

BEURLING AND MATRIX ALGEBRAS, (APPROXIMATE) CONNES-AMENABILITY

Amin MAHMOODI¹

We characterize the approximate Connes-amenable Beurling algebras $\ell^1(S, \omega)$ through the existence of some specified nets in $\ell^\infty(S \times S)^$, where S is a discrete, weakly cancellative semigroup. For a discrete group G , we prove that approximate Connes-amenability and approximate amenability of $\ell^1(G, \omega)$ are the same. We show that Connes-amenability of a dual Banach algebra A and that of $M_n(A)$ are equivalent.*

2010 Mathematics Subject Classification. Primary: 22D15, 43A10, Secondary: 43A20, 46H25, 47B47.

Keywords: Connes-amenability, approximate amenability, Beurling algebras, approximate σ wc -diagonal.

1. Introduction

In [5], F. Ghahramani and R.J. Loy introduced the notion of approximate amenability for Banach algebras which modifies Johnson's original definition of amenability [7] by relaxing the structure of the derivations. Another modification of the concept of amenability was introduced by V. Runde in [10], where it had been studied previously under different names (see for instance [6,8]), that make sense for dual Banach algebras. We recall the definitions in Definitions 1.1 and 1.3 below. Before proceeding further we recall some terminology.

Let A be a Banach algebra. The projective tensor product $A \hat{\otimes} A$ is a Banach A -bimodule under the operations defined by

$$a.(x \otimes y) := ax \otimes y, \quad (x \otimes y).a := x \otimes ya \quad (a, x, y \in A),$$

and there is a continuous linear A -bimodule homomorphism $\pi: A \hat{\otimes} A \rightarrow A$ such that $\pi(a \otimes b) = ab$, for $a, b \in A$. Throughout, we use the term *unital* for a semigroup (or an algebra) X with an identity element e_X , if it exists. Let E be a Banach space. The dual of E is denoted by E^* . In the case where E is a Banach A -bimodule, E^* is also a Banach A -bimodule. We then have the canonical map $\iota_E: E \rightarrow E^{**}$ defined by $\langle \mu, \iota_E(x) \rangle = \langle x, \mu \rangle$ for $\mu \in E^*$, $x \in E$. The closed unit ball of E is denoted by $ball E$. For Banach spaces E and F , we write

¹ Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran,
e-mail: a_mahmoodi@iauctb.ac.ir

$L(E, F)$ for the Banach space of bounded linear maps between E and F . It is standard that $(E \hat{\otimes} F)^* = L(F, E^*)$ with the duality

$$\langle x \otimes y, T \rangle = \langle x, Ty \rangle ; x \otimes y \in E \hat{\otimes} F, T \in L(F, E^*)$$

For a Banach algebra A , then we obtain a bimodule structure on $L(A, A^*) = (A \hat{\otimes} A)^*$ through

$$(a.T)(b) = T(ba), (T.a)(b) = T(b).a (a, b \in A, T \in L(A, A^*)).$$

The reader may see [1] for more information.

Let A be a Banach algebra and let E be a Banach A -bimodule. A *derivation* is a bounded linear map $D: A \rightarrow E$ satisfying

$$D(ab) = Da.b + a.Db \quad (a, b \in A).$$

For $x \in E$, set $ad_x: A \rightarrow E, a \rightarrow a.x - x.a$. Then ad_x is a derivation; these are the *inner* derivations. A derivation $D: A \rightarrow E$ is *approximately inner* if there exists a net $(x_\alpha)_\alpha \subseteq E$ such that $Da = \lim_\alpha (a.x_\alpha - x_\alpha.a)$ for every $a \in A$, the limit being in norm.

Definition 1.1 A Banach algebra A is *approximately amenable* if for each Banach A -bimodule E , every derivation $D: A \rightarrow E^*$ is approximately inner.

For unital Banach algebras we may re-write [5, Theorem 2.1] as follows.

Theorem 1.2 Let A be a unital Banach algebra. Then the following are equivalent:

- (i) A is approximately amenable.
- (ii) There is a net $(M_\alpha)_\alpha \subseteq (A \hat{\otimes} A)^{**}$ such that for every $a \in A$, $a.M_\alpha - M_\alpha.a \rightarrow 0$ and $\pi^{**}(M_\alpha) \rightarrow e_A$.
- (iii) There is a net $(M'_\alpha)_\alpha \subseteq (A \hat{\otimes} A)^{**}$ such that for every $a \in A$, $a.M'_\alpha - M'_\alpha.a \rightarrow 0$ and $\pi^{**}(M'_\alpha) = e_A$.

Let A be a Banach algebra. A Banach A -bimodule E is *dual* if there is a closed submodule E_* of E^* such that $E = (E_*)^*$. We call E_* the *predual* of E . A dual Banach A -bimodule E is *normal* if the module actions of A on E are w^* -continuous. A Banach algebra A is *dual* if it is dual as a Banach A -bimodule. We write $A = (A_*)^*$ if we wish to stress that A is a dual Banach algebra with predual A_* .

Definition 1.3 A dual Banach algebra A is *Connes-amenable* if every w^* -continuous derivation from A into a normal dual Banach A -bimodule is inner.

The reader is referred to [11] for basic properties of Connes-amenable dual algebras. Let $A = (A_*)^*$ be a dual Banach algebra and let E be a Banach A -bimodule. We write $\sigma_{wc}(E)$ for the set of all elements $x \in E$ such that the maps

$$A \rightarrow E, a \rightarrow \begin{cases} a \cdot x, \\ x \cdot a, \end{cases}$$

are w^* -continuous. The space $\sigma_{wc}(E)$ is a closed submodule of E . It is shown in [12, Corollary 4.6] that $\pi^*(A_*) \subseteq \sigma_{wc}(A \hat{\otimes} A)$. Taking adjoint, we can extend π to an A -bimodule homomorphism $\pi_{\sigma_{wc}}$ from $\sigma_{wc}((A \hat{\otimes} A)^*)$ to A . A σ_{wc} -virtual diagonal for a dual Banach algebra A is an element $U \in \sigma_{wc}((A \hat{\otimes} A)^*)^*$ such that $a.U = U.a$ and $a\pi_{\sigma_{wc}}(U) = a$ for $a \in A$. From [12] we know that Connes-amenability of a dual Banach algebra A is equivalent to existence of a σ_{wc} -virtual diagonal for A .

The concept of approximate Connes-amenability for dual Banach algebras, motivated by Definitions 1.1 and 1.3 was introduced and studied in [4], see also [9].

Definition 1.4 A dual Banach algebra A is *approximately Connes-amenable* if for each normal dual Banach A -bimodule E , every w^* -continuous derivation $D : A \rightarrow E$ is approximately inner.

We state the following, which is a combination of [4, Propositions 2.3 and 3.3].

Proposition 1.5 Let A be a unital dual Banach algebra. Then the following are equivalent:

- (i) A is approximately Connes-amenable.
- (ii) There is a net $(M_\alpha)_\alpha \subseteq \sigma_{wc}((A \hat{\otimes} A)^*)$ such that

$$a.M_\alpha - M_\alpha.a \rightarrow 0 \text{ and } \pi_{\sigma_{wc}} M_\alpha \rightarrow e_A \text{ (} a \in A \text{).}$$

- (iii) There is a net $(M'_\alpha)_\alpha \subseteq \sigma_{wc}((A \hat{\otimes} A)^*)$ such that

$$a.M'_\alpha - M'_\alpha.a \rightarrow 0 \text{ and } \pi_{\sigma_{wc}} M'_\alpha = e_A \text{ (} a \in A \text{).}$$

In section 2, we briefly extend the Daws's result to the approximate case; M. Daws proved that Connes-amenability and amenability are the same notion for a Beurling algebra $\ell^1(G, w)$, where G is a discrete group [3]. For a discrete weakly cancellative semigroup S , we show that the approximate Connes-amenability of

Beurling algebra $\ell^1(S, \omega)$ is equivalent to existence of a net in $\ell^\infty(S \times S)^*$ which is an object analogous to σwc -virtual diagonal for Connes-amenability.

In section 3, we first consider a kind of diagonal for a dual Banach algebra A and see that the existence of such a diagonal is equivalent to Connes-amenability of A . Then we study Connes-amenability of $M_n(A)$ with predual $M_n(A_*)$, where A_* is the predual of A . We show that $M_n(A)$ is Connes-amenable if and only if A is Connes-amenable. For comparison, we recall [2, Theorem 2.7] that a Banach algebra A is amenable if and only if $M_n(A)$ is amenable.

2. Approximate Connes-amenability of weighted semigroup algebras

Let S be a discrete semigroup. A function $\omega: S \rightarrow (0, \infty)$ is a *weight* if $\omega(st) \leq \omega(s)\omega(t)$ for each $s, t \in S$. If S is unital then, without loss of generality, we put $\omega(e_S) = 1$. The Banach space

$$\ell^1(S, \omega) = \left\{ (a_g)_{g \in S} \subseteq C : \left\| (a_g)_{g \in S} \right\| = \sum_{g \in S} |a_g| \omega(g) < \infty \right\},$$

with the convolution product is a Banach algebra, called a *Beurling algebra*. Following [3] we consider $\ell^1(S, \omega)$ as the Banach space $\ell^1(S)$ with the product $\delta_g * \omega \delta_h := \delta_{gh} \Omega(g, h)$, where $\Omega(g, h) := \frac{\omega(gh)}{\omega(g)\omega(h)}$ ($g, h \in S$) and extend $*_\omega$ to $\ell^1(S)$ by linearity and continuity. We define the maps $L_s, R_s: S \rightarrow S$ by $L_s(t) = st$ and $R_s(t) = ts$. A semigroup S is *weakly cancellative* if for each $s \in S$, the maps L_s and R_s are finite-to-one. In this case $\ell^1(S, \omega)$ is a dual Banach algebra with predual $c_0(S)$, [3, Proposition 5.1].

Proposition 2.1 Let A be a unital dual Banach algebra. Then the following are equivalent:

- (i) A is approximately Connes- amenable.
- (ii) There is a net $(M_\alpha)_\alpha \subseteq (A \hat{\otimes} A)^{**}$ such that $\langle T, aM_\alpha - M_\alpha a \rangle \rightarrow 0$ for every $a \in A$ and uniformly for all $T \in \text{ball } \sigma\text{wc}(L(A, A^*))$, and $\iota_{A^*}^* \pi^{**} M_\alpha \rightarrow e_A$.
- (iii) There is a net $(M'_\alpha)_\alpha \subseteq (A \hat{\otimes} A)^{**}$ such that

$\langle T, a.M'_\alpha - M'_\alpha.a \rangle \rightarrow 0$ for every $a \in A$ and uniformly for all $T \in \text{ball } \sigma_{wc}(L(A, A^*))$, and $\iota_{A^*}^* \pi^{**} M'_\alpha = e_A$.

Proof. As $\sigma_{wc}(A \hat{\otimes} A)^*$ is a quotient of $(A \hat{\otimes} A)^{**}$, this is just a re-statement of Proposition 1.5.

For a set S , we recall that $\ell^1(S) \hat{\otimes} \ell^1(S) = \ell^1(S \times S)$, where $\delta_g \otimes \delta_h$ is identified with $\delta_{(g,h)}$ for $g, h \in S$. Thus we have $L(\ell^1(S), \ell^\infty(S)) = (\ell^1(S) \hat{\otimes} \ell^1(S))^* = \ell^1(S \times S)^* = \ell^\infty(S \times S)$, where $T \in L(\ell^1(S), \ell^\infty(S))$ is identified with $(T_{(g,h)})_{(g,h) \in S \times S} \in \ell^\infty(S \times S)$, where $T_{(g,h)} = \langle \delta_h, T(\delta_g) \rangle$.

Theorem 2.2 Let S be a discrete unital semigroup, let ω be a weight on S and let $A := \ell^1(S, \omega)$. Then the following are equivalent:

- (i) A is approximately amenable.
- (ii) There is a net $(M_\alpha)_\alpha \subseteq (A \hat{\otimes} A)^* = \ell^\infty(S \times S)^*$ such that

$$\langle (f(hk, g)\Omega(h, k) - f(h, kg)\Omega(k, g))_{(g,h) \in S \times S}, M_\alpha \rangle \rightarrow 0$$

for every $k \in S$, where the convergence is uniformly for all $f \in \text{ball } \ell^\infty(S \times S)$, and

$$\langle (f_{gh}\Omega(g, h))_{(g,h) \in S \times S}, M'_\alpha \rangle \rightarrow f_{e_S}$$

uniformly for all $f \in \text{ball } \ell^\infty(S)$.

- (iii) There is a net $(M'_\alpha)_\alpha \subseteq (A \hat{\otimes} A)^* = \ell^\infty(S \times S)^*$ such that

$$\langle (f(hk, g)\Omega(h, k) - f(h, kg)\Omega(k, g))_{(g,h) \in S \times S}, M'_\alpha \rangle \rightarrow 0$$

for every $k \in S$, where the convergence is uniformly for all $f \in \text{ball } \ell^\infty(S \times S)$, and

$$\langle (f_{gh}\Omega(g, h))_{(g,h) \in S \times S}, M'_\alpha \rangle = f_{e_S}$$

for all $f \in \ell^\infty(S)$.

Proof. First, we notice that for every $f = (f_g)_{g \in S} \in \ell^\infty(S)$

$$\pi^*(f) = (\langle \delta_{gh}, f \rangle \Omega(g, h))_{(g,h) \in S \times S} \in \ell^\infty(S \times S).$$

Next, for every $T \in L(A, A^*) = \ell^\infty(S \times S)$ and every $k \in S$ we have

$$\langle \delta_g \otimes \delta_h, \delta_k T - T \delta_k \rangle = \langle \delta_g, T(\delta_{hk}) \rangle \Omega(h, k) - \langle \delta_{kg}, T(\delta_h) \rangle \Omega(k, g).$$

We also observe that $e_A = \delta_{e_S}$ and therefore $\langle f, e_A \rangle = f_{e_S}$.

(i) \rightarrow (ii) We use Theorem 1.2. Suppose that A is approximately amenable and take the net $(M_\alpha)_\alpha \subseteq \ell^\infty(S \times S)^*$ as in Theorem 1.2 (ii). For every $f \in \text{ball } \ell^\infty(S \times S)$, then we have

$$\left| \left\langle \left(f_{gh} \Omega(g, h) \right)_{(g, h) \in S \times S}, M_\alpha \right\rangle - f_{e_S} \right| = \left| \left\langle f, \pi^{**}(M_\alpha) - e_A \right\rangle \right| \leq \left\| \pi^{**}(M_\alpha) - e_A \right\|.$$

Take $f \in \text{ball } \ell^\infty(S \times S)$, $k \in S$ and consider $T \in L(A, A^*) = \ell^\infty(S \times S)$ defined by $\langle \delta_h, T(\delta_g) \rangle = f(g, h)$. Then we see that

$$\left| \left\langle (f(hk, g) \Omega(h, k) - f(h, kg) \Omega(k, g))_{(g, h) \in S \times S}, M_\alpha \right\rangle \right| \leq \left\| \delta_k \cdot M_\alpha - M_\alpha \cdot \delta_k \right\|.$$

Hence, all in all, we have condition (ii).

Similarly, we may prove the implications (ii) \rightarrow (i) and (i) \leftrightarrow (iii).

The following is [3, Proposition 5.5].

Proposition 2.3 Let S be a weakly cancellative semigroup, let ω be a weight on S and let $A = \ell^1(S, \omega)$. Let $T \in L(A, A^*)$ be such that $T(A) \subseteq \iota_{c_0(S)}(c_0(S))$ and $T^*(\iota_A(A)) \subseteq \iota_{c_0(S)}(c_0(S))$. Then $T \in W(A, A^*)$ and $T \in WAP(W(A, A^*))$ if and only if, for each sequence (k_n) of distinct elements of S , and each sequence (g_m, h_m) of distinct elements of $S \times S$ such that the repeated limits

$$\begin{aligned} & \lim_n \lim_m \langle \delta_{k_n g_m}, T(\delta_{h_m}) \rangle, \lim_n \lim_m \Omega(k_n, g_m) \\ & \lim_n \lim_m \langle \delta_{g_m}, T(\delta_{h_m} k_n) \rangle, \lim_n \lim_m \Omega(h_m, k_n) \end{aligned}$$

all exist, we have at least one repeated limit in each row is zero.

Proposition 2.4 Let S be a discrete, weakly cancellative semigroup, let ω be a weight on S and let $A = \ell^1(S, \omega)$ be unital. Then the following are equivalent:

(i) A is approximately Connes-amenable, with respect to the predual $c_0(S)$.

(ii) There is a net $(M_\alpha)_\alpha \subseteq (A \hat{\otimes} A)^{**} = \ell^\infty(S \times S)^*$ such that

$$\left\langle (f(hk, g) \Omega(h, k) - f(h, kg) \Omega(k, g))_{(g, h) \in S \times S}, M_\alpha \right\rangle \rightarrow 0$$

for each $k \in S$ and uniformly for all $f \in \text{ball } \ell^\infty(S \times S)$, which are such that the maps $T \in L(A, A^*)$ defined by $\langle \delta_h, T(\delta_g) \rangle = f(g, h)$, for $g, h \in S$, satisfy the conclusions of proposition 2.3, and

$$\left\langle \left(f_{gh} \Omega(g, h) \right)_{(g, h) \in S \times S}, M_\alpha \right\rangle \rightarrow \langle f, e_A \rangle$$

uniformly for all $f \in \text{ball } c_0(S)$.

(iii) There is a net $(M'_\alpha)_\alpha \subseteq (A \hat{\otimes} A)^{**} = \ell^\infty(S \times S)^*$ such that

$$\left\langle (f(hk, g) \Omega(h, k) - f(h, kg) \Omega(k, g))_{(g, h) \in S \times S}, M'_\alpha \right\rangle \rightarrow 0$$

for each $k \in S$ and uniformly for all $f \in \text{ball } \ell^\infty(S \times S)$, which are such that the maps $T \in L(A, A^*)$ defined by $\langle \delta_h, T(\delta_g) \rangle = f(g, h)$, for $g, h \in S$, satisfy the conclusions of proposition 2.3, and

$$\left\langle \left(f_{gh} \Omega(g, h) \right)_{(g, h) \in S \times S}, M'_\alpha \right\rangle = \langle f, e_A \rangle$$

for all $f \in c_0(S)$.

Proof. This follows as Theorem 2.2 but by using Proposition 2.1 in place of Theorem 1.2.

Let G be a discrete group and let $h \in G$. Following Daws as in [3], we define

$J_h : \ell^\infty(G) \rightarrow \ell^\infty(G)$ by

$$J_h(f) := \left(f_{hg} \Omega(h, g) \omega(h) \Omega(g^{-1}, h^{-1}) \omega(h^{-1}) \right)_{g \in G}; \quad \left(f = \left(f_g \right)_g \in \ell^\infty(G) \right).$$

It is clear that $\|J_h(f)\| \leq \omega(h) \omega(h^{-1})$, so that J_h is bounded.

Theorem 2.5 Let G be a discrete group, let ω be a weight on G and let $A = \ell^1(G, \omega)$. Then the following are equivalent:

(i) A is approximately Connes–amenable, with respect to the predual $c_0(G)$.

(ii) A is approximately amenable.

(iii) There is a net $(N_\alpha)_\alpha \subseteq \ell^\infty(G)^*$ such that for every $k \in G$, $J_k^*(N_\alpha) - N_\alpha \rightarrow 0$ and $\langle (\Omega(g, g^{-1}))_{g \in G}, N_\alpha \rangle \rightarrow 1$.

(iv) There is a net $(N'_\alpha)_\alpha \subseteq \ell^\infty(G)^*$ such that for every $k \in G$, $J_k^*(N'_\alpha) - N'_\alpha \rightarrow 0$ and $\langle (\Omega(g, g^{-1}))_{g \in G}, N'_\alpha \rangle = 1$.

Proof. The implications (ii) \Rightarrow (i) and (iv) \Rightarrow (iii) are clear.

(i) \Rightarrow (iv) Let the net $(M'_\alpha)_\alpha \subseteq \ell^\infty(G \times G)^*$ be given as in Proposition 2.4 (iii).

Define $\phi : \ell^\infty(G) \rightarrow \ell^\infty(G \times G)$ by

$$\langle \delta_{(g, h)}, \phi(f) \rangle := \begin{cases} f_g & , g = h^{-1} \\ 0 & , g \neq h^{-1} \end{cases}.$$

Let $N'_\alpha := \phi^*(M'_\alpha)$. Then we have $\phi(\Omega(g, g^{-1}))_{g \in G} = (\delta_{gh, e_G} \Omega(g, h))_{(g, h) \in G \times G}$.

Hence

$$\langle (\Omega(g, g^{-1}))_{g \in G}, N'_\alpha \rangle = \langle (\delta_{gh, e_G} \Omega(g, h))_{(g, h) \in G \times G}, M'_\alpha \rangle = \langle (\delta_{gh, e_G})_{(g, h) \in G \times G}, \delta_{e_G} \rangle = \delta_{e_G, e_G} = 1,$$

by the second condition on $(M'_\alpha)_\alpha$ from Proposition 2.4 (iii).

Fix $k \in G$ and $f \in \ell^\infty(G)$. Define $F : G \times G \rightarrow C$ by

$$F(g, h) := \delta_{gh, k} f_g \omega(k) \omega(hk^{-1}) \omega(h)^{-1} (g, h \in G).$$

It is clear that F is bounded and $\|F\|_\infty \leq \|f\|_\infty \omega(k) \omega(k^{-1})$. Let T be the operator associated with F . The same argument as in the proof [3, Theorem 5.11] shows that F satisfies the conditions of Proposition 2.3. Notice that

$$\langle \delta_{(g, h)}, \phi(J_k(f)) \rangle = \delta_{gh, e} f_{kg} \omega(kg) \omega(g)^{-1} \omega(g^{-1}k^{-1}) \omega((g)^{-1})^{-1}.$$

Thus we have

$$\begin{aligned} \|J_k^*(N'_\alpha) - N'_\alpha\| &= \sup \left\{ \left| \langle f, J_k^*(N'_\alpha) - N'_\alpha \rangle \right| : f \in \text{ball } \ell^\infty(G) \right\} \\ &= \sup \left\{ \left| \langle \phi(f) - \phi(J_k(f)), M'_\alpha \rangle \right| : f \in \text{ball } \ell^\infty(G) \right\} \\ &= \sup \left\{ \left| \langle (F(hk, g) \Omega(h, k) - F(h, kg) \Omega(k, g))_{(g, h)}, M'_\alpha \rangle \right| : f \in \text{ball } \ell^\infty(G) \right\} \end{aligned}$$

so that $J_k^*(N'_\alpha) - N'_\alpha \rightarrow 0$ by the first condition on $(M'_\alpha)_\alpha$ from Proposition 2.4 (iii).

(iii) \Rightarrow (ii): Let $(N_\alpha)_\alpha \subseteq \ell^\infty(G)^*$ be given as in (iii). Define $\psi : \ell^\infty(G \times G) \rightarrow \ell^\infty(G)$ by $\langle \delta g, \psi(F) \rangle := F(g, g^{-1})$, for each $F \in \ell^\infty(G \times G)$ and $g \in G$. Put $M_\alpha := \psi^*(N_\alpha)$ for every α . Then it suffices to show that the net $(M_\alpha)_\alpha$ has desired properties in Theorem 2.2 (ii). First, for every $f \in \text{ball } \ell^\infty(G)$, we see that

$$\left| \langle (f_{gh} \Omega(g, h))_{(g, h)}, M_\alpha \rangle - f_{e_G} \right| = \left| \langle (f_{e_G} \Omega(g, g^{-1}))_g, N_\alpha \rangle - f_{e_G} \right| \leq \left| \langle (\Omega(g, g^{-1}))_g, N_\alpha \rangle - 1 \right|.$$

Next for an arbitrary bounded function $f : G \times G \rightarrow C$ and an element $k \in G$, it is clear that

$$\psi((f(hk, g) \Omega(h, k) - f(h, kg) \Omega(k, g))_{(g, h)}) = (f(g^{-1}k, g) \Omega(g^{-1}, k) - f(g^{-1}, kg) \Omega(k, g))_g.$$

Define $F : G \times G \rightarrow C$ by $F(g, h) = f(hk, g) \Omega(h, k)$, for each $g, h \in G$. Hence, it is readily seen that F is bounded and $\|F\|_\infty < \|f\|_\infty$. Therefore

$$\left| \langle (f(hk, g) \Omega(h, k) - f(h, kg) \Omega(k, g))_{(g, h)}, M_\alpha \rangle \right| = \left| \langle (f(g^{-1}k, g) \Omega(g^{-1}, k) - f(g^{-1}, kg) \Omega(k, g))_g, N_\alpha \rangle \right|$$

$$= \left| \langle \psi(F) - J_k(\psi(F)), N_\alpha \rangle \right| = \left| \langle \psi(F), N_\alpha - J_k^*(N_\alpha) \rangle \right| \leq \| J_k^*(N_\alpha) - N_\alpha \|,$$

as required.

3. Connes-amenability for $M_n(A)$

We fix some matrix conventions from [2]. Let $m, n \in N = \{1, 2, 3, \dots\}$ and let S be a set. We write $N_m = \{1, 2, \dots, m\}$. The collection of all $m \times n$ matrices $(x_{i,j})$ with entries from S is denoted by $M_{m,n}(S)$, with $M_n(S)$ for $M_{n,n}(S)$ and $M_{m,n}$ for $M_{m,n}(C)$. If x is an arbitrary element in S , then we denote by $(x)_{i,j}$ the element of $M_{m,n}(S)$ with x in the $(i,j)^{th}$ place and 0 elsewhere. In particular, M_n is a unital algebra with *matrix units* $\varepsilon_{i,j}$, so that $\varepsilon_{i,j} \varepsilon_{k,l} = \delta_{j,k} \varepsilon_{i,l}$, ($i, j, k, l \in N_n$). The identity matrix in M_n is $I_n = (\delta_{i,j}) = \sum_{i=1}^n \varepsilon_{i,i}$. Let E be a Banach space. We regard $M_{m,n}(E)$ as a Banach space by taking the norm to be specified by

$$\|(x_{i,j})\| = \sum \left\{ \|x_{i,j}\| : i \in N_m, j \in N_n \right\}, \quad ((x_{i,j}) \in M_{m,n}(E))$$

We identify $M_{m,n}(E)^*$ with $M_{m,n}(E^*)$, using the duality

$$\langle x, \Lambda \rangle = \sum \left\{ \langle x_{i,j}, \lambda_{i,j} \rangle : i \in N_m, j \in N_n \right\}$$

for $x = (x_{i,j}) \in M_{m,n}(E)$ and $\Lambda = (\lambda_{i,j}) \in M_{m,n}(E^*)$. Let A be an algebra. Then $M_n(A)$ is also an algebra in the obvious way. The matrix $(a_{i,j})$ is identified with $\sum_{i,j=1}^n \varepsilon_{i,j} \otimes a_{i,j}$ so that $M_n(A)$ is isomorphic to $M_n \otimes A$. In the case where A is a Banach algebra, the algebra $M_n(A)$ is a Banach algebra with respect to the norm defined as above. Let A be a Banach algebra and let E be a Banach A -bimodule. We shall regard $M_n(E)$ as a Banach $M_n(A)$ -bimodule through

$$(a \cdot x)_{i,j} = \sum_{k=1}^n a_{i,k} \cdot x_{k,j} \text{ and } (x \cdot a)_{i,j} = \sum_{k=1}^n x_{i,k} \cdot a_{k,j}.$$

For $a = (a_{i,j}) \in M_n(A)$ and $x = (x_{i,j}) \in M_n(E)$. In particular $M_n(E^*)$ is a Banach $M_n(A)$ -bimodule. For $a = (a_{i,j}) \in M_n(A)$ and $\Lambda = (\lambda_{i,j}) \in M_n(E^*)$ we notice that

$$(a \cdot \Lambda)_{i,j} = \sum_{k=1}^n a_{j,k} \cdot \lambda_{i,k} \text{ and } (\Lambda \cdot a)_{i,j} = \sum_{k=1}^n \lambda_{k,j} \cdot a_{k,i}.$$

Suppose that A is a dual Banach algebra. It is known that $A \hat{\otimes} A$ is canonically mapped into $\sigma wc((A \hat{\otimes} A)^*)^*$, [12]. Hence we may consider the w^* -topology on $A \hat{\otimes} A$ inherited from $\sigma wc((A \hat{\otimes} A)^*)^*$.

Definition 3.1 Suppose that A is a dual Banach algebra. A net (u_α) in $A \hat{\otimes} A$ is an *approximate σwc -diagonal* for A if for every $a \in A$

- (i) $a.u_\alpha - u_\alpha.a \xrightarrow{w^*} 0$ in $\sigma wc((A \hat{\otimes} A)^*)^*$, and
- (ii) $a\pi_{\sigma wc}(u_\alpha) \xrightarrow{w^*} a$ in A .

We may characterize a dual Banach algebra to be Connes-amenable in terms of diagonals as follows.

Proposition 3.2 Suppose that A is a dual Banach algebra. Then the following are equivalent:

- (i) A is Connes-amenable .
- (ii) There exists a σwc -virtual diagonal for A .
- (iii) There exists a bounded approximate σwc -diagonal for A .

Proof. The equivalences of (i) and (ii) is just [12, Theorem 4.8].

(ii) \Rightarrow (iii): Let U be a σwc -virtual diagonal for A . Since $A \hat{\otimes} A$ is w^* -dense in $\sigma wc((A \hat{\otimes} A)^*)^*$, there is a net (u_α) in $A \hat{\otimes} A$ which tends to U in the w^* -topology. We know that $\sigma wc((A \hat{\otimes} A)^*)^*$ is a closed submodule of $(A \hat{\otimes} A)^*$, and so restriction gives a quotient map $(A \hat{\otimes} A)^{**} \rightarrow \sigma wc((A \hat{\otimes} A)^*)^*$. This, together with Goldstein's theorem, shows that (u_α) can be chosen to be a bounded net. Then, it is easy to check that (u_α) is an approximate σwc -diagonal for A .

(iii) \Rightarrow (ii): Let $U \in \sigma wc((A \hat{\otimes} A)^*)^*$ be a w^* -accumulation point of the given bounded approximate σwc -diagonal (u_α) for A . Without loss of generality, we may suppose that $U = w^* - \lim_\alpha u_\alpha$. Then, it is readily seen that U is a σwc -virtual diagonal for A .

We shall see the role of Proposition 3.2 in the proof of Theorem 3.7 below. The following is easy to verify.

Lemma 3.3 Suppose that E is a Banach space and that $\Lambda = (\lambda_{i,j})$ and $\Lambda_\alpha = (\lambda_{i,j}^\alpha)$ are elements of $M_n(E^*)$. Then $\Lambda_\alpha \xrightarrow{w^*} \Lambda$ in $M_n(E^*)$ if and only if $\lambda_{i,j}^\alpha \xrightarrow{w^*} \lambda_{i,j}$ in E^* , for all $i, j \in N_n$.

Let $A = (A_*)^*$ be a dual Banach algebra and let $E = (E_*)^*$ be a normal, dual Banach A -bimodule. Then, using Lemma 3.3, it is not hard to see that $M_n(E) = M_n(E_*)^*$ is a normal, dual Banach $M_n(A)$ -bimodule. In particular, $M_n(A) = M_n(A_*)^*$ is a dual Banach algebra.

Let A be a Banach algebra, E be a Banach A -bimodule and let $D : A \rightarrow E^*$ be a derivation. We may consider the derivation $\tilde{D} : M_n(A) \rightarrow M_n(E^*)$ by setting $\tilde{D}([a_{i,j}]) = (D(a_{j,i}))$, where we note the transposition of i and j [2]. Further, if A is dual and D is w^* -continuous then it is easily seen that \tilde{D} is also a w^* -continuous derivation.

Suppose that A is a Banach algebra. We shall identify $M_n(A)$ with $M_n \otimes A$, so that we can identify $M_n(A) \hat{\otimes} M_n(A)$ with $M_{n^2} \otimes (A \hat{\otimes} A)$.

Definition 3.4 Let A be a Banach algebra. For $u \in A \hat{\otimes} A$ and $r, s \in N_n$, we define elements

$$U = \frac{1}{n} \sum_{i,j=1}^n \varepsilon_{i,j} \otimes \varepsilon_{j,i} \otimes u \text{ and } V = \frac{1}{n} \sum_{j=1}^n \varepsilon_{r,j} \otimes \varepsilon_{j,s} \otimes u$$

in $M_{n^2} \otimes (A \hat{\otimes} A)$. Moreover, for $\Omega \in (M_{n^2} \otimes (A \hat{\otimes} A))^*$ we define $\omega \in (A \hat{\otimes} A)^*$ by $\langle u, \omega \rangle = \langle V, \Omega \rangle$. Then for $a \in A$ we have

$$\langle u, a \cdot \omega \rangle = \left\langle \frac{1}{n} \sum_{j=1}^n \varepsilon_{r,j} \otimes \varepsilon_{j,s} \otimes (u \cdot a), \Omega \right\rangle = \langle U \cdot (\varepsilon_{r,s} \otimes a), \Omega \rangle = \langle U, (\varepsilon_{r,s} \otimes a) \cdot \Omega \rangle$$

and similarly $\langle u, \omega \cdot a \rangle = \langle U, \Omega \cdot (\varepsilon_{r,s} \otimes a) \rangle$. we also observe that

$$U \cdot (\varepsilon_{r,s} \otimes a) = \frac{1}{n} \sum_{j=1}^n \varepsilon_{r,j} \otimes \varepsilon_{j,s} \otimes (u \cdot a) = \left(\frac{1}{n} \sum_{j=1}^n \varepsilon_{r,j} \otimes \varepsilon_{j,s} \otimes u \right) \cdot (I_n \otimes a) = V \cdot (I_n \otimes a)$$

and that $(\varepsilon_{r,s} \otimes a) \cdot U = (I_n \otimes a) \cdot V$.

Take $\phi \in (A \hat{\otimes} A)^{**}$ and take the net $(u_\alpha) \subseteq A \hat{\otimes} A$ such that $u_\alpha \rightarrow \phi$ in the w^* -topology on $(A \hat{\otimes} A)^{**}$. We consider the corresponding net (U_α) and (V_α) in $M_{n^2} \otimes (A \hat{\otimes} A)$, as Definition 3.4. We define the element $\Phi \in (M_{n^2} \otimes (A \hat{\otimes} A))^{**}$ (depends on ϕ) through $\langle \Omega, \Phi \rangle = \langle \omega, \phi \rangle$ for every $\Omega \in (M_{n^2} \otimes (A \hat{\otimes} A))^*$, where ω

is given by Definition 3.4. Then it is easy to see that $v_\alpha \xrightarrow{w^*} \Phi$ in $(M_n^2 \otimes (A \hat{\otimes} A))^{**}$. Hence we see that $(\varepsilon_{r,s} \otimes a).U_\alpha \xrightarrow{w^*} (I_n \otimes a).\Phi$ in $(M_n^2 \otimes (A \hat{\otimes} A))^{**}$. Therefore

$$\begin{aligned} \langle \phi, a.\omega \rangle &= \lim_\alpha \langle u_\alpha, a.\omega \rangle = \lim_\alpha \langle U_\alpha, (\varepsilon_{r,s} \otimes a).\Omega \rangle = \lim_\alpha \langle U_\alpha, (\varepsilon_{r,s} \otimes a).\Omega \rangle \\ &= \langle \Phi, (I_n \otimes a).\Omega \rangle = \langle \Phi, (I_n \otimes a).\Omega \rangle \end{aligned}$$

and similarly $\langle \phi, \omega.a \rangle = \langle \Phi, \Omega.(I_n \otimes a) \rangle$.

We keep the notations of Definition 3.4 in the sequel.

Lemma 3.5 Suppose that A is a dual Banach algebra and that $\Omega \in \sigma_{wc}(M_n^2 \otimes (A \hat{\otimes} A))^*$. Then $\omega \in \sigma_{wc}((A \hat{\otimes} A))^*$.

Proof. Suppose that $a_i \xrightarrow{w^*} a$ in A and that $\phi \in (A \hat{\otimes} A)^{**}$. By Lemma 3.3, $I_n \otimes a_i \xrightarrow{w^*} I_n \otimes a$ in $M_n \otimes A$. Then by the assumption

$$\langle \Phi, (I_n \otimes a_i).\Omega \rangle \rightarrow \langle \Phi, (I_n \otimes a).\Omega \rangle,$$

and whence $\langle \phi, a_i.\omega \rangle \rightarrow \langle \phi, a.\omega \rangle$. A similar argument yields that $\langle \phi, \omega.a_i \rangle \rightarrow \langle \phi, \omega.a \rangle$, as required.

We denote by Π the corresponding diagonal operator for $M_n(A)$.

Lemma 3.6. Suppose that $u \in A \hat{\otimes} A$, $r, s \in N_n$ and that $a \in A$. Then

- (i) $\Pi(U) = I_n \otimes \pi(u)$;
- (ii) $\Pi(U)(\varepsilon_{r,s} \otimes a) = \varepsilon_{r,s} \otimes \pi(u)a$;
- (iii) $(\varepsilon_{r,s} \otimes a)\Pi(U) = \varepsilon_{r,s} \otimes a\pi(u)$.

Proof. Take $u = \sum_{m=1}^{\infty} a_m \otimes b_m$ and then

$$U = \frac{1}{n} \sum_{i,j,m} \varepsilon_{i,j} \otimes \varepsilon_{j,i} \otimes a_m \otimes b_m = \frac{1}{n} \sum_{i,j,m} (\varepsilon_{i,j} \otimes a_m) \otimes (\varepsilon_{j,i} \otimes b_m)$$

Therefore

$$\Pi(U) = \frac{1}{n} \sum_{i,j,m} \varepsilon_{i,j} \varepsilon_{j,i} \otimes a_m b_m = \sum_{m=1}^{\infty} I_n \otimes a_m b_m = I_n \otimes \pi(u).$$

Then we obtain

$$\Pi(U)(\varepsilon_{r,s} \otimes a) = (I_n \otimes \pi(u))(\varepsilon_{r,s} \otimes a) = \varepsilon_{r,s} \otimes \pi(u)a,$$

and analogously (iii).

The following is our main result in this section.

Theorem 3.7. Suppose that $A = (A_*)^*$ is a dual Banach algebra and that $n \in N$.

Then $M_n(A) = M_n(A_*)^*$ is Connes-amenable if and only if A is Connes-amenable.

Proof. Let $M_n(A)$ be Connes-amenable. Let E be a normal, dual Banach A -bimodule and $D: A \rightarrow E$ be a w^* -continuous derivation. We consider the w^* -continuous derivation $\tilde{D}: M_n(A) \rightarrow M_n(E)$ as before. By the assumption, there exists $x = (x_{i,j}) \in M_n(E)$ for which $\tilde{D}(a) = a \cdot x - x \cdot a$, $a \in M_n(A)$. Take $a \in A$ and identify a with the matrix $(a)_{11}$. Then $x_{1,1} \in E$ and

$$D(a) = (\tilde{D}((a)_{11}))_{1,1} = ((a)_{11} \cdot x - x \cdot (a)_{11})_{1,1} = a \cdot x_{1,1} - x_{1,1} \cdot a$$

so that D is an inner derivation as required.

Conversely, let A be Connes-amenable. Let $(u_\alpha) \subseteq A \hat{\otimes} A$ be a bounded approximate σ_{wc} -diagonal for A . We wish to show that the corresponding net (U_α) , defined in Definition 3.4, is a bounded approximate σ_{wc} -diagonal for $M_n(A)$. Take $r, s \in N_n, a \in A$ and $\Omega \in \sigma_{wc}(M_{n^2} \otimes (A \hat{\otimes} A))^*$. Then, using Lemma 3.5, we have

$$\begin{aligned} \langle \Omega, (\varepsilon_{r,s} \otimes a)U_\alpha - U_\alpha \cdot (\varepsilon_{r,s} \otimes a) \rangle &= \langle \Omega, (\varepsilon_{r,s} \otimes a) - (\varepsilon_{r,s} \otimes a)\Omega, U_\alpha \rangle \\ &= \langle \omega \cdot a - a \cdot \omega, u_\alpha \rangle = \langle \omega, a \cdot u_\alpha - u_\alpha \cdot a \rangle \rightarrow 0. \end{aligned}$$

It follows that

$$\langle \Omega, (a_{i,j})U_\alpha - U_\alpha \cdot (a_{i,j}) \rangle \rightarrow 0,$$

for all $(a_{i,j}) \in M_n(A)$ and $\Omega \in \sigma_{wc}(M_{n^2} \otimes (A \hat{\otimes} A))^*$.

Next for $\psi \in A_*$, by Lemma 3.6, we see that

$$\begin{aligned} \langle \varepsilon_{r,s} \otimes \psi, (\varepsilon_{r,s} \otimes a)\Pi(U_\alpha) \rangle &= \langle \varepsilon_{r,s} \otimes \psi, \varepsilon_{r,s} \otimes a\pi(u_\alpha) \rangle = \langle \psi, a\pi(u_\alpha) \rangle \\ &\rightarrow \langle \psi, a \rangle = \langle \varepsilon_{r,s} \otimes \psi, \varepsilon_{r,s} \otimes a \rangle, \end{aligned}$$

and

$$\langle \varepsilon_{k,l} \otimes \psi, (\varepsilon_{r,s} \otimes a)\Pi(U_\alpha) \rangle = \langle \varepsilon_{k,l} \otimes \psi, \varepsilon_{r,s} \otimes a \rangle = 0, \quad (k, l \in N_n, (k, l) \neq (r, s)).$$

Hence for all $(a_{i,j}) \in M_n(A)$ and $(\psi_{i,j}) \in M_n(A_*)$ we have

$$\langle (\psi_{i,j}), (a_{i,j})\Pi(U_\alpha) \rangle \rightarrow \langle (\psi_{i,j}), (a_{i,j}) \rangle,$$

which proves the claim.

4. Conclusions

We briefly point out the original results obtained in this work. We first, regarding a discrete weakly concellative semigroup S , Considered the Beurling algebras $\ell^1(S, \omega)$, where ω is a weight function on S . We showed that the existence of some specified nets in $l^\infty(S \times S)^*$ is equivalent to the approximate Connes-amenability of $\ell^1(S, \omega)$. Next, for a discrete group G , we proved that approximate Connes-amenability and approximate amenability are the same notion for the Beurling algebra $\ell^1(G, \omega)$. Finally, for a dual Banach algebra A , we showed that the matrix algebra $M_n(A)$ is a dual Banach algebra as well. We proved that $M_n(A)$ is Connes-amenable if and only if A is Connes-amenable, which is our last result in this paper.

Acknowledgement

This paper was supported by the Islamic Azad University Central Tehran Branch and the author acknowledges this with thanks.

R E F E R E N C E S

- [1] *H. G. Dales*, Banach algebras and automatic continuity, Clarendon press, Oxford, 2000.
- [2] *H. G. Dales, A. T. M. Lau, D. Strauss*, Banach algebras on semigroups and on their compactifications. *Memoires of the Amer. Math. Soc.* **205** (2010), no 966.
- [3] *M. Daws*, Connes-amenability of bidual and weighted semigroup algebras, *Math. Scand.* **99** (2006) 217-246.
- [4] *G. H. Esslamzadeh, B. Shojaee, A. Mahmoodi*, Approximate Connes— amenability of dual Banach algebras, *Bull. Belgian Math. Soc. Simon Stevin.* **19** (2012) 193-213.
- [5] *F. Ghahramani, R. J. Loy*, Generalized notions of amenability, *J. Funct. Anal.* **208** (2004) 229-260.
- [6] *A. Ya. Helemskii*, Homological essence of amenability in the sense of A. Connes: the injectivity of the predual bimodule, *Math. USSR Sb.* **68** (1991) 555-566. Translated from Russian.
- [7] *B. E. Johnson, R. V. Kadison, J. Ringrose*, Cohomology of operator algebras III, *Bull. Soc. Math. France* **100** (1972) 73-79.
- [8] *B. E. Johnson*, Cohomology in Banach algebras, *Mem. Amer. Math. Soc.* **127** (1972).
- [9] *A. Mahmoodi*, Approximate injectivity of dual Banach algebras, *Bull. Belgian Math. Soc. Simon Stevin.* **20** (2013) 1-12.
- [10] *V. Runde*, Amenability for dual Banach algebras, *Studia Math.* **148** (2001) 47-66.
- [11] *V. Runde*, Lectures on amenability, *Lecture Notes in Mathematics* **1774**, Springer verlag, Berlin, 2002.
- [12] *V. Runde*, Dual Banach algebras: Connes- amenability normal, virtual diagonals and injectivity of the predual bimodule, *Math. Scand.* **95** (2004) 124 -144.