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NEURAL NETWORKS APPLICATION IN SHORT-TERM
LOAD FORECASTING

Andrei TUDOSE?, Irina PICIOROAGA?, Dorian SIDEA3, Constantin BULAC*

Short-term load forecasting (STLF) is a fundamental procedure in power
systems operation that underlies the most important decision-making processes,
such as economic dispatch or equipment maintenance planning. Due to the high
degree of uncertainties in demand variations, advanced techniques based on
artificial intelligence are needed in order to obtain an accurate electrical load
forecasting. In this paper, multiple forecasting methods based on neural networks,
including the multilayer perceptron (MLP), convolutional neural networks (CNN),
long short-term memory (LSTM) and gated recurrent unit (GRU), are applied to
solve the STLF problem, using a real dataset provided by the Romanian TSO. In this
regard, the Mean Squared Error (MSE), the Root Mean Squared Error (RMSE), the
Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE) are
used as evaluation metrics for the day-ahead load forecasting results.
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1. Introduction

The modern society development heavily relies on an appropriate power
supply. Providing this service at the lowest possible cost involves the accurate
covering of demand fluctuations and system losses by generating the appropriate
amount of energy. The principle by which utility companies provide the energy
needs to their users consists in estimating the electrical load in advance, through
already known consumption patterns and various factors that may influence them
(weather conditions, economic growth, social events etc.). This analysis is known
as the "electricity consumption forecasting”. Therefore, the proper power systems
operation is centered around the power demanded by their various consumers, as
generation is scheduled to follow the load, while both transmission and
distribution grids need to provide a reliable connection between consumption and
supply. In this context, load forecasting represents one of the most important
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inputs in power system planning to correctly define all the scenarios under study
[1]. From a technical point of view, load forecasting is essential for security
assessments in power systems, as their behavior can be simulated in this manner
at some future time in order to verify if a secure operation can be achieved in a
variety of operating conditions. Furthermore, load forecasting is of high economic
importance, since it facilitates decision-making in various activities of power
systems operation, such as the allocation of certain equipment, scheduling of
different maintenance operations or the economic dispatch of power between
generation units [2].

The prediction interval for load forecasting studies can vary from a few
minutes (for stability assessment) to a few decades (for investment planning).
Among these analyses, the short-term load forecast plays a critical role in
ensuring the safety, stability and efficiency in power systems operation.

Many approaches have been proposed over the years to solve the short-
term load forecasting. The early load forecasting models were mostly based on
statistical methods, such as the similar day approach, Box-Jenkins basic models
(ARMA [3], ARIMA [4] or ARIMAX [5]) or exponential smoothing [6].
However, these traditional methods fail in adapting to the continuously changing
profile of the electrical load. Therefore, recent studies focus on modern techniques
using artificial intelligence, such as fuzzy logic [7] and support vector regression
[8]. In this paper, several artificial intelligence techniques, including the multi-
layer perceptron (MLP), convolutional neural networks (CNN), long short-term
memory (LSTM) and gated recurrent unit (GRU), are applied for solving the
short-term load forecasting problem.

The main contribution of the authors is the development of a general
neural network-based framework capable of employing the mentioned neural
network models (MLP, CNN, LSTM and GRU) to solve the STLF problem for
the aggregated consumption in the Romanian power system. A comparison study
is performed in order to identify the most efficient model, using the mean absolute
error (MAE), the mean absolute percentage error (MAPE), the mean squared error
(MSE) and the root mean square error (RMSE) as assessment indexes.

2. Neural Networks

The artificial intelligence domain has become a topic of high interest for
the research community, primarily due to recent advancements of hardware
components, such as graphical processing units (GPU), which allow the design of
neural networks models with increased number of layers, while also ensuring
faster convergence time compared to central processing units (CPU). Among
these, neural networks (NN) are capable to learn complex features from the input
data and attain good accuracy for various applications.
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For regression problems, such as the load forecasting, many applications
employ the classical MLP, as it is easier to implement, since it involves less
parameters to set. More complex techniques, such as CNN, LSTM and GRU, are
used as well, since they are specialized in sequence modelling. Further in this
section, a brief overview of the mentioned neural networks is presented.

A. Multi-layer perceptron

The multi-layer perceptron (or feed-forward neural network) represents a
fundamental class of neural networks, being able to generate good results on both
classification and regression problems.

Full connectivity between consecutive layers provides MLP the capability
to solve complex problems, but with the cost of a high computational effort
required in the training process [9]. This leads to a slower learning process, which
represents a major disadvantage of MLP, as the fine-tuning of neural networks,
which implies refitting of the model several times with different parameters, is a
necessary step in improving the performance of the model.
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Fig. 1 General structure of the MLP

B. Convolutional Neural Networks

CNNs represent one of the main topics in the Deep Learning paradigm,
mostly due to their applications in object recognition problems [10]. The main
requirement of a CNN is the input defining as an array (i.e. an array of pixel
intensities or a sequence of values in a time-series). Thus, CNNs can be easily
adapted to solve load forecasting problems [11].

CNNs have the capability to detect and extract features from neighbouring
values. Thus, in a time-series problem, the convolutional layers of a CNN
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emphasize the relationship between the values at consecutive timesteps. The
pooling layers are used to attain a dimensionality reduction of the features,
improving the training speed, while also keeping the most vital information.
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Fig. 2 General structure of a convolutional neural network

C. Recurrent Neural Networks

The capability of learning time-dependent features from a sequence makes
the RNN a suitable model for time-series forecasting. Simple RNNs present the
drawback of the vanishing gradient during training, issue that is overcome by the
more complex units, the long short-term memory (LSTM) [12] and gated
recurrent unit (GRU) [13], which are depicted in Fig. 3. LSTM and GRU cells
consist in various gates, that perform multiple operations in order to establish the
cell output. LSTM contains three gates: the forget gate (f;), the input gate (i) and
the output gate (ot), while a GRU cell, although accomplishes a similar purpose,
consists in only two gates: the reset gate (r;) and the update gate (z).
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Fig.3 llustration of: a. LSTM cell, b. GRU cell
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Fig. 4 General structure of the LSTM/GRU network

Most applications in the field of natural language processing, a topic of
high importance in the era of digitalization, are based on RNN and its’ variations,
as they achieve great performances [14]. Results presented in [15] show that the
efficiency in solving the STLF problem obtained by LSTM and GRU is similar,
making them a reliable tool to use. Despite showing better results than the simple
RNN, LSTM and GRU have more weights to update, which leads to a longer
training time. In general, GRU trains faster than LSTM, as a GRU has only 3
trainable parameters for each unit, while a LSTM unit has 4. Accuracy may vary
depending on the problem and the structure and size of the dataset, thus an
analysis of both is required.

3. The NN model for solving the STLF problem

Good accuracy of the load forecasting model heavily relies on external
variables, such as weather factors or the time of the year/week. Most of the neural
networks will not work properly if these external variables are fed directly into
them, as they require the input to be a sequence of values from the analyzed time-
series. In this section, the general framework used for solving the STLF problem
based on artificial intelligence is described.

A way to incorporate the external variables is to firstly feed the sequence
of the previous load into a neural network, such as a CNN, GRU or LSTM, and
secondly, concatenate the output of this neural network with the external variables
and feed them into a fully-connected layer. The output layer consists in 24
neurons, representing the day-ahead hourly energy consumption forecasting. This
technique is frequently used to include external variables in time-series
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forecasting [16], [17]. The general architecture of the implemented model is
depicted in Fig. 5.

= s |
[s5
o
Normalization | S
3 . MLP/CNN/LSTM/
g Min-Max GRU
o scaler
o E—
g
1 Fully- =
connected 3
71 layers 5
Y o
Min-Max
B Temperature ——
= scaler
&S
r_g Day of Week
E Season encoding
[}
=
L

Holiday

Fig. 5. The architecture of the implemented model

The ReLU (rectified linear unit) activation function, described by equation
(1), is used for the MLP and CNN implementation. The fully connected layers
also employ ReLU. For the LSTM and GRU networks, the sigmoid and
hyperbolic tangent activation functions are used, according to the cells’ structure
previously presented in Fig. 3.

R if x>0 1)
Yeeww = 0, ifx<0

Data normalization is mandatory for some neural network types, such as
the recurrent types (LSTM and GRU), as they are using tanh and sigmoid
activation functions, which are prone to the saturation effect. Also, neural
networks’ performance generally improves when the input data are scaled to the
same range of values. In the developed model, the min-max normalization method
is employed, which is described by the following equation:

« X—min(X)
M max(X ) —min(X)

()

where X is the value to be normalized from the array X.
Hourly energy consumption values, as well as temperature values, are
normalized using the min-max method. The day of week and the season are
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extracted from the calendar date and are processed using one-hot encoding
technique, while the holiday influence is quantified using a binary variable. The
assessment of the forecasting results is done by applying the following four
frequently used evaluation metrics: mean absolute percentage error (MAPE),
mean absolute error (MAE), mean squared error (MSE) and root mean squared
error (RMSE), described by equations (3)-(6) [18]:
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where n is the number of samples, y and y are the real load and the predicted load,
respectively.

4. Case study
A. Dataset

In this paper, the model previously described is applied to solve the day-
ahead load forecasting for the Romanian power system, with a resolution of one
hour. The dataset consists in hourly aggregated energy consumption at national
level, available at [19], daily minimum, average and maximum temperatures
measured in Bucharest, obtained from [20] and data derived from the calendar
date, collected for a period of 7 years, from 2012 to 2019.
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Fig. 6 Training and testing split of the dataset
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As it can be observed in Fig. 6, the dataset is split into a training dataset
and a testing dataset. The last 511 days from the 7-year period, which represent
20% of the dataset, are used to test the model’s performance. From the remaining
dataset, 30% of data are randomly selected and used for the validation process,
while the other 70% of data are used for training.

B. Model performance analysis

This study focuses on evaluating the model described in Section IlI, by
comparing four different architectures of neural networks (MLP, CNN, LSTM
and GRU). The influence of number of layers that process the load data (included
in the grey block in Fig. 5) is also assessed, as presented in Table 1. The output of
these layers is concatenated with the external variables and fed into fully-
connected layers. For each type of NN studied, two fully-connected layers are
used after concatenating the first part of the model with the external variables. The
model implementation was done in Python using TensorFlow and Keras libraries.
For training, Nadam optimizer was applied.

Table 1
Evaluation metrics for the studied models
NN type No. of layers MAE MAPE MSE RMSE
[MWh] [%0] [-] [MWh]
1 128.5 1.85 29384 179.6
MLP 2 114.8 1.66 23945 161.8
3 117.5 17 24259 166.1
1 123.6 1.78 27124 173
CNN 2 1125 1.63 23025 159.9
3 122.5 1.77 26423 170.9
1 134.3 1.94 30570 188.8
LSTM 2 132.7 1.92 33167 192.5
3 164.2 2.35 68705 251.8
1 135.2 1.94 36118 187.3
GRU 2 128.8 1.86 33654 181.6
3 153.6 2.2 51992 218.6

As it can be observed, the CNN architecture with 2 convolutional and
pooling layers obtained the best performance by means of all evaluation metrics
considered in this study, achieving a MAPE value of 1.63% and a MAE value of
112.5 MWh, which indicate a great potential of the model. The MLP also shows
good accuracy, with a MAPE of 1.66% when two layers are used.



Neural networks application in short-term load forecasting 239

For the analyzed dataset, it can be observed that GRU showed better
results than LSTM networks. The lowest MAPE values are 1.86% for GRU and
1.92% for LSTM, respectively.

EMLP mCNN mLSTM = GRU

2.5

15

MAPE (%)
=

0.5

1 2
NO. OF HIDDEN LAYERS

Fig. 7 The NN techniques assessment results

As depicted in Fig. 7, for every type on neural network, the best
performance is achieved when two layers are used. When only one layer is used,
the neural network is too simple and cannot extract the complex features from the
input data. Using too many layers generally leads to overfitting, the neural
network obtaining good accuracy for the training set, but with poor performance
in the testing phase.

5. Conclusions

In this paper multiple neural networks-based methods were investigated in
solving the short-term load forecasting for the Romanian power system. Four
types of neural networks, namely the MLP, CNN, LSTM and GRU, are used
within the proposed model and are evaluated based on MAPE, MAE, MSE and
RMSE metrics. Among the tested architectures, the convolutional neural network
obtained the best results by means of all evaluation indexes. The proposed model
is able to integrate each of the discussed neural networks without additional
processing, thus providing the necessary framework for comparison studies
regarding the performance of the different neural networks in the load forecasting
problem.

Future developments of forecasting methodologies may involve model’s
hybridization by combining multiple neural network architectures. Also, ensemble
learning techniques are considered, as aggregating results produced by different
models may reduce large errors and lead to a more consistent performance.
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