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MULTITASKING CONTROL OF VISUALLY GUIDED
ROBOT FOR INTELLIGENT PART FEEDING

Mihai PARLEA!

Aceasta lucrarea prezintd un post de lucru robotizat pentru realimentarea cu
piese in vrac ce contine doua buncdre automate. Sunt tratate problemele de
comunicatie cu buncarele, prinderea bazata pe vedere a pieselor si controlul
multitasking. De asemenea sunt prezentate date de performantd pentru compararea
folosirii unui singur buncar fata de ambele buncdre.

This paper presents a robotic bulk parts supplying workstation which
features two part feeders. Feeder communication, visual parts grasping and
multitasking control problems are treated. Also, single feeder versus dual feeders
performance data is presented.
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1. Introduction

The present economy trends demand that production cells equipped with
robotized workstations offer the best possible performance and behave predictable
over time. Whether you are using a hierarchical [1] or a heterarhical [2] control
system, the depletion of a workstation’s supply of a certain type of parts will, at
least momentarily, interrupt the production activity [7, 8]. So, the conclusion is
that we need to include the parts resupplying process in the overall production
schedule.

Another problem with the parts resupply process is that the parts arrive in
bulk and need to be manually arranged in the workstations storage matrix [9].
This is a repetitive operator task that should be automated.

The solution to both problems is simple: a dedicated parts resupplying
workstation connected to the production cells closed loop conveyor.

2. Vibrating part feeders

Bulk part feeders have up until now been included in the workstation that
needs that certain type of part [3]. In a dedicated bulk parts resupply workstation,
the parts feeder has to scatter a small number of parts on a flat surface, this surface
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is inspected by a camera which recognizes usable parts and commands the robot
to pick and place them on the conveyor (or on a pallet moved by the conveyor).

Normal operation can be presented as two different phases: feeder
prepares parts - robot pick parts. These two phases are repeated until the desired
number of picked parts is reached (or the workstation is commanded to stop
picking parts). Long term usage of this kind of workstation has shown that the two
phases take roughly the same amount of time to execute, so the workstation is
placing parts on the conveyor for only 50% of his operating time.

In trying to improve this performance indicator, we added a second part
feeder in the workstation and tried to get the most benefit out of this idea. The
workstation setup is presented in Fig. 1.
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Fig. 1. Dual feeder robotic workstation

The workstation features a horizontally articulated SCARA type robot.
Both parts feeders and a portion of the conveyor are placed inside the robot's
working space.

This feeder is based on two vibrating surfaces: Bulk Container and Feed
Surface. Its role is to chose a couple of parts from the main parts storage (which is
contained in the Bulk Container) and spread them out on the Backlit Area (of the
Feed Surface) in order for them to be inspected by a camera (see Fig. 2 for feeder
parts and functioning principle). The camera can be a fixed down-looking or a
mobile arm-mounted / hand-held camera, in our case a fixed down-looking
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camera was used. After the camera inspects the Backlit Area (and possibly
command the robot to pick some parts), a decision is taken in order to bring more
parts from the Bulk Container or to change the way the parts already present on
the Feed Surface are presented to the camera.
In order to achieve this, the feeder can execute several vibrating
movements:
o Dispense - vibrates Bulk Container and Feed Surface together in order to
send parts falling on to the Feed Surface

o Feed Forward - moves parts forward on the Feed Surface
o Feed Backward - moves parts backward on the Feed Surface
o Flip - flips parts on the other side
o Flip Forward / Flip Backwards - combines the flip motion with the move
forward / backwards motion
o Purge - purges parts from Feed Surface and Bulk Container (parts from
Feed Surface fall outside the back of the feeder, parts from Bulk
Container fall only if the Retainer Gate is manually opened)
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Fig. 2. Vibrating parts feeder's surfaces and working principle

The feeders implement 4 types of commands:

1. initialization

2. movement (already presented)
3. speed

4. turns
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3. Vision controlled part recognition and grasping

While working with the visual guidance software, two problems appeared.

The first was resulted from the fact that our robot uses a gripper with
parallel fingers; in order to approach the object, this gripper needs to have two
free fingerprints next to the object in the grasping position [5]. If a part,
recognized by the vision's software locator tool (see Fig. 3), is present on the feed
surface on such a manner that an obstacle (such as another part or the feeder's
sides) occupies (even partially) one of the gripper's fingerprints, then the gripper
will come into collision with this obstacle, resulting in damage tot the robot and to
the feeder. In order to detect this situation, I used two Histogram Tools, they are
attached to the objects model, each having the gripper's fingerprint dimensions
and placed in the grasping positions. For each of these tools the "minimum grey
level value" is inspected. If the value is 255, then all the pixels inside the tool are
white and the fingerprint is declared free of obstacles, if the value is smaller than
255, it is considered that an obstacle is present and the fingerprint is not declared
free of obstacles (see Fig. 4). Only if both the fingerprints are declared free then
the object is considered graspable and the robot is commanded to pick it up.
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Fig. 3. Locator detects recognizes two objects

The second problem is that the Locator Tool doesn't recognize overlapping
objects (see Fig. 5). This is a good thing, because this robot's gripper cannot grasp
overlapping objects and it is difficult to detect which object is on top. But the
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system needs to know if there are unrecognized objects on the Feed Surface, in
order to present them in a different manner to the camera, otherwise, if the system
only picks recognized objects and commands the feeder to bring new objects on
the Feed Surface, the Feed Surface will soon become clogged with objects that,
even if they are recognized, they are not graspable. In order to detect this problem,
I used a Blob Analyzer tool. Blobs are areas of adjacent pixels whose gray level
satisfy a condition. Since the grey level of free pixels is 255, it means that the
pixels occupied by parts have a grey level smaller than 255, so the Blob Analyzer

is set up to detect blob's that have a smaller than 255 grey level (see Fig. 6).
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Then, by comparing the number of recognized objects (1 in this case) with
the number of detected blobs (2 in this case), we can determine if the Feed surface

contains unrecognized objects (which is true in this case).
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Fig. 6. Blob Analyzer detects two blobs
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4. Parts feeding strategies

In order to successfully pick parts from the Feed Surface, I designed and
implemented the fallowing strategy. This strategy has to resolve the following
problems:

O robot picks only recognized graspable parts

O program exists when desired number of parts is picked

o if Feed Surface contains no parts, then parts are brought from the Bulk
Container (Dispense)

o if Feed Surface contains unrecognized parts, then parts are Flipped

o if Feed Surface contains blocked parts and parts were picked, then it is
inspected again to detect possibly freed parts

o if Flip is repeated too many times without detected parts becoming
recognized, present parts are considered rejects and Purged

o if Dispense is repeated too many times without resulting in parts on the
Feed Surface, the "No parts in Bulk Container" error is issued, program
exits

o if parts are still on the Feed Surface after a Purge command, the
"Rejects blocked on Feed Surface" error is issued, program exits

o if too many Purge commands are issued, then "Too many rejects" error
is issued and program exits

After uniting the solutions to all of these problems, I designed the
fallowing algorithm (also presented in Fig. 7):
Init: initialize variables
Step 1: Inspect Feed Surface, if it contains parts then go to Step 3, otherwise go to
Step 2
Step 2: Dispense parts, if maximum number of successive Dispense commands is
reached then go to Errors, else go to Step 1
Step 3: pick recognized graspable parts, if desired number of picked parts is
reached then go to End, if Feed Surface contains blocked parts and parts were
picked then go to Step 1, if Feed Surface contains only unrecognized /
ungraspable parts then go to Ste 4
Step 4: Flip parts, if maximum number of successive Flip repetitions is reached
then go to Step 5, else go to Step 1
Step 5: Purge rejects, if Feed Surface still contains rejects then go to Errors, else
go to Step 2
Errors: report encountered error, go to End
End: end program.
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5. Multitasking control

The workstation is integrated in a manufacturing cell. The hierarchy is
based on the Master - Slave model. So, the cell's PLC is the Cell Master, the robot
controller is the Workstation Master, while the two feeders and the vision
software (which runs on the workstation's PC) are the Workstation Slaves (also
see Fig. 8).

PLC
Cell Master

Robot Controller
Workstation Master

Robot

Feeder 1 Vision Software Feeder 2
Workstation Slave Warkstation Slave Workstation Slave

Fig.. 8. Workstation hierarchy

The robot controller features a multitasking industrial processor. Just like
any other multitasking processor, this processor can execute a single task at any
given time, but all tasks take alternatively control of the processor for very short
periods of time, thus creating the impression that all tasks are running
simultaneously. In order to decide which task deserves to run next on the
processor, processing time is divided in a major time slices, each of these being
16ms long. Every major slice is divided in 16 equal minor slices. Each system or
user task has a priority (ranging from -1 (do not run) to 63 (maximum)) assigned
for each slice (system tasks priorities and user tasks default priorities are
presented in Fig. 9). At the beginning of each minor slice, the processor makes a
list of ready to run tasks and assigns control over the processor to the task with the
highest priority, when this task finishes running, priority is assigned to the next
task and so on until all tasks run or the slice ends.

For implementation, I will use 3 user tasks:
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Ooo0oooao

PLC communication task - this task will communicate with the PLC to
obtain work orders and report work completion

Feeder 1 - this task will handle communication with Feeder 1 and
graspable part choosing from this feeder, it will also move the robot to
pick parts from Feeder 1

Feeder 2 - the same thing as with Feeder 1, but for Feeder 2

The task propriety settings will need to resolve the following problems:

don't block the system tasks
don't block communication with the PLC
use the robot as much as possible
give equal running time to Feeder 1 and Feeder2 tasks
integrate a "critical region" mechanism so that Feeder 1 and Feeder 2 get
alternative use of the robot, but one feeder is free to obtain parts as the
other feeder is commanding the robot
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Fig. 9. Default task priorities
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In order to implement solutions to these problems, the default user tasks
priorities are not adequate. I will re-write these priorities, as in Fig. 10. In this
way, PLC task always has highest user priority, Feeder 1 and 2 tasks have equal
priority. Also, Feeder 1 and 2 tasks have lowest possible priority for the last two
slices that are used by system tasks.

o1 2 3 4 5 B 7 8 910 11 12 13 14 15
PLC 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
Feeder1 29 29 29 29 29 29 29 29 209 29 20 29 29 29 0 10O
Feeder? 280 29 29 29 29 29 29 29 29 29 29 29 29 29 0 O

Fig. 10. Task priorities

In order for the robot to pick all available parts from one feeder and not
“jump” between feeders when both have graspable parts, I will use a global
variable that will tell the Feeder tasks which feeder is in control of the robot.

This variable is called “feeder activ’’ and has the following values:

0. no Feeder has control of the robot
1. Feeder 1 has control of the robot
2. Feeder 2 has control of the robot
This functionality is also presented in Fig. 11.
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In order to visualize how the workstation operates, we will assume that the
time slices are small enough and the processor switches execution between the
tasks fast enough so that tasks seem to run parallel and continuously. Also, we
will assume that the workstation is commanded to produce 7 parts; 3 parts will be
picked from Feeder 1, 2 will be picked from Feeder 2 and finally 2 parts will be
picked from Feeder 1. In this case, Feeder tasks should run accordingly to Fig. 12.
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. < number of parts
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mme Feeder is moving

s  Robotis moving
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Fig.. 12. Task running diagram
6. Implementation and testing

In order to implement the workstation, I used a s800 SCARA robot, the
two vibrating parts feeders and vision software from the same manufacturer;
while a different manufacturer was used for the cell PLC and conveyor system
The resulting workstation can be seen in Fig. 13.

Fig.. 13. The Workstation
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After the workstation was implemented, testing followed. The robot was
commanded to pick 20 parts, first using only one feeder, then using both feeders.
Both situations were repeated 10 times. Fig. 14 presents the total workstation
working time and the robot working time percentage.
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7. Conclusions

As can be seen from Fig. 14, by adding a second feeder, we have
succeeded in increasing the overall robot working time by about 20%. Also, as
can be seen from Fig. 14, the total working time has dropped by about 30%.
Another important aspect that can be seen in Fig. 14 is that the working time with
2 feeders spans a narrower range of values (approximately 20 versus 35 seconds),
thus making the workstation's performances more consistent, easier to predict and
easier to integrate in the production schedule.

On the price versus performance aspect, adding a second feeder to an
existing workstation increases its cost with only 15%, while the performance
increases with 30%. So, if only one feeder is present and performances are not
satisfactory, the right thing to do is adding a second feeder, and not adding a
second workstation.
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