 27

 
 

Fig. 3. Compression time according to the maximum size of the dictionary (s). 
 

 
 

Fig. 4. Compression ratio according to the maximum size of the dictionary (%). 

6. Conclusions 

The application described in this paper represents a good example of the 
way the archive performance and the waiting time are determined in the case of 
the alternation of the dictionary, making thus easier to understand the dictionary-
based lossless compression. At the same time, the indexes archiving method can 
be very efficiently used not only by specialized archivers [11], but also in 
programs that manage information. This method is also recommended for storing 
the information for long time, where it is necessary only to check periodically the 
information, because of the good archiving speed. 



Radu Rădescu 
 
28

R E F E R E N C E S 

[1] A. T. Murgan, Principiile teoriei informaţiei în ingineria informaţiei şi a comunicaţiilor, 
Romanian Academy Press, Bucharest, 1998 (in Romanian). 

[2] R. Rădescu, Transmisiunea digitală a informaţiei – lucrări practice, Polytechnic Press, 
Bucharest, 2007 (in Romanian). 

[3] R. Rădescu, Compresia fără pierderi – metode şi aplicaţii, Matrix Rom Press, Bucharest, 2003 
(in Romanian). 

[4] R. Rădescu, “Sistem integrat de studiu al compresiei fără pierderi a datelor”, Symposium of 
Educational Technologies on Electronic Platforms in Engineering Higher Education, 
Technical University of Civil Engineering of Bucharest, 9-10 May 2003, pp. 415-422, 
Conspress Bucharest, 2003 (in Romanian). 

[5] R. Rădescu, I. Bălăşan, “Recent Results in Lossless Text Compression Using the Burrows-
Wheeler Transform (BWT)”, Proceedings of IEEE International Conference on 
Communications 2004 (COMM04), pp. 105-110, Bucharest, Romania, 3-5 June 2004. 

[6] R. Rădescu, R. Popa, “On The Performances of Symbol Ranking Text Compression Method”, 
Scientific Bulletin of the “Politehnica” University of Timişoara, Romania, Transactions on 
Electronics and Communications, special issue dedicated to the Electronics and 
Telecommunications Symposium ETC 2004, 22-23 October 2004, vol. 49 (63), no. 2, pp. 
25-27, 2004. 

[7] R. Rădescu, Şt. Olteanu, “Compresia de text şi de imagini cu algoritmi LZW derivaţi”, EEA 
Revue of Electro-technique, Electronics and Automatics, vol. 53, no. 4, pp. 7-10, October-
December 2005 (in Romanian). 

[8] R. Rădescu, Al. Ene, “Interactive Learning of Lossless Compression Methods”, Proceedings of 
the Symposium “Educational Technologies on Electronic Platforms in Engineering Higher 
Education” (TEPE 2005), Technical University of Civil Engineering of Bucharest, 27-28 
May 2005, pp. 211-218, CONSPRESS Publishing House, 2005. 

[9] R. Rădescu, C. Harbatovschi, “Compression Methods Using Prediction By Partial Matching”, 
Proceedings of the 6th International Conference Communications 2006 (COMM2006), pp. 
65-68, Bucharest, Romania, 8-10 June 2006.  

[10] R. Rădescu, C. Bălănescu, “Lossless Text Compression Using the Star (*) Transform”, 
Proceedings of the 6th International Conference Communications 2006 (COMM2006), pp. 
69-71, Bucharest, Romania, 8-10 June 2006. 

[11] www.rar.com 


