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BEURLING AND MATRIX ALGEBRAS, (APROXIMATE)
CONNES-AMENABILITY

Amin MAHMOODI*

We characterize the approximate Connes-amenable Beurling algebras
(S, ) through the existence of some specified nets in /(S x S)", where S is
a discrete, weakly cancellative semigroup. For a discrete group G, we prove that
approximate Connes-amenability and approximate amenability of ﬁl(G,a)) are

the same. We show that Connes-amenability of a dual Banach algebra A and that
of M, (A) are equivalent.
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1. Introduction

In [5] F. Ghahramani and R.J. Loy introduced the notion of approximate
amenability for Banach algebras which modifies Johnson's original definition of
amenability [7] by relaxing the structure of the derivations. Another modification
of the concept of amenability was introduced by V. Runde in [L0], where it had
been studied previously under different names (see for instance [6,8]), that make

sense for dual Banach algebras. We recall the definitions in Definitions 1.1 and
1.3 below. Before proceeding further we recall some terminology.

Let A be a Banach algebra. The projective tensor product A® A is a Banach

A -bimodule under the operations defined by
a(x®y)=ax®y,(x®y)a=x®vya (a,x,yeA),

and there is a continuous linear A -bimodule homomorphism z: A® A— Asuch
that z(a®b)=ab, for a,b,e A. Throughout, we use the term unital for a
semigroup (or an algebra) X with an identity element e, , if it exists. Let E be a
Banach space. The dual of E is denoted byE". In the case where E is a
Banach A -bimodule, E* is also a Banach A-bimodule. We then have the
canonical map ¢ : E — E” defined by (z,1: (X)) =(x, 1) for p1€E", xeE. The
closed unit ball of E is denoted by ball E . For Banach spacesE and F, we write
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L(E, F) for the Banach space of bounded linear maps between E and F. It is

standard that (E® F | = L(F,E") with the duality
(x®y,T)=(xTy) ;x®ycE®F,T eL(F,E")
For a Banach algebra A, then we obtain a bimodule structure on
L(A A*)=(A® A)* through
(a.T)(b) =T (ba),(T.a)(b) =T (b).a(a,b,e AT e L(A A")).

The reader may see [1] for more information.

Let A be a Banach algebra and let E be a Banach A -bimodule. A derivation

is a bounded linear map D : A — E satisfying
D(ab)=Dab+a.Db (a,be A)

For xe E, set ad, : A— E,a—ax—x.a. Then ad, is a derivation; these are
the inner derivations. A derivation D:A— E is approximately inner if there
exists a net (x,), < E such that Da=Ilim (ax, —X,.a) for every ae A, the
limit being in norm.

Definition 1.1 A Banach algebra A is approximately amenable if for each
Banach A-bimodule E, every derivation D : A — E"is a approximately inner.

For unital Banach algebras we may re-write [5, Theorem 2.1] as follows.

Theorem 1.2 Let A be a unital Banach algebra. Then the following are
equivalent:

(i) A is approximately amenable .

(i) There is a net (M,) g(A&) A)** such that for every aeA,

aM,-M_,a—0and z°(M,)—>e,.

(iii) There is a net (M,), c(A®A)'such that for every acA,

aM/,-M)a—0and z7(M')=e,.

Let A be a Banach algebra. A Banach A-bimodule E is dual if there is a
closed submodule E. of E*such thatE =(E,)". We call E, the predual of E. A
dual Banach A-bimodule E is normal if the module actions of A on
E arew” —continuous. A Banach algebra A is dual if it is dual as a Banach A-
bimodule. We write A= (A,)"if we wish to stress that Ais a dual Banach algebra

with predual A, .
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Definition 1.3 A dual Banach algebra A is Connes-amenable if every
w* —continuous derivation from A into a normal dual Banach A -bimodule is
inner.

The reader is referred to[11] for basic properties of Connes-amenable dual
algebras. LetA=(A,)" be a dual Banach algebra and let E be a Banach A-
bimodule. We write owc(E) for the set of all elements x € E such that the maps
a. X

A—>E,a—>{ ,
X .a

are w* —weak continuous. The space owc(E) is a closed submodule of E . It is

shown in[12,Corollary 4.6] that 7"(A.)< owc(A® A). Taking adjoint, we can
extend 7 to an A-bimodule homomorphism . from owc((A® A)*)’toA. A owc -
virtual diagonal for a dual Banach algebra A is an element
U eowc((A® A)*)* such that aU =U.a and ar, . (U)=a for ac A. From

[12] we know that Connes-amenability of a dual Banach algebra A is equivalent

to existence of a owc —virtual diagonal for A.
The concept of approximate Connes-amenability for dual Banach algebras,
motivated by Definitions 1.1 and 1.3 was introduced and studied in[4] , see also

[9].

Definition 1.4 A dual Banach algebra A is approximately Connes—amenable if for
each normal dual Banach A-bimodule E, every w"—continous derivation
D: A— E isapproximately inner.

We state the following, which is a combination of [4, Pr opositions 2.3 and 3.3].

Proposition 1.5 Let A be a unital dual Banach algebra. Then the following are
equivalent:
(i) A isapproximately Connes-amenable.

(if) There is anet (M),  owc((A® A) | such that
aM, -M a—0and 7 ,.M, >ep(ach).

(iii) There isanet (M) < owc((A® A)*)* such that
aM, -M,.a—o0and 7, M =¢, (acA).

In section 2, we briefly extend the Daws's result to the approximate case; M.

Daws proved that Connes-amenability and amenability are the same notion for a

Beurling algebra ﬁl(G,w) , where G is a discrete group [3] For a discrete weakly

cancellative semigroup S, we show that the approximate Connes-amenability of
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Beurling algebra él(S,w) is equivalent to existence of a net in

0% (S x S)*which is an object analogous to owc —virtual diagonal for Connes-

amenability.

In section 3, we first consider a kind of diagonal for a dual Banach algebra A
and see that the existence of such a diagonal is equivalent to Connes-amenability
of A. Then we study Connes-amenability of M (A) with predual M, (A),

where A, is the predual of A. We show that M (A) is Connes-amenable if and
only if A is Connes-amenable. For comparison, we recall [2,Theorem 2.7] that a
Banach algebra A is amenable if and only if M (A) is amenable.

2. Approximate Connes-amenability of weighted semigroup algebras

Let S be a discrete semigroup. A function ca:S—>(0,oo) is a weight if
w(st) < o(s)w(t)for each s,t e S. If S is unital then, without loss of generality, we
put w(es) =1. The Banach space

ﬂl(S,w){(ag)ges =C:|(a,), =gZE;,\ag\w(9)<oo},

with the convolution product is a Banach algebra, called a Beurling algebra.
Following [3] we consider #(S,) as the Banach space ¢*(S) with the product

Sg * o Oh = Sgn2(g,h), where g py— @O, gy and extend *,, to
o(g)a(h)

/*(S) by linearity and continuity. We define the maps L,R.:S—S by

L(t)=st and R(t)=ts. A semigroup S is weakly cancellative if for each se S,

the maps L.,and R_are finite-to-one. In this case /'(S,®) is a dual Banach

algebra with predual cO(S), [3, Proposition 5.1].

Proposition 2.1 Let A be a unital dual Banach algebra. Then the following are
equivalent:
(i) A is approximately Connes- amenable.

(i) There is anet (M,), < (A® AJ " such that
(T.aM,-M_ a)—>0 for every aecA and uniformly for all
T eballowc(L(A A)), and 7, z"M, —>e,.

(iii) There is a net (M’), = (A® AJ"such that
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(T,aM,-M/a)—>0for every aecA and uniformly for all
T eballowc(L(A, A7), and 1, z"M/, =e,.

Proof. As owc((A® A)*)‘is a quotient of (A® A)**, this is just a re-statement of

Proposition 1.5.
Foraset S, we recall that /(s)® ¢'(s)= (s xs), where 5, ® ¢, is identified with

S(gn fOr g,hes. Thus we have L(¢(S),e*(S))=(A(S)® A(S)) = (S xS) = *(SxS),
where T cL(/4(S),r*(S)) is identified with (Tg.h))(g.n)esxs €7 (S xS), where

Tia.) = (6. T(g))-

Theorem 2.2 Let S be a discrete unital semigroup, let @ be a weight on S and
let A= fl(S,co). Then the following are equivalent:

(i) A is approximately amenable.

(i) Thereis anet (M), < (A® A" = /~(sxS)" such that

((f(hk, @) (hk) ~  (n,kg) (K, 9))(g hyesxs,Me ) >0

for every k € S, where the convergence is uniformly for all f eball ¢*(S xS),
and

((t002(0.1), s M) = Fo
uniformly for all f e ball /*(S).
(iii) There is a net (M), (A®AJ" = 7~(sxS) such that
<(f(hk,g)Q(h,k)— f(h,kg)Q2(k,9))(g,nesxs,M 'a>—>0

for every k € S, where the convergence is uniformly for all f eball /*(S xS),
and

<(fghQ(g’ h))(g,h)65xs’ M;> = fes
forall f e 1°(S).

Proof. First, we notice that for every f =(fy) s €/*(S)

7*(£)=((Sgn, T )29, )(g nyesxs €7 (S xS).
Next, for every T e L(A, A")=/*(SxS) and every k e S we have
(6,®6,,6,T-T.5,)= (8, (B ))h,k)- (3. T(5, )k, g)-
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We also observe that e, =&, and therefore (f,e,)= f, .

(i) — (i) We use Theorem 1.2. Suppose that A is approximately amenable and

take the net (M) < ¢*(SxS)" as in Theorem 1.2 (ii). For every f eball /~(SxSY,
then we have

‘<(f9hQ(g'h))(g,h]esxS' Ma> B fes - ‘< f ‘”H(MD‘)_EA» < HHH(M“)_eAH'
Take f eball /*(SxS),keS and consider T e L(A A*)=/¢"(SxS) defined
by <5h,T(5g)>: f(g,h). Then we see that

(£ (k@) k)= £ (1, K2k, ) 0. M, )

Hence, all in all, we have condition (ii).
Similarly, we may prove the implications (ii) — (i) and (i) <> (iii).

a

<[5 M, ~M, .5

The following is [3, Proposition 5.5].

Proposition 2.3 Let S be a weakly cancellative semigroup, let @ be a weight on
S and let A=/'(S,w). Let T eL(AA") be such that T(A)c 1, s)(c,(S)) and
T (ta(A) S 1,5)(Co(S)). Then T eW (A, A") and T eWAP (W (A, A)) if and only
if, for each sequence (k,) of distinct elements of S, and each sequence
(9, hy ) of distinct elements of S xS such that the repeated limits

lim, lim, (6, T(6,, )}, tim,lim, 0(k,.g,,)

lim, lim,,(5, ,T(6, k, ). lim, lim,, Q(h, .k, )

all exist, we have at least one repeated limit in each row is zero.

Proposition 2.4 Let S be a discrete, weakly cancellative semigroup, let @ be a
weighton S and let A= El(S,a)) be unital. Then the following are equivalent:
(i) A is approximately Connes-amenable, with respect to the predual c,(S).

(i) Thereisanet (M), < (A® A)** = /™ (S x S)"such that
<(f(hk,g)Q(h,k)— f(hykg)Q(kyg))(g,h)eSxS,Ma>_)0
for each k €S and uniformly for all f eball ¢ (S x S),which are such that the
maps T e L(A A") defined by <5h!T(5g)>: f(g,h), for g,hes, satisfy the

conclusions of proposition 2.3, and
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(£ 02(0.1), eee M) > (T 6)
uniformly for all f € ball c,(S).
(iii) There isanet (M), < (A® A)** = /*(S x S)" such that

<(f(hk,9)9(h,k)— f(h1kg)Q(kvg))(g,h)eSxS,Mé{)>_)0

for each k €S and uniformly for all f eball /(S x S),which are such that the
maps T € L(A A")defined by <5h1T(5g)>: f(g,h), for g,heS, satisfy the
conclusions of proposition 2.3, and

(1520@.0)), e M2 ) = (1 4)
forall f ecy(S).

Proof. This follows as Theorem 2.2 but by using Proposition 2.1 in place of
Theorem 1.2.

Let G be a discrete group and let h € G. Following Daws as in [3] we define
J,:07(G)—> ¢*(G) by
3,()=(f,Qh ge(h)lg ™ h Jo(h?)), o: (F =(f,), 7(6))

Itis clear that 3, (f )| < w(h)w(h ), sO that J;, is bounded.

Theorem 2.5 Let G be a discrete group, let @ be a weight on G and let
A= El(G,a)). Then the following are equivalent:
(i) Ais approximately Connes-—amenable, with respect to the predual c, (G)
(if) A is approximately amenable .
(i) There is a net (N,),<(*(G)" such that for

everyk eG,J,"(N,)-N_, —0 and <(Q(g,g‘l))ges,Na>—>1.
(iv) There is a net (N',),c/®(G)* such that for every
keG, 3, /(N;)-N;, >0 and (((g.g%),.. N, )=1.

9eG’ ' Ta

Proof. The implications (ii) = (i) and (iv) = (iii) are clear .
(i)=(iv) Let the net (M), = /(G xG)* be given as in Proposition 2.4 (iii).

(2

Define ¢:/"(G) — (*(GxG) by

f ,g:h_1
. g
(S(g.m.8(0) = N
0 ,g=#h
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Let Nj=¢"(Mp). Then we have 4(Q,97))c)= (6., 2a.0), 100
Hence
0008 Do N2 =50 0000 M2) = (e D) =5 =1
by the second condition on (M) from Proposition 2.4 (iii).
Fix keG and f €/*(G). Define F:GxG —C by
F(9.h):=gn k fgok) a(hk o (h) ™ (g,hG).
It is clear that F is bounded and |F| <||f| w(k)w(k?). Let T be the operator

associated with F . The same argument as in the proof [3, Theorem 5.11] shows
that F satisfies the conditions of Proposition 2.3. Notice that

(8(g.n) 8k (1) =gne fig @(ka)a(@) (g Kk Ha((9)™) ™!
Thus we have
HJ ~N!

sup{K J(N)- ;> f eball /7(G )}

=sup{[(#(f)-p(3, (1) M. ]: f ebail ¢*(G)}
=sup| (F(hk, g}, k)~ F (kg )k, @)}, M. ) : “(©)f
so that J (N, ) — N/, —0 by the first condition on (M), from Proposition
2.4 (iii).

(ii)=(i): Let (N,), c/(®(G)" be given as in (iii). Define
w (P (GxG) > (™(G) by (59,w(F))=F(g,g7%), for each Fe/™(GxG)
and g eG.Put M, ==y (N,) for every o . Then it suffices to show that the net
(M,), has desired properties in Theorem 2.2 (ii). First, for every
f eball ¢ (G), we see that

((f,000.0), M, ) 1| =[((1.200.07), N, ) - | <[ ((@fo.07)) N, ) -1

Next for an arbitrary bounded function f :GxG — C and anelement k e G, itis
clear that

w((1 (hk, g)(h,k)—  (h,kg)a(k, )}, ) )= (a7, g)(g ™ k)- F (g™ ka (k. 9),-

Define F:GxG — Chy F(g,h) = f(hk,g)Q(h,k), for each g,heG. Hence, it
f 00,Therefore

\((f (hk, @) (0, k)~ T (0.kg)2(K,9)) g1, Mar | =\<(f (07 9)(g k) - f (g7 kg) (k. 9))g, Na>
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=(w (F)= I (w(F)). Ny ) =<'//(F)1Na ‘JE(NW

as required.

<[ (NN,

3. Connes-amenability for M (A)

We fix some matrix conventions from [2]. Let m,ne N ={1,2,3...} and let S
be a set. We writt N, ={12,..,m}. The collection of all mxn matrices
(% j)With entries from S is denoted by M (S), with M (S) for M, (S)and

M, for M_ (C). If X is an arbitary element in S, then we denote by (X)i,j

the element of M (S) with X in the (i,j)th place and 0 elsewhere. In

particular, M is a unital algebra with matrix units ¢; ;, so that ¢ ;&,, =9;,&,,

ij?

(1, j,k,1 eN,). The identity matrix in M is I, =(5i,j)= i"ﬂgi,i. Let E be a
Banach space. We regard M  (E)as a Banach space by taking the norm to be

specified by
||(Xi,11|zz{||xi,j":i €Ny, Je Nn}’ ((Xi,j)e Mm,n(E))‘
We identify M, (E)" with M (E"), using the duality
<x,A>=Z{<xi,j,ﬂﬂ>:i eN_,je Nn},

for x=(x,)eM, . (E) and A=(4)eM, (E"). Let A be an algebra. Then
M, (A) is also an algebra in the obvious way. The matrix (a, ;) is identified with
Zi"vjzlgi,j ® a,, sothat M, (A)isisomorphicto M, ® A. In the case where A
is a Banach algebra, the algebra M (A) is a Banach algebra with respect to the

norm defined as above. Let A be a Banach algebra and let E be a Banach A-
bimodule. We shall regard M (E) as a Banach M, (A) -bimodule through

(@x);=>" a.x and (xa); = X, a,.
Fora=(a;)e M, (A) and x= (xi,j)e M, (E) . In particular M (E") is a Banach
M, (A) -bimodule. For a = (a; ;) e M (A) and A = (li’j)e Mn(E*)we notice that

@A), =" a;.A,and (Aa);=>" 4 a;.
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Suppose that A is a dual Banach algebra. It is known that A® A is
canonically mapped into owc((A® A)*)*, [12]. Hence we may consider the w'-
topology on A® A inherited from awc((A® A
Definition 3.1 Suppose that A is a dual Banach algebra. A net (U, ) in A® A
is an approximate owc —diagonal for A if forevery ae A

(i) au, —uy.a—"0in awc((A® A)*j, and

(ii)aﬂawc(ua)L)a in A.
We may characterize a dual Banach algebra to be Connes-amenable in terms of
diagonals as follows.

Proposition 3.2 Suppose that A is a dual Banach algebra. Then the following are
equivalent:

(i) A is Connes-amenable .

(ii) There exists a owc —virtual diagonal for A.

(iii) There exists a bounded approximate owc —diagonal for A.

Proof . The equivalences of (i) and (ii) is just [12, Theorem 4.8].

(i) = (iii): Let U be a owc—virtual diagonal for A. Since A® A is w’ —dense
in mc((A@A)*j, there is a net (U,) in A® Awhich tends to U in the
w" —topology. We know that owc((A® A)*jis a closed submodule of (A® A,
and so restriction gives a quotient map (A® A)** — owc((A® A)*)*. This,
together with Goldstein's theorem, shows that (U, )can be chosen to be a
bounded net. Then, it is easy to check that (u,) is an approximate
owc —diagonal for A.

(i) = (ii): Let U e owc ((A® A)*)* be a W* —accumulation point of the given
bounded approximate owc —diagonal (U, ) for A. Without loss of generality, we
may suppose that U =w*—lima u, - Then, it is readily seen that U is a
owc —virtual diagonal for A.

We shall see the role of Proposition 3.2 in the proof of Theorem 3.7 below.
The following is easy to verify.
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Lemma 3.3 Suppose that E is a Banach space and that A=(4;) and

= (%) are elements of M, (E™). Then A, ~W A M, (E™) if and only
if li‘flj——wli,j in E*, for all iLJeN,.

LetA=(A,)" be a dual Banach algebra and let E = (E,)"be a normal, dual
Banach A-bimodule. Then, using Lemma 3.3, it is not hard to see
thatM (E)=M_(E,)" is a normal, dual Banach M, (A)-bimodule. In

particular,M  (A) =M (A,)" is a dual Banach algebra.

Let A be a Banach algebra, E be a Banach A-bimodule and let D: A— E”
be a derivation. We may consider the derivation D: Mn(A)—> Mn(E*) by setting

IS((ai’j)):(D(aj,i)), where we note the transposition of i and j [2]. Further, if A

is dual and D is w"—continuous then it is easily seen that D is also a
w" — continuous derivation.
Suppose that A is a Banach algebra. We shall identify M (A) with M  ® A,

so that we can identify M, (A) ® M, (A) with M_, ® (A® A).

Definition 3.4 Let A be a Banach algebra. For ue A® A and r,seN,, we

define elements

1o 1
U =Hzi,j:lgi,j®gj,i®u and V=Hz & ®; BU

in M_ ®(A®A). Moreover, for ac(M ,®(adA) we define we(A®AJ by
(u,@)=(V,Q). Then for ae A we have
(u,a.0)= < ZJ L6 @8, ®(ua), > (u .(g,,s®a),Q>=<U,(e,,S®a)Q>

and similarly (u,@.a)=(U ,Q.(& s ®a)). we also observe that

U.(gm®a)=%z L6, e, ®(ua)= GZ L6 ®e, ®u)(| ®a)=V(l,®a)
and that (g, ¢ ®a).U =(I, ®a)V.
Take gec(A® A)** and take the net (u,)c A® A such that u, — ¢ in the

w" —topology on (A® A)" . We consider the corresponding net (U,) and (V, )in
M ®(A® A), as Definition 3.4. We define the element ¢ c(M , ® (A® A))™
n

(depends on @) through (Q,®) =(w,¢) for every e (M , ® (A® A))",Where®
n
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is given by Definition 3.4. Then it is easy to see that v, v e
in(Mnz ©(A®A)~. Hence we see that (. ®a)U, — (1, ®@a)d i
M2 ® (A® A))" - Therefore
(p.a0)=lim,(u,,a0)=lim, (U, (s, ®a)Q)=1im, (U, ®a)Q)
=(0(1,®a)Q)=(0,(I, ®a)Q)
and similarly (¢ ,@.a)=(®,Q.(1, ® a)).
We keep the notations of Definition 3.4 in the sequel.

Lemma 3.5 Suppose that A is a dual Banach algebra and that
Qeowc(M , ®(A® A)). Then we owc((A® A)").

Proof. Suppose that a, —*—a in A and that ¢ € (A® A)*". By Lemma

33, 1, ®a—2 51, ®a in M, ®A. Then by the assumption
(@,(1,®a)Q) > (0,(I, ®a)Q),

and whence (4,a.0)—>(daw). A similar argument yields that

(¢,02,) > (¢, wa), as required.

We denote by IT the corresponding diagonal operator for M (A) .
Lemma 3.6. Suppose that u e A®A, r,se N, and that a< A. Then
(i) V) =1, ® z(u),
(i) TI(U Xer,s ® a)z & ®n(u)a;
(iii) (¢, . ®a)1U)=¢, , ®az(u)
Proof. Take u=) " a, ®b, and then

U=%Z g..®gj‘i®am®bm=%z (6, ®a,)®(s, ®b,)

i,jm hJ i,j,m

Therefore
NU)=13,, a8, ©ab, = X1, ®ah, =1, ©1(u)

iLj“ji
Then we obtain
U )e,, ®a)=(1,® (), ®a)=¢,, @ (u)a,

and analogously (iii).
The following is our main result in this section.
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Theorem 3.7. Suppose that A=(A.)"is a dual Banach algebra and that ne N.

Then M, (A) =M, (A*)*is Connes-amenable if and only if A is Connes-amenble.
Proof. Let M, (A) be Connes-amenable. Let E be a normal, dual Banach A-

* *
bimodule and D: A— E be a W -continuous derivation. We consider the W -
continuous derivation D: M, (A)— Mn(E ) as before. By the assumption, there

exists x =(x; j) € M, (E)for which D(a)=ax—-xa, acM,(A). Take acAand
identify a with the matrix (a),. Then x,, € E and

D(a) = (6((3)11 ))11 = ((a)ll'x - X-(a)n )1,1 =aX;;—X,a

so that D is an inner derivation as required.
Conversely, let A be Connes-amenable. Let (u,)c A® A be a bounded

approximate oWc -diagonal for A. We wish to show that the corresponding net
(U, ). defined in Definiton 3.4, is a bounded approximate oWC -diagonal for

M, (A). Take r,seN,,acA and Qeowc(M ® (A® A))*). Then, using
Lemma 3.5, we have
Q6. ®a)u, -U, [¢,, ®@a)) =(Qle,, ®a)-(¢,, ®a)QU,)
=(wa-awu,)=(w,au, —u,.a)—>0.
It follows that
(2@, 1)Uq ~Uy (&, })) >0,
forall (a, )< M,(A) and Qeowe(M » ® (A® A)"),
Next for y e A+, by Lemma 3.6, we see that
<5r,s ® l//,(&‘rys ® a)H(Ua)> = <5r,s Qy,&, ® a;r(ua)> = <z//,a7r(ua)>
— <1//, a) = <5r,s Sy, e, ® a>,

and

(g, ®w (e, ®a)IU, ) = (&, ®p,e,,®a)=0, (kI eN,, (k1)=(r,s))
Hence for all (ai,j)e M, (A) and (wi,j)e M, (A.) we have

<(‘/’i,j ) (ai,j)n(ua)> - <(‘/’i,j ) (ai'j )>

which proves the claim.
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4. Conclusions

We briefly point out the original results obtained in this work. We first,
regarding a discrete weakly concellative semigroup S, Considered the Beurling

algebras /*(S,w), where  is a weight function on S. We showed that the
existence of some specified nets in 1”(SxS)" is equivalent to the approximate
Connes-amenatility of /'(S,®). Next, for a discrete group G, we proved that
approximate Connes-amenability and approximate amenability are the same
notion for the Beurling algebra El(G,a)). Finally, for a dual Banach algebra A,
we showed that the matrix algebra M (A) is a dual Banach algebra as well. We
proved that M, (A) is Connes-amenable if and only if A is Connes-amenable,
which is our last result in this paper.
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