U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 3, 2011 ISSN 1454-234x

MULTITASKING CONTROL OF VISUALLY GUIDED
ROBOT FOR INTELLIGENT PART FEEDING

Mihai PARLEA!

Aceasta lucrarea prezintd un post de lucru robotizat pentru realimentarea cu
piese in vrac ce contine doua buncdre automate. Sunt tratate problemele de
comunicatie cu buncarele, prinderea bazata pe vedere a pieselor si controlul
multitasking. De asemenea sunt prezentate date de performantd pentru compararea
folosirii unui singur buncar fata de ambele buncdre.

This paper presents a robotic bulk parts supplying workstation which
features two part feeders. Feeder communication, visual parts grasping and
multitasking control problems are treated. Also, single feeder versus dual feeders
performance data is presented.

Keywords: resupply workstation, bulk parts feeder
1. Introduction

The present economy trends demand that production cells equipped with
robotized workstations offer the best possible performance and behave predictable
over time. Whether you are using a hierarchical [1] or a heterarhical [2] control
system, the depletion of a workstation’s supply of a certain type of parts will, at
least momentarily, interrupt the production activity [7, 8]. So, the conclusion is
that we need to include the parts resupplying process in the overall production
schedule.

Another problem with the parts resupply process is that the parts arrive in
bulk and need to be manually arranged in the workstations storage matrix [9].
This is a repetitive operator task that should be automated.

The solution to both problems is simple: a dedicated parts resupplying
workstation connected to the production cells closed loop conveyor.

2. Vibrating part feeders

Bulk part feeders have up until now been included in the workstation that
needs that certain type of part [3]. In a dedicated bulk parts resupply workstation,
the parts feeder has to scatter a small number of parts on a flat surface, this surface

" PhD Student, Faculty of Automatic Control and Computers, University POLITEHNICA of
Bucharest, e-mail: mihai.parlea@cimr.pub.ro

48 Mihai Parlea

is inspected by a camera which recognizes usable parts and commands the robot
to pick and place them on the conveyor (or on a pallet moved by the conveyor).

Normal operation can be presented as two different phases: feeder
prepares parts - robot pick parts. These two phases are repeated until the desired
number of picked parts is reached (or the workstation is commanded to stop
picking parts). Long term usage of this kind of workstation has shown that the two
phases take roughly the same amount of time to execute, so the workstation is
placing parts on the conveyor for only 50% of his operating time.

In trying to improve this performance indicator, we added a second part
feeder in the workstation and tried to get the most benefit out of this idea. The
workstation setup is presented in Fig. 1.

- ._.—I,x"%r - Conveyor

e
cen S -
- N

/ s
I,-" \pace
! w
| |
II‘ Robot I'r

\ Feadar 1 Feeder 2 /

N / N\ y.
N/ N
Fig. 1. Dual feeder robotic workstation

The workstation features a horizontally articulated SCARA type robot.
Both parts feeders and a portion of the conveyor are placed inside the robot's
working space.

This feeder is based on two vibrating surfaces: Bulk Container and Feed
Surface. Its role is to chose a couple of parts from the main parts storage (which is
contained in the Bulk Container) and spread them out on the Backlit Area (of the
Feed Surface) in order for them to be inspected by a camera (see Fig. 2 for feeder
parts and functioning principle). The camera can be a fixed down-looking or a
mobile arm-mounted / hand-held camera, in our case a fixed down-looking

Multitasking control of dual part feeders visually controlled robotic workstation 49

camera was used. After the camera inspects the Backlit Area (and possibly
command the robot to pick some parts), a decision is taken in order to bring more
parts from the Bulk Container or to change the way the parts already present on
the Feed Surface are presented to the camera.
In order to achieve this, the feeder can execute several vibrating
movements:
o Dispense - vibrates Bulk Container and Feed Surface together in order to
send parts falling on to the Feed Surface

o Feed Forward - moves parts forward on the Feed Surface
o Feed Backward - moves parts backward on the Feed Surface
o Flip - flips parts on the other side
o Flip Forward / Flip Backwards - combines the flip motion with the move
forward / backwards motion
o Purge - purges parts from Feed Surface and Bulk Container (parts from
Feed Surface fall outside the back of the feeder, parts from Bulk
Container fall only if the Retainer Gate is manually opened)
Stationary down-looking g
Robot am,
: . Gripper
Retainer gate Bulk parts supply Mobile gate, E g
j } drops only on Dipsnense -
’I_|I [[T | [| — mavemenis X
| I [] [I I l I][| [I
Bulk Container |} ..'Touching. overlapping
fore'?ge:!e;;?écts m’ . - GleS‘;ZLOQHBthBI Graspeble parts
 — — —

| Feed Surface

< > ' .
Feed Bacward Feed Forward Flip | Robot W.Drk envelope; |
| Camera inspected area |
Surface vibrating

movemeants

Fig. 2. Vibrating parts feeder's surfaces and working principle

The feeders implement 4 types of commands:

1. initialization

2. movement (already presented)
3. speed

4. turns

50 Mihai Parlea

3. Vision controlled part recognition and grasping

While working with the visual guidance software, two problems appeared.

The first was resulted from the fact that our robot uses a gripper with
parallel fingers; in order to approach the object, this gripper needs to have two
free fingerprints next to the object in the grasping position [5]. If a part,
recognized by the vision's software locator tool (see Fig. 3), is present on the feed
surface on such a manner that an obstacle (such as another part or the feeder's
sides) occupies (even partially) one of the gripper's fingerprints, then the gripper
will come into collision with this obstacle, resulting in damage tot the robot and to
the feeder. In order to detect this situation, I used two Histogram Tools, they are
attached to the objects model, each having the gripper's fingerprint dimensions
and placed in the grasping positions. For each of these tools the "minimum grey
level value" is inspected. If the value is 255, then all the pixels inside the tool are
white and the fingerprint is declared free of obstacles, if the value is smaller than
255, it is considered that an obstacle is present and the fingerprint is not declared
free of obstacles (see Fig. 4). Only if both the fingerprints are declared free then
the object is considered graspable and the robot is commanded to pick it up.

¥ Sequence Editor - AnyFeeder 2

PEBOD e

\0 Acquire Image @ -]
© Locator [=

Input Acquire Image v
w Location ———————————————

Frame Input (none) ¥,
AlFrames Frame Index

D envetnse ‘

v Models

[
v

PLOM 3 No Models
vr

&
&3
v h

Scale Nominal v |1.00

2 objects are
recognized

CEIRTS

400

Rotation |Range v 160

Instances to Find Al

| €|a»

Min Model Recognition (%) 98
P Results Log

S

= () Acquisition Tooks ~

4 = 4 Locato Frame 1D ModelName Model ID Scale Rotation X
55 Acquire Image 0 0 | 1 1 1531243 8796233

=@ lrlSpBElili“'LlTE"‘k o 1 | 1 1 76.83047 3254067
¥ Pattem Locator

4 Edge Locator
24 Caliper >
Done Evecution tme 132 78 ms < —

Fig. 3. Locator detects recognizes two objects

The second problem is that the Locator Tool doesn't recognize overlapping
objects (see Fig. 5). This is a good thing, because this robot's gripper cannot grasp
overlapping objects and it is difficult to detect which object is on top. But the

Multitasking control of dual part feeders visually controlled robotic workstation

system needs to know if there are unrecognized objects on the Feed Surface, in
order to present them in a different manner to the camera, otherwise, if the system
only picks recognized objects and commands the feeder to bring new objects on
the Feed Surface, the Feed Surface will soon become clogged with objects that,
even if they are recognized, they are not graspable. In order to detect this problem,
I used a Blob Analyzer tool. Blobs are areas of adjacent pixels whose gray level
satisfy a condition. Since the grey level of free pixels is 255, it means that the
pixels occupied by parts have a grey level smaller than 255, so the Blob Analyzer

is set up to detect blob's that have a smaller than 255 grey level (see Fig. 6).

% Sequence Editor - AnyFeeder 2 D@@
PECY GeN @ & [M@ o[
I B 2 0 E 8 E Lo s L n Lrd ol
\0 Acquire Image _J
[9 Locator
1© 1mage Histogram
Fi i
Input Acquire Image - Zat
w Location 4 m
Frame Input Locator 35
Frame Index
S
Thresholds Tails One grasping
Back © 2| Black 0.000 position is not
free
Whte (255§ whee 0.000
Image Subsampling
Vv
» Results Log ——————————————————
» Advanced Parameters ——————
k|

i

0.000 0.000

StandardDeviston Mode Mode PixelCount § Mini Value Maxit Value
0oo 255 1225 255 255
3918 255 795 137 255

Done Execution time : 132.78 ms £

Grey

LLE]

Fig. 4. One object's grasping position is blocked

Then, by comparing the number of recognized objects (1 in this case) with
the number of detected blobs (2 in this case), we can determine if the Feed surface

contains unrecognized objects (which is true in this case).

52 Mihai Parlea

¥ Sequence Editor - AnyFeeder 2

PEBOYD Ge s

300 400
i'o Acquire Image

9 Locator

Input | Acquire Image
' Location
Frame Input (none)

All Frames Frame Index

0 v e

¥ Modey —M8M8 ———————

Llc >
lE ;am : No Models On_ly one
- / object is

g recognized

Y

Scale Mominal + |
Rotation Range v 180
Instances to Find

Min Model Recognition (%)
P Resuls Log

= () Acquisition Tooks
& focuire Inage

= ¢ Inspection Toos
¥ Pattem Locator
5% Edge Locator
& Calper ¥

Done Execution time - 133 36 ms |3

Frame [ModelName Model ID Scale
0 1 1 1

Rotation X
1148687 1274717

“ Sequence Editor - AnyFeeder 2

| Q= @ o
o —

100 200
| S

! *0 o« iz

@ Locator
'€ 1mage Histogram i

€ 1mage Histogram (2)

© biob Analyzer

Input Acauire Image: i

w Location

Frame Input (none)

Alframes Frame Index i
5

w Blob Settings ——————————

P Resulslog——————————————————

P Advanced Parameters —— (/18-

2 blobs are detected
| i3
0.000 0,000
Tolnx Resulls
S @ Acquisition Took = £y BlobAnalyzer Flame Instance Area PositionX PositionY InettiaMini_ InertiaM;
¥ Acquire Image 0 a 265247 4855 5243 556945.40 1355094.0
= {J Inspection Tooks 0 1 1645.91 26,02 5011 7824183 916433 60
44 Pattem Locator
Edge Locator
453 Caliper b
Done. Execution time - 133.36 ms < >

Fig. 6. Blob Analyzer detects two blobs

Multitasking control of dual part feeders visually controlled robotic workstation 53

4. Parts feeding strategies

In order to successfully pick parts from the Feed Surface, I designed and
implemented the fallowing strategy. This strategy has to resolve the following
problems:

O robot picks only recognized graspable parts

O program exists when desired number of parts is picked

o if Feed Surface contains no parts, then parts are brought from the Bulk
Container (Dispense)

o if Feed Surface contains unrecognized parts, then parts are Flipped

o if Feed Surface contains blocked parts and parts were picked, then it is
inspected again to detect possibly freed parts

o if Flip is repeated too many times without detected parts becoming
recognized, present parts are considered rejects and Purged

o if Dispense is repeated too many times without resulting in parts on the
Feed Surface, the "No parts in Bulk Container" error is issued, program
exits

o if parts are still on the Feed Surface after a Purge command, the
"Rejects blocked on Feed Surface" error is issued, program exits

o if too many Purge commands are issued, then "Too many rejects" error
is issued and program exits

After uniting the solutions to all of these problems, I designed the
fallowing algorithm (also presented in Fig. 7):
Init: initialize variables
Step 1: Inspect Feed Surface, if it contains parts then go to Step 3, otherwise go to
Step 2
Step 2: Dispense parts, if maximum number of successive Dispense commands is
reached then go to Errors, else go to Step 1
Step 3: pick recognized graspable parts, if desired number of picked parts is
reached then go to End, if Feed Surface contains blocked parts and parts were
picked then go to Step 1, if Feed Surface contains only unrecognized /
ungraspable parts then go to Ste 4
Step 4: Flip parts, if maximum number of successive Flip repetitions is reached
then go to Step 5, else go to Step 1
Step 5: Purge rejects, if Feed Surface still contains rejects then go to Errors, else
go to Step 2
Errors: report encountered error, go to End
End: end program.

Mihai Parlea

54

Init
|
L 4
Fead Surface
Inspect Feed | contains parts
Surface
Mo paris on
Feed Surface Maximum number of

Dispense repetitions
was reached without

_ resulting in parts on
Dispense exaecuted Bring parts from | Feed Surface

Bulk Container

If parts were picked, I

reinspect to detect R . Reached desired

possible freed parts = number of picked parts

recognized

graspehle parts

¥

Cnly unrecognized !
ungraspeble
parts on Feed Surface

Flip executed

Flip p

arls

Maximum number of
Flip repetitions was
reached without
racognizing detected
paris
Maximum number of

Feed Surface

Is empty Purge

consecutive Purge
operations reached

rejects

Fead Surface
is not empty

¥

Errars

Report *No parts in Bulk Container”,
"Rejects blocked on Feed Surface” ar
"Too many rejects” error

End

Fig. 7. Part feeding strategy

Multitasking control of dual part feeders visually controlled robotic workstation 55

5. Multitasking control

The workstation is integrated in a manufacturing cell. The hierarchy is
based on the Master - Slave model. So, the cell's PLC is the Cell Master, the robot
controller is the Workstation Master, while the two feeders and the vision
software (which runs on the workstation's PC) are the Workstation Slaves (also
see Fig. 8).

PLC
Cell Master

Robot Controller
Workstation Master

Robot

Feeder 1 Vision Software Feeder 2
Workstation Slave Warkstation Slave Workstation Slave

Fig.. 8. Workstation hierarchy

The robot controller features a multitasking industrial processor. Just like
any other multitasking processor, this processor can execute a single task at any
given time, but all tasks take alternatively control of the processor for very short
periods of time, thus creating the impression that all tasks are running
simultaneously. In order to decide which task deserves to run next on the
processor, processing time is divided in a major time slices, each of these being
16ms long. Every major slice is divided in 16 equal minor slices. Each system or
user task has a priority (ranging from -1 (do not run) to 63 (maximum)) assigned
for each slice (system tasks priorities and user tasks default priorities are
presented in Fig. 9). At the beginning of each minor slice, the processor makes a
list of ready to run tasks and assigns control over the processor to the task with the
highest priority, when this task finishes running, priority is assigned to the next
task and so on until all tasks run or the slice ends.

For implementation, I will use 3 user tasks:

56

Mihai Parlea

2.

Ooo0oooao

PLC communication task - this task will communicate with the PLC to
obtain work orders and report work completion

Feeder 1 - this task will handle communication with Feeder 1 and
graspable part choosing from this feeder, it will also move the robot to
pick parts from Feeder 1

Feeder 2 - the same thing as with Feeder 1, but for Feeder 2

The task propriety settings will need to resolve the following problems:

don't block the system tasks
don't block communication with the PLC
use the robot as much as possible
give equal running time to Feeder 1 and Feeder2 tasks
integrate a "critical region" mechanism so that Feeder 1 and Feeder 2 get
alternative use of the robot, but one feeder is free to obtain parts as the
other feeder is commanding the robot
Time Slice

System Task
12 3 4 5 6 F 8 9 10 11 12 13 14 15

;':;Z:z;"r 636363 63 63 63 63 63 63 63 63 |63 63 63 |63 |63
(T;;';;::S” olojololololo oo oo o oo |o |s=
Maritar olojo oo ololo o olofo oo o s
DDCMP olojo oo ololo o olofo oo o |4
Kermit olojo oo ololo o olofo oo o s
Pendant olojo oo ololo o olo o oo |solo
Disk Driver o lojo oo ololo o oo o oo |30 4
Serial /O olojo oo ololo o olofo oo |244e
E‘r?f:r oolo o ololo o o o oo oo |40
NFS Driver olojo oo ololo o olofo oo +0 40
TCP Driver o|ojo oo ololo o olofo oo |35
Servo Comm olofo oo ololo o olo o oo 410
Cat 3 Timer o |45/0 (450 |45|0 |45 0 450 |45 |0 |45 |0 |0
Slice
User Task

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 20|20 |20 20 20 2020|2020 10|10 |10 (100 |o (o

1 1919 21|21 19 19 21|21 19|9 |11 119 |0 |o O

2 o lolo o o o ololo oo o |olenfo |

3 ololo o o o ololo oo o o lis|o o

4 1515 15|15 15 15 15|15 /15| |5 |S |5 |0 |o O

5 o lolo o o o ololo oo o oo (=00

6 olojo o o o ololo oo o oo |15

F-27 o /o o o o o 0O |0 |0 |00 |0 0 5 0 |0

Fig. 9. Default task priorities

Multitasking control of dual part feeders visually controlled robotic workstation 57

In order to implement solutions to these problems, the default user tasks
priorities are not adequate. I will re-write these priorities, as in Fig. 10. In this
way, PLC task always has highest user priority, Feeder 1 and 2 tasks have equal
priority. Also, Feeder 1 and 2 tasks have lowest possible priority for the last two
slices that are used by system tasks.

o1 2 3 4 5 B 7 8 910 11 12 13 14 15
PLC 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
Feeder1 29 29 29 29 29 29 29 29 209 29 20 29 29 29 0 10O
Feeder? 280 29 29 29 29 29 29 29 29 29 29 29 29 29 0 O

Fig. 10. Task priorities

In order for the robot to pick all available parts from one feeder and not
“jump” between feeders when both have graspable parts, I will use a global
variable that will tell the Feeder tasks which feeder is in control of the robot.

This variable is called “feeder activ’’ and has the following values:

0. no Feeder has control of the robot
1. Feeder 1 has control of the robot
2. Feeder 2 has control of the robot
This functionality is also presented in Fig. 11.

Feeder 1 Feeder 2

==
Mation

All Parts
Pickad?

Release Contral |~

Fig.. 11. Tasks lock-out based on busy variable

g

All Parts
Pickad?

58 Mihai Parlea

In order to visualize how the workstation operates, we will assume that the
time slices are small enough and the processor switches execution between the
tasks fast enough so that tasks seem to run parallel and continuously. Also, we
will assume that the workstation is commanded to produce 7 parts; 3 parts will be
picked from Feeder 1, 2 will be picked from Feeder 2 and finally 2 parts will be
picked from Feeder 1. In this case, Feeder tasks should run accordingly to Fig. 12.

Feader releasas control,

Feeder obtains parts Obtains new parts,

/ Feeder chooses next part . Makes new list of
to be picked x graspeble parts
Feeder 1
L3 Feeder reaches desired
. < number of parts
Robat picks a part N
Feeder 2 P P Releases control,

Ends program

e Task is running

mme Feeder is moving

s Robotis moving
Task is waiting

Fig.. 12. Task running diagram
6. Implementation and testing

In order to implement the workstation, I used a s800 SCARA robot, the
two vibrating parts feeders and vision software from the same manufacturer;
while a different manufacturer was used for the cell PLC and conveyor system
The resulting workstation can be seen in Fig. 13.

Fig.. 13. The Workstation

Multitasking control of dual part feeders visually controlled robotic workstation 59

After the workstation was implemented, testing followed. The robot was
commanded to pick 20 parts, first using only one feeder, then using both feeders.
Both situations were repeated 10 times. Fig. 14 presents the total workstation
working time and the robot working time percentage.

Working time
140
120
100
)
£ 80
= m 1 Feeder
g 60 | | 2 Feeders
o
=
40 -
20 4
0 i
1 2 3 4 5 6 7 8 9 10
Experiment
Robot working procentage
100
90 +
S
o
g
c
[}
=
L m 1 Feeder
2 m 2 Feeders
<
o
2
5]
Qo
o
o4
5 6 7 8 9 10
Experiment

Fig. 14. Working time and Robot working time

60 Mihai Parlea

7. Conclusions

As can be seen from Fig. 14, by adding a second feeder, we have
succeeded in increasing the overall robot working time by about 20%. Also, as
can be seen from Fig. 14, the total working time has dropped by about 30%.
Another important aspect that can be seen in Fig. 14 is that the working time with
2 feeders spans a narrower range of values (approximately 20 versus 35 seconds),
thus making the workstation's performances more consistent, easier to predict and
easier to integrate in the production schedule.

On the price versus performance aspect, adding a second feeder to an
existing workstation increases its cost with only 15%, while the performance
increases with 30%. So, if only one feeder is present and performances are not
satisfactory, the right thing to do is adding a second feeder, and not adding a
second workstation.

REFERENCES

[1] R. Bartak, Mixing planning and scheduling to model process environments, PACLP,
Manchester, UK, 2000

[2] G.G. Meyer, K. Frdimling, J. Holmstrom, Intelligent Products: A survey, Computers in
Industry, Vol. 60, Issue 3, April 2009, Pages 137-148

[3] Th. Borangiu, F.D. Anton, S. Tunaru, A. Dogar, N. Ivanescu, Robot-Vision Based Part
Conditioning for Flexible Feeding Devices , Proc. of the 1st International Conference on
Optimization of the Robots and Manipulators — OPTIROB 2006, May 26-28, Predeal,
Romania

[4] Adept Robotics, Adept AnyFeeder User’s Manual

[5] Th. Borangiu, A. Dogar, S. Tunaru, F.D. Anton, N. Ivanescu, Vision Guided Robotic Grasp
Learning Procedure, Proc. of the 1*' International Conference on Optimization of the Robots
and Manipulators — OPTIROB 2006, May 26-28, Predeal, Romania

[6] M. Dragoicea, Programarea aplicatiilor in timp-real. Teorie si practic (Applications
Programming in Real-time.Theory and Practice — in Romanian), Editura Universitara, 2009,
ISBN 978-973-749-579-2, cap. 2 si 3, pag. 87 - 139

[7] Th. Borangiu, S. Raileanu, A. Rosu, M. Parlea, Holonic Robot Control for Job Shop Assembly
with Dynamic Simulation, Programmable Logic Controller, In-Tech Publications, Vienna,
Austria, ISBN 978-953-7619-63-3, 2010

[8] S. Raileanu, Production scheduling in a holonic manufacutring system using the open-control
concept, U. P. B. Sci. Bull., Series C, Vol. 72, Iss. 3, 2010, pag. 39-53, ISSN 1454-234x

[9] Th. Borangiu et al, Industrial Robotics: Theory, Modelling and Control, Advanced Robotics
Systems, Vienna, Pro Literatur Verlag Robert Mayer-Scholz Germany, Ed. Sam Cubero,
ISBN 3-86611-285-8, 2006

