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ARENS REGULARITY AND MODULE ARENS REGULARITY OF

MODULE ACTIONS

Massoud Amini1, Abasalt Bodaghi∗1, Mina Ettefagh2, Kazem Haghnejad Azar3

In this paper, we extend the notion of Arens regularity and module Arens
regularity of Banach algebras to Arens regularity of module actions. We also in-
vestigate the more general notion of Arens regularity for bilinear maps. Finally we
find necessary and sufficient conditions for module Arens regularity of semigroup
algebra of an inverse semigroup.
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1. Introduction

In [1], for Banach algebras A and O, authors extended the concept of Arens
regularity of A to the case that there is an O-module structure on A and called it the
module Arens regularity of A as an O-module. In this paper, we study this problem
for left and right module actions πℓ : A×X → X and πr : X ×A → X where X is
a Banach A-bimodule and extend the notion of Arens regularity of Banach algebras
to that of module actions. More generally, we define the concept of module Arens
regularity for general bilinear maps and find necessary and sufficient conditions for a
module map to be module Arens regular. Finally, we study module Arens regularity
for inverse semigroup algebras.

Let X,Y, Z be normed spaces and m : X × Y → Z be a bounded bilinear
mapping. Arens defines two natural extensions m∗∗∗ and mt∗∗∗t of m from X∗∗×Y ∗∗

into Z∗∗ as follows:
1. m∗ : Z∗ ×X → Y ∗, given by ⟨m∗(z′, x), y⟩ = ⟨z′,m(x, y)⟩ where x ∈ X, y ∈ Y ,
z′ ∈ Z∗,
2. m∗∗ : Y ∗∗ × Z∗ → X∗, given by ⟨m∗∗(y′′, z′), x⟩ = ⟨y′′,m∗(z′, x)⟩ where x ∈ X,
y′′ ∈ Y ∗∗, z′ ∈ Z∗,
3. m∗∗∗ : X∗∗ × Y ∗∗ → Z∗∗, given by ⟨m∗∗∗(x′′, y′′), z′⟩ = ⟨x′′,m∗∗(y′′, z′)⟩
where x′′ ∈ X∗∗, y′′ ∈ Y ∗∗, z′ ∈ Z∗.
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The mapping m∗∗∗ is the unique extension of m so that for each y′′ ∈ Y ∗∗,
x′′ −→ m∗∗∗(x′′, y′′) from X∗∗ into Z∗∗ is weak∗-weak∗ continuous, whereas the
mapping y′′ → m∗∗∗(x′′, y′′) is not in general weak∗-weak∗ continuous from Y ∗∗ into
Z∗∗ unless x′′ ∈ X. Hence the first topological center of m may be defined as follows:

Z1(m) = {x′′ ∈ X∗∗ : y′′ → m∗∗∗(x′′, y′′) is weak∗-weak∗ continuous}.
Let mt : Y × X → Z be the transpose of m defined by mt(y, x) = m(x, y)

for every x ∈ X and y ∈ Y . Then mt is a continuous bilinear map from Y × X
to Z, and so it may be extended as above to mt∗∗∗ : Y ∗∗ × X∗∗ → Z∗∗. The
mapping mt∗∗∗t : X∗∗ × Y ∗∗ → Z∗∗ in general is not equal to m∗∗∗ (see [2] and [3]),
if m∗∗∗ = mt∗∗∗t, then m is called Arens regular. The mapping y′′ → mt∗∗∗t(x′′, y′′)
is weak∗-weak∗ continuous for every x′′ ∈ X∗∗, but the mapping x′′ → mt∗∗∗t(x′′, y′′)
from X∗∗ into Z∗∗ is not in general weak∗-weak∗ continuous for every y′′ ∈ Y ∗∗. So
we define the second topological center of m as

Z2(m) = {y′′ ∈ Y ∗∗ : x′′ → mt∗∗∗t(x′′, y′′) is weak∗-weak∗ continuous}.
It is clear that m is Arens regular if and only if Z1(m) = X∗∗ or Z2(m) = Y ∗∗.

Arens regularity of m is equivalent to the following

lim
i
lim
j
⟨z′,m(xi, yj)⟩ = lim

j
lim
i
⟨z′,m(xi, yj)⟩,

whenever both limits exist for all bounded sequences (xi)i ⊂ X , (yj)j ⊂ Y and
z′ ∈ Z∗ (for more details see [4, 5]). The mapping m is left strongly Arens irregular
if Z1(m) = X and m is right strongly Arens irregular if Z2(m) = Y .

The regularity of a Banach algebra A is defined as the regularity of its algebra
multiplication when considered as a bilinear mapping π : A × A −→ A so that
π(a, b) = ab (a, b ∈ A). For a′′ and b′′ in A∗∗, we denote π∗∗∗(a′′, b′′) and πt∗∗∗t(a′′, b′′)
by symbols a′′�b′′ and a′′♢b′′, respectively. These are called the first and second
Arens products on A∗∗. When these two products coincide on A∗∗, we say that A

is Arens regular (see [5, 6]). Let a′′ and b′′ be elements of A∗∗, the second dual of
A. By Goldstine’s Theorem [7, P.424-425], there are nets (aj)j and (bk)k in A such
that a′′ = weak∗ − limj aj and b′′ = weak∗ − limk bk. Hence it is easy to see that for
all a′ ∈ A∗, we have

lim
j

lim
k
⟨a′,m(aj , bk)⟩ = ⟨a′′�b′′, a′⟩

and
lim
k

lim
j
⟨a′,m(aj , bk)⟩ = ⟨a′′♢b′′, a′⟩.

2. The topological centers of module actions

Let X be a Banach A-bimodule, and let

πℓ : A×X → X and πr : X ×A → X.

be the left and right module actions of A on X. Then X∗∗ is a Banach A∗∗-bimodule
with module actions

π∗∗∗
ℓ : A∗∗ ×X∗∗ → X∗∗ and π∗∗∗

r : X∗∗ ×A∗∗ → X∗∗.

Similarly, X∗∗ is a Banach A∗∗-bimodule with module actions

πt∗∗∗t
ℓ : A∗∗ ×X∗∗ → X∗∗ and πt∗∗∗t

r : X∗∗ ×A∗∗ → X∗∗.
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We may therefore define the topological centers of the right and left module
actions of A on X as follows:
ZA∗∗(X∗∗) = Z(πr) = {x′′ ∈ X∗∗ : the map a′′ → π∗∗∗

r (x′′, a′′) : A∗∗ → X∗∗

is weak∗-weak∗ continuous}
ZX∗∗(A∗∗) = Z(πℓ) = {a′′ ∈ A∗∗ : the map x′′ → π∗∗∗

ℓ (a′′, x′′) : X∗∗ → X∗∗

is weak∗-weak∗ continuous}
Zt
A∗∗(X∗∗) = Z(πt

ℓ) = {x′′ ∈ X∗∗ : the map a′′ → πt∗∗∗
ℓ (x′′, a′′) : A∗∗ → X∗∗

is weak∗-weak∗ continuous}
Zt
X∗∗(A∗∗) = Z(πt

r) = {a′′ ∈ A∗∗ : the map x′′ → πt∗∗∗
r (a′′, x′′) : X∗∗ → X∗∗

is weak∗-weak∗ continuous}
We note also that if X is a left(resp. right) Banach A-module and πℓ : A ×

X → X (resp. πr : X × A → X) is left (resp. right) module action of A on
X, then X∗ is a right (resp. left) Banach A-module. We write ax = πℓ(a, x),
xa = πr(x, a), πℓ(a1a2, x) = πℓ(a1, a2x), πr(x, a1a2) = πr(xa1, a2), π

∗
ℓ (a1x

′, a2) =
π∗
ℓ (x

′, a2a1), π
∗
r (x

′a, x) = π∗
r (x

′, ax), for all a1, a2, a ∈ A, x ∈ X and x′ ∈ X∗ when
there is no confusion.

A functional a′ in A∗ is said to be wap (weakly almost periodic) on A if the
mapping a → a′a from A into A∗ is weakly compact. In [5], Pym showed that this
definition to the equivalent following condition:
For any two nets (aj)j and (bk)k in {a ∈ A : ∥ a ∥≤ 1}, we have

limjlimk⟨a′, ajbk⟩ = limklimj⟨a′, ajbk⟩,

whenever both iterated limits exist. The collection of all wap functionals on A is
denoted by wap(A). Also we have a′ ∈ wap(A) if and only if ⟨a′′�b′′, a′⟩ = ⟨a′′♢b′′, a′⟩
for every a′′, b′′ ∈ A∗∗.

Let X be a Banach left A-module. Then, x′ ∈ X∗ is said to be left weakly
almost periodic functional if the set {π∗

ℓ (x
′, a) : a ∈ A, ∥ a ∥≤ 1} is relatively

weakly compact. We denote by wapℓ(X) the closed subspace of X∗ consisting of
all the left weakly almost periodic functionals in X∗. The definition of the right
weakly almost periodic functional (= wapr(X)) is similarly. By [5], x′ ∈ wapℓ(X) is
equivalent to the following

⟨π∗∗∗
ℓ (a′′, x′′), x′⟩ = ⟨πt∗∗∗t

ℓ (a′′, x′′), x′⟩

for all a′′ ∈ A∗∗ and x′′ ∈ X∗∗. Thus, we can write
wapℓ(X) = {x′ ∈ X∗ : ⟨π∗∗∗

ℓ (a′′, x′′), x′⟩ = ⟨πt∗∗∗t
ℓ (a′′, x′′), x′⟩

for all a′′ ∈ A∗∗, x′′ ∈ X∗∗}.

Theorem 2.1. Suppose that X is a left Banach A-module. Then the following
assertions are equivalent.

(i) The mapping a → π∗
ℓ (x

′, a) from A into X∗ is weakly compact;
(ii) ZX∗∗(A∗∗) = A∗∗;
(iii) There is a subset E of X∗ with linE = X∗ such that for each sequence (an)n ⊂

A and (xm)m ⊂ X and each x′ ∈ X∗, we have

lim
m

lim
n
⟨x′, anxm⟩ = lim

n
lim
m

⟨x′, anxm⟩,

whenever both the iterated limits exist;
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(iv) Suppose that a′′ ∈ A∗∗ and (aj)j ⊂ A such that aj
w∗
→ a′′. Then we have

π∗
ℓ (x

′, aj)
w→ πt∗∗t

ℓ (x′, a′′),

for each x′ ∈ X∗.

Proof. (i)⇒ (ii): Suppose that x′ ∈ X∗. Take T (a) = π∗
ℓ (x

′, a) where a ∈ A. By
easy calculation, we have T ∗∗(a′′) = π∗∗∗∗

ℓ (x′, a′′) for each a′′ ∈ A∗∗. Now let T be a
weakly compact mapping. Then by using Theorem VI 4.2 and VI 4.8 of [7], we have

π∗∗∗∗
ℓ (x′, a′′) ∈ X∗ for each a′′ ∈ A∗∗. Suppose that (x′′j )j ⊂ X∗∗ such that x′′j

w∗
→ x′′

on X∗∗. Then for every a′′ ∈ A∗∗, we have

⟨π∗∗∗
ℓ (a′′, x′′j ), x

′⟩ = ⟨a′′, π∗∗
ℓ (x′′j , x

′)⟩ = ⟨π∗∗∗∗∗
ℓ (x′′j , x

′), a′′⟩ = ⟨x′′j , π∗∗∗∗
ℓ (x′, a′′)⟩

→ ⟨x′′, π∗∗∗∗
ℓ (x′, a′′)⟩ = ⟨π∗∗∗

ℓ (a′′, x′′), x′⟩.

It follows that π∗∗∗
ℓ (a′′, x′′j )

w∗
→ π∗∗∗

ℓ (a′′, x′′), and so a′′ ∈ ZX∗∗(A∗∗).

(ii)⇒ (i): Let ZX∗∗(A∗∗) = A∗∗. Suppose that (x′′j )j ⊂ X∗∗ such that x′′j
w∗
→ x′′ in

X∗∗. Then for every a′′ ∈ A∗∗, we have π∗∗∗
ℓ (a′′, x′′j )

w∗
→ π∗∗∗

ℓ (a′′, x′′). It follows that

⟨T ∗∗(a′′), x′′j ⟩ → ⟨T ∗∗(a′′), x′′⟩,

for each a′′ ∈ A∗∗. Consequently, T ∗∗(a′′) ∈ X∗ for each a′′ ∈ A∗∗, and so T ∗∗(A′′) ⊆
X∗. Again by Theorem VI 4.2 and VI 4.8 of [7], we conclude that the mapping
a → πℓ(x

′, a) from A into X∗ is weakly compact.
(ii)⇒ (iii): By definition of ZX∗∗(A∗∗), since ZX∗∗(A∗∗) = A∗∗, proof hold.
(iii)⇒ (i): The proof is similar to that of Theorem 2.6.17 in [4].

(i)⇒ (iv): Let a′′ ∈ A∗∗ and (aj)j ⊂ A such that aj
w∗
→ a′′. Then for each x′′ ∈ X∗∗,

we have

lim
j
⟨x′′, π∗

ℓ (x
′, aj)⟩ = lim

α
⟨π∗∗

ℓ (x′′, x′), aj)⟩ = ⟨π∗∗∗
ℓ (a′′, x′′), x′⟩

= ⟨πt∗∗∗t
ℓ (a′′, x′′), b′⟩ = ⟨x′′, πt∗∗

ℓ (a′′, b′)⟩.

It follows that π∗
ℓ (x

′, aj)
w→ πt∗∗t

ℓ (x′, a′′), and this completes the proof.
(iv)⇒ (ii): Let x′ ∈ X∗ and suppose that a′′ ∈ A∗∗ and x′′ ∈ X∗∗. Let (aj)j ⊂ A

such that aj
w∗
→ a′′. Since

π∗
ℓ (x

′, aα)
w→ πt∗∗t

ℓ (j′, a′′),

for each x′ ∈ X∗, we have the following equality

⟨π∗∗∗
ℓ (a′′, x′′), x′⟩ = ⟨a′′, π∗∗

ℓ (x′′, x′)⟩ = lim
j
⟨π∗∗

ℓ (x′′, x′), aα⟩

= lim
j
⟨x′′, π∗

ℓ (x
′, aj)⟩ = ⟨x′′, πt∗∗t

ℓ (x′, a′′)

= ⟨πt∗∗∗t
ℓ (a′′, x′′), x′⟩.

It follows that x′ ∈ wapℓ(X), and so ZX∗∗(A∗∗) = A∗∗. �
Corollary 2.1. Suppose that X is a left Banach A-module. Then X∗A∗∗ ⊆ X∗ if
and only if ZX∗∗(A∗∗) = A∗∗.
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Example 2.1. Suppose that G is a locally compact group. In the preceding corollary,
take A = X = c0(G). Therefore we conclude that Z1(ℓ

1(G)∗∗) = ℓ1(G)∗∗, see [4,
Example 2.6.22(iii)].

Theorem 2.2. Suppose that X is a right Banach A-module. Then the following
assertions are equivalent.

(i) ZA∗∗(X∗∗) = X∗∗;
(ii) The mapping x → π∗

r (x
′, b) from X into A∗ is weakly compact;

(iii) There are a subset E of X∗ with linE = X∗ such that for each sequence
(an)n ⊂ A and (bm)m ⊂ X and each x′ ∈ B∗,

lim
m

lim
n
⟨x′, xman⟩ = lim

n
lim
m

⟨x′, xman⟩

whenever both the iterated limits exist;

(iv) Suppose that x′′ ∈ X∗∗ and (xj)j ⊂ X such that xj
w∗
→ x′′ on X∗∗. Then

π∗
r (x

′, xj)
w→ πt∗∗t

r (x′, x′′),

for all x′ ∈ X∗.

Proof. Proof is similar to that of Theorem 2.1. �
Corollary 2.2. Suppose that X is a right Banach A-module. Then X∗X∗∗ ⊆ A∗ if
and only if ZA∗∗(X∗∗) = X∗∗.

Remark 2.1. In the preceding corollary, if we take X = A, we obtain Lemma 3.1
(i) of [6] and in Theorem 2.1, if we take X = A, we obtain Theorem 2.6.17 of [4].

3. Module Arens regularity

Let X,Y and Z be normed spaces and A-modules. Let f : X × Y −→ Z be a
continuous map such that

f(α · x, y) = α · f(x, y), f(x, y · α) = f(x, y) · α (1)
for all α ∈ A, x ∈ X, y ∈ Y and
f(x1 ± x2, y) = f(x1, y)± f(x2, y), f(x, y1 ± y2) = f(x, y1)± f(x, y2) (2)
for all x1, x2, x ∈ X, y1, y2, y ∈ Y . In this case we say that f is an A-bimodule map.
Note that the map f is not necessary bilinear. However, it can be bilinear if X,Y
and Z are left essential A-modules (see the proof of Theorem 3.2).

We consider the set

JZ = span{f(x · α, y)− f(x, α · y) : x ∈ X, y ∈ Y, α ∈ A}.
The relations (1) and (2) show that the set JZ is a closed subspace and A-submodule
of Z, and so Z/JZ is an A-module. Now, define JX = {x ∈ X : f(x, y) ∈ JZ (∀y ∈
Y )} and JY = {y ∈ Y : f(x, y) ∈ JZ (∀x ∈ X)} then since f(0, y) = f(x, 0) = 0 for
each x, y both JX and JY contain 0 and clearly are subspaces and A-submodules of
X and Y , respectively.

Let X be a normed space, let Y ⊆ X be subspace of X. The annihilators Y ⊥

of Y is defined by
Y ⊥ = {f ∈ X ′ : ⟨f, x⟩ = 0 (x ∈ Y )}.

Then Y ⊥ is closed subspace of X ′. Henceforth, the weak topology generated by the
family F of w∗-continuous functionals on a dual space X denoted by σ(X,F).
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For the A-bimodule map f : X × Y −→ Z, its adjoint is defined by

f∗ : Z∗ ×X −→ Y ∗, ⟨f∗(z′, x), y⟩ = ⟨z′, f(x, y)⟩ (z′ ∈ Z∗, x ∈ X, y ∈ Y ).

satisfies in the relations (1) and (2). For each x ∈ X, the mapping Z∗ −→ Y ∗ : z′ 7→
f∗(z′, x) is σ(Z∗, JZ) to σ(Y ∗, JY ) continuous. This process may be repeated to
define f∗∗ = (f∗)∗ : Y ∗∗ × Z∗ −→ X∗, and then f∗∗∗ = (f∗∗)∗ : X∗∗ × Y ∗∗ −→ Z∗∗.
The map f∗∗∗ is the unique extension of f such that X∗∗ −→ Z∗∗;x′′ 7→ f∗∗∗(x′′, y′′)
is σ(X∗∗, J⊥

X) to σ(Z∗∗, J⊥
Z ) continuous for all y′′ ∈ Y ∗∗ and Y ∗∗ −→ Z∗∗; y′′ 7→

f∗∗∗(x, y′′) is σ(Y ∗∗, J⊥
Y ) to σ(Z∗∗, J⊥

Z ) continuous for all x ∈ X (see [8] for the
classical case). Note that the transpose f t of f is a continuous map which satisfies
the relations (1) and (2).

The canonical images of x ∈ X in X∗∗ will be denoted by x̂. Let x′′ ∈ X∗∗

and y′′ ∈ Y ∗∗. Then there exist nets (xj) ⊂ X and (yk) ⊂ Y with x̂j
J⊥
X−→ x′′ and

ŷk
J⊥
Y−→ y′′. We have

f∗∗∗(x′′, y′′) = lim
j

lim
k

̂f(xj , yk),

f t∗∗∗t(x′′, y′′) = lim
k

lim
j

̂f(xj , yk).

The the first module topological center of f (as an A-bimodule map) is

Z
(1)
A (f) = {x′′ ∈ X∗∗ : y′′ −→ f∗∗∗(x′′, y′′)

is σ(Y ∗∗, J⊥
Y ) to σ(Z∗∗, J⊥

Z )-continuous}.
The second module topological center of f (as an A-bimodule map) is

Z
(2)
A (f) = {y′′ ∈ Y ∗∗ : x′′ −→ f t∗∗∗t(x′′, y′′)

is σ(X∗∗, J⊥
X) to σ(Z∗∗, J⊥

Z )-continuous}.

Let f : X × Y −→ Z be an A-bimodule map. Then the map f̃ : X/JX ×
Y/JY −→ Z/JZ defined by f̃(x+ JX , y + JY ) = f(x, y) + JZ is well defined and is
an A-bimodule map.

Consider the map Rz′ : Y −→ X∗; y 7→ f t∗(z′, y), where z′ ∈ Z∗. Then Rz′ is
left A-module homomorphism if and only if z′ ∈ J⊥

Z . In other words,

Rz′ is left A-module homomorphism ⇐⇒ Rz′(α · y) = α ·Rz′(y)

⇐⇒ ⟨f t∗(z′, α · y), x⟩ = ⟨α · f t∗(z′, y), x⟩
⇐⇒ ⟨z′, f t(α · y, x)⟩ = ⟨z′, f t(y, x · α)⟩
⇐⇒ ⟨z′, f(x, α · y)⟩ = ⟨z′, f(x · α, y)⟩
⇐⇒ ⟨z′, f(x, α · y)− f(x · α, y)⟩ = 0

⇐⇒ z′ ∈ J⊥
Z .

for all α ∈ A, y ∈ Y and x ∈ X. The above observation leads us to the following
definition:

Definition 3.1. The map f is called module Arens regular (as an A-module) if
A-module homomorphisms Rz′ are weakly compact for any z′ ∈ J⊥

Z .

Theorem 3.1. The following statements are equivalent.
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(i) f is module Arens regular (as an A-module);
(ii) The map Lz′ : X −→ Y ∗;x 7→ f∗(z′, x) is weakly compact for any z′ ∈ J⊥

Z .
(iii) (Iterated limit condition) For bounded sequences (xj) ⊂ X, (yk) ⊂ Y and z′ ∈

J⊥
Z we have

lim
j

lim
k
⟨z′, f(xj , yk)⟩ = lim

k
lim
j
⟨z′, f(xj , yk)⟩

whenever both the iterated limits exist;
(iv) (f∗∗∗ − f t∗∗∗t)(x′′, y′′) ∈ J⊥⊥

Z for all x′′ ∈ X∗∗ and y′′ ∈ Y ∗∗;

(v) For each x′′ the mapping Y ′′ −→ Z ′′; y′′ 7→ f∗∗∗(x′′, y′′) is σ(Y ∗∗, J⊥
Y )-σ(Z ′′, J⊥

Z )-
continuous;

(vi) For each y′′ the mapping X∗∗ −→ Z∗∗;x′′ 7→ f t∗∗∗t(x′′, y′′) is σ(X∗∗, J⊥
Z )-

σ(Z∗∗, J⊥
Z )-continuous;

(vii) Z
(1)
A (f) = X∗∗;

(viii) Z
(2)
A (f) = Y ∗∗.

Proof. First we show that R∗
z′(x

′′) = f t∗∗(x′′, z′) for all z′ ∈ J⊥
Z . For each x′′ ∈ X∗∗

and y ∈ Y we have

⟨R∗
z′(x

′′), y⟩ = ⟨x′′, Rz′(y)⟩ = ⟨x′′, f t∗(z′, y)⟩ = ⟨f t∗∗(x′′, z′), y⟩,
and so

R∗
z′(x

′′) = f t∗∗(x′′, z′). (3)
We also get

R∗
z′ is module Arens regular ⇐⇒ R∗

z′ is weak
∗-weak compact for each z′ ∈ J⊥

Z

⇐⇒ R∗
z′(w

∗ − lim
j

x∗∗j ) = w − lim
j

R∗
z′(x

′′
j )

when (x′′j ) ⊂ X∗∗. Now, it follows from (3) and the above equivalent conditions that

f t∗∗(w∗ − limj x
′′
j , z

′) = w − limj f
t∗∗(x′′j , z

′). (4)

On the other hand, for each y′′ ∈ Y ∗∗ and z′ ∈ J⊥
Z we have

⟨f t∗∗∗t(w∗ − lim
j

x′′j , y
′′), z′⟩ = ⟨y′′, f t∗∗(w∗ − lim

j
x′′j , z

′)⟩

(4)
= ⟨y′′, w − lim

j
f t∗∗(x′′j , z

′)⟩

= lim
j
⟨y′′, f t∗∗(x′′j , z

′)⟩

= lim
j
⟨f t∗∗(x′′j , y

′′), z′⟩

= ⟨σ(Z∗∗, J⊥
Z )− lim

j
f t∗∗∗t(x′′j , y

′′), z′⟩.

The above argument shows that (i),(vi) and (viii) are equivalent. Also by the
Grothendieck Criterion for compactness and σ(X∗∗, J⊥

Y )-σ(Z∗∗, J⊥
Z )-continuity of

the mapping y′′ 7→ f∗∗∗(x′′, y′′) and x′′ 7→ f t∗∗∗t(x′′, y′′) we observe that (i)⇐⇒(ii)⇐⇒(iii)⇐⇒(iv).
The equivalence (ii)⇐⇒(v)⇐⇒(vii) is similar to the equivalence (i)⇐⇒(vi)⇐⇒(viii).

�
Recall that a left Banach A-module X is called left essential if the linear span

of A · X = {a · x : a ∈ A, x ∈ X} is dense in X. Right essential A-modules and
(two-sided) essential A-bimodules are defined similarly.
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Theorem 3.2. Let X,Y and Z be left essential A-bimodules. Then the map f is

module Arens regular (as an A-module) if and only if f̃ is Arens regular.

Proof. First we show that f̃ is a continuous bilinear map. Indeed, if we assume that
X is a left essential A-module and x ∈ X, then there is a sequence (xn) ⊆ A ·X such

that limn xn = x. Assume that xn =
∑Kn

m=1 αn,m · xn,m for some finite sequences

(αn,m)m=Kn
m=1 ⊆ A and (xn,m)m=Kn

m=1 ⊆ X. Then for λ ∈ C,

f(λxn, y) = f(λ
∑Kn

m=1 αn,m · xn,m, y) =
∑Kn

m=1 f((λαn,m) · xn,m, y)

=
∑Kn

m=1(λαn,m) · f(xn,m, y) =
∑Kn

m=1 λf(αn,m · xn,m, y) = λf(xn, y),

and so, by the continuity of f , f(λx, y) = λf(x, y) for all x ∈ X and y ∈ Y .

Similarly, f(x, λy) = λf(x, y) for all x ∈ X and y ∈ Y . Thus f̃ is a continuous
bilinear map. Now, for each x ∈ X, y ∈ Y and φ ∈ (Z/JZ)

∗ we have

⟨f̃∗(φ, x+ J), y + J⟩ = ⟨φ, f̃(x+ J, y + J)⟩

= ⟨φ, f(x, y) + J⊥
Z ⟩

= ⟨φ, f(x, y)⟩ (φ ∈ (Z/JZ)
∗ ∼= J⊥

Z ).

Hence
⟨f̃∗(φ, x+ JX), y + J⟩ = ⟨f∗(φ, x), y⟩ (x ∈ X, y ∈ Y, φ ∈ (Z/JZ)

∗). (5)
For y′′ + J⊥⊥

Y ∈ Y ∗∗/J⊥⊥ ∼= (Y/JY )
∗∗ take a bounded net (yj + JY ) ⊂ Y/JY

such that ̂yj + JY
w∗
−→ y′′ + J⊥⊥

Y . Then

⟨f̃∗∗(y′′ + J⊥⊥
Y , φ), x+ JX⟩ = ⟨y′′ + J⊥⊥

Y , f̃∗(φ, x+ JX)⟩

= lim
j
⟨f̃∗(φ, x+ JX), yj + JY ⟩

(5)
= lim

j
⟨f∗(φ, x), yj⟩.

Thus
⟨f̃∗∗(y′′ + J⊥⊥

Y , φ), x+ JX⟩ = limj⟨φ, f(x, yj)⟩. (6)

Also for x′′ + J⊥⊥
X ∈ X∗∗/J⊥⊥ ∼= (X/JX)∗∗ take a bounded net (xk + JX) ⊂

X/JX such that ̂xk + JX
w∗
−→ x′′ + J⊥⊥

X . Then

⟨f̃∗∗∗(x′′ + J⊥⊥
X , y′′ + J⊥⊥

Y ), φ⟩ = ⟨x′′ + J⊥⊥
X , f̃∗∗(y′′ + J⊥⊥

Y , φ)⟩

= lim
k
⟨f̃∗∗(y′′ + J⊥⊥

Y , φ), xk + JX⟩

(6)
= lim

k
lim
j
⟨φ, f(xk, yj)⟩⟩,

and so

⟨f̃∗∗∗(x′′ + J⊥⊥
X , y′′ + J⊥⊥

Y ), φ⟩ = ⟨w∗ − lim
k

w∗ − lim
j

f(xk, yj), φ⟩.

Similarly,

⟨f̃ t∗∗∗t(x′′ + J⊥⊥
X , y′′ + J⊥⊥

Y ), φ⟩ = ⟨w∗ − lim
j

w∗ − lim
k

f(xk, yj), φ⟩.
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Therefore f̃ is Arens regular if and only if f̃∗∗∗ = f̃ t∗∗∗t if and only if

⟨w∗ − lim
k

w∗ − lim
j

f(xk, yj), φ⟩ = ⟨w∗ − lim
j

w∗ − lim
k

f(xk, yj), φ⟩ (∀φ ∈ J⊥
Z )

if and only if f is module Arens regular. �
Suppose that J is the closed ideal of A generated by elements of the form

(a · α)b − a(α · b), for all a ∈ A and α ∈ A. When X = Y = Z = A and f = π,
then JZ = J and JX = {x ∈ A : xy ∈ J(y ∈ A)} and J ⊆ JX (as J is an ideal) and
if A has an approximate identity (not necessarily bounded) then clearly JX ⊆ J.
Similarly for JY . In this case JX = JY = JZ = J and equalities (1) will be the
following compatible actions A over A:

α · (ab) = (α · a)b, (ab) · α = a(b · α) (a, b ∈ A, α ∈ A). (7)

Also f̃ is well-defined in general (as it is bilinear, it is enough to show that
it maps (0, 0) to 0, but this is clear by definition of JX and JY ). Henceforth, we
assume that π̃ : A/J × A/J −→ A/J; (a + J, b + J) 7→ π(a, b) + J. Obviously, π̃ is
well-defined and since π is bilinear, so is π̃.

One should recall that the ideal J in [9] and this paper is defined to be the
closed ideal of A generated by elements of the form (a ·α)b− a(α · b), for a ∈ A and
α ∈ A, whereas in [10] it was defined as the closed ideal of A generated by elements
of the form α · (ab)− (ab) · α, for a ∈ A and α ∈ A. It has been observed in [9] that
J is indeed the closed subspace generated by elements of the form (a · α)b− a(α · b)
for α ∈ A, a, b ∈ A.
The first module topological center of A∗∗ (as an A-module) is

Z
(1)
A (A∗∗) = {b′′ ∈ A∗∗ : a′′ −→ b′′�a′′ is σ(A∗∗, J⊥)-continuous}.

Also, like in the classic case, we can define the second module topological center
of A∗∗ by

Z
(2)
A (A∗∗) = {b′′ ∈ A∗∗ : a′′ −→ a′′♢b′′ is σ(A∗∗, J⊥)-continuous}.

Obviously, Z
(1)
A (A∗∗) and Z

(1)
A (A∗∗) are σ(A∗∗, J⊥)-closed subalgebras of (A∗∗,�)

containing A. It is shown in [10] that

Z
(1)
A (A∗∗) = {a′′ ∈ A∗∗ : a′′�b′′ − a′′♢b′′ ∈ J⊥⊥ (∀b′′ ∈ A∗∗)}.

Similarly, we can show that

Z
(2)
A (A∗∗) = {b′′ ∈ A∗∗ : a′′�b′′ − a′′♢b′′ ∈ J⊥⊥ (∀a′′ ∈ A∗∗)}.

The above argument for J shows that Proposition 2.2 of [10] remains valid,
and so we have the following result.

Theorem 3.3. Let A be a Banach algebra and a Banach A-bimodule with compatible
actions. The following are equivalent.

(i) A is module Arens regular;
(ii) A/J is Arens regular;
(iii) π̃ is Arens regular;
(iv) π is module Arens regular.
(v) a′′�b′′ − a′′♢b′′ ∈ J⊥⊥, a′′, b′′ ∈ A∗∗.

(vi) Z
(1)
A (A∗∗) = A∗∗;
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(vii) Z
(2)
A (A∗∗) = A∗∗.

Proof. It is shown in [1, Theorem 2.4] (i) and (ii) are equivalent. It is routine
to check that (ii) and (iii) are equivalent. The equivalence of (iii) and (iv) fol-
lows from Theorem 3.2 by taking X = Y = Z = A. Since, J is the closed sub-
space of A [9, Lemma 3.1], it follows immediately from [10, Proposition 2.2] that
(i)⇐⇒(v)⇐⇒(vi)⇐⇒(vii). Now, it follows from the proof of Theorem 3.2 that (iii)
and (iv) are equivalent. �

Let A be a Banach A-module with compatible actions (7). For Y ≤ A(n)

and a non-negative integer number n, define Y (n⊥) by induction: Y (0⊥) = Y ≤ A,
Y (1⊥) = Y ⊥ ≤ A′, and Y (n⊥) = (Y ((n−2)⊥))⊥⊥ ≤ (A(n−2))′′ = A(n). It is well-known

that (A/J)(2n) = A(2n)/J(2n⊥) and (A/J)(2n−1) = J((2n−1)⊥). It is easy to see that

the concepts of module Arens regularity and Arens regularity for A(n) coincide when
A is a commutative Banach A-module, but for the non-commutative case we have
the following result.

Theorem 3.4. Let n be a even natural number. If A(n) is module Arens regular,
then A(n)/J(n⊥) is Arens regular.

Proof. First note that if λ ∈ J⊥, the compatible actions (7) show that α · λ ∈ J⊥

and λ · α ∈ J⊥ for all α ∈ A. let N be the closed ideal of A∗∗ generated by
(a′′ ·α)�b′′ − a′′�(α · b′′), for a′′, b′′ ∈ A∗∗ and α ∈ A. Then clearly J ⊆ N. Take two

bounded nets (aj), (bk) ⊂ A with âj
J⊥−→ a′′ and b̂k

J⊥−→ b′′, then âj ·α
J⊥−→ a′′ ·α and

α̂ · bk
J⊥−→ α · b′′ and so

⟨(a′′ · α)�b′′ − a′′�(α · b′′), λ⟩ = lim
j

lim
k
⟨λ, (aj · α)bk − aj(α · bk) = 0.,

for all λ ∈ J⊥. Therefore N ⊆ J⊥⊥. It follows from Theorem 3.3 that A∗∗ is mod-
ule Arens regular if and only if A∗∗/N⊥⊥ is Arens regular. On the other hand,
for any a′′′′, b′′′′ ∈ A∗∗∗∗, if a′′′′�b′′′′ − a′′′′♢b′′′′ ∈ N⊥⊥ then a′′′′�b′′′′ − a′′′′♢b′′′′ ∈
J(4⊥). This shows that the image of a′′′′�b′′′′ and a′′′′♢b′′′′ in (A∗∗∗∗/J(4⊥),�) and

(A∗∗∗∗/J(4⊥),♢) are equal. Thus module Arens regularity of A∗∗ implies Arens reg-

ularity of A∗∗/J⊥⊥. Now let Nn be the corresponding closed ideal of A(n) generated

by (a(n) · α)�b(n) − a(n)�(α · b(n)), for a(n), b(n) ∈ A(n) and α ∈ A. Similar to the

above argument we can show that Nn ⊆ J(n⊥) and module Arens regularity of A(n)

implies Arens regularity of A(n)/J(n⊥). �

4. Module Arens regularity of semigroup algebras

In this section we find conditions on a (discrete) inverse semigroup S such that
the map

ω : ℓ1(S)× ℓ1(S) −→ ℓ1(S); (δs, δt) 7→ δst

is module Arens regular (as ℓ1(E)-module). Throughout this section S is an inverse
semigroup with the set of idempotents E, where the order of E is defined by

e ≤ d ⇐⇒ ed = e (e, d ∈ E).

Since E is a commutative subsemigroup of S [11, Theorem V.1.2], actually
a semilattice, ℓ1(E) could be regarded as a commutative subalgebra of ℓ1(S), and
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thereby ℓ1(S) is a Banach algebra and a Banach ℓ1(E)-module with compatible
actions [12]. Here we let ℓ1(E) act on ℓ1(S) by multiplication from right and trivially
from left, that is

δe · δs = δs, δs · δe = δse = δs ∗ δe (s ∈ S, e ∈ E).

In this case, the ideal J (see section 3) is the closed linear span of {δset − δst :
s, t ∈ S, e ∈ E}. We consider an equivalence relation on S as follows:

s ≈ t ⇐⇒ δs − δt ∈ J (s, t ∈ S).

For an inverse semigroup S, the quotient S/≈ is a discrete group (see [10] and
[13]). Indeed, S/≈ is homomorphic to the maximal group homomorphic image GS

[14] of S [15]. In particular, S is amenable if and only if GS is amenable [14, 16]. As
in [1, Theorem 3.3], we may observe that ℓ1(S)/J ∼= ℓ1(GS). With the notations of
the previous section, ℓ1(S)/J is a commutative ℓ1(E)-bimodule with the following
actions:

δe · (δs + J) = δs + J, (δs + J) · δe = δse + J (s ∈ S, e ∈ E).

Theorem 4.1. Let S an inverse semigroup with the set of idempotents E. Then

Z
(1)
ℓ1(E)

(ℓ1(S)∗∗)/J⊥⊥ = Z
(2)
ℓ1(E)

(ℓ1(S)∗∗)/J⊥⊥ = ℓ1(GS).

Proof. It is shown in [1, Theorem 2.4] that for any a′′, b′′ ∈ ℓ1(S)∗∗, a′′�b′′ −
a′′♢b′′ ∈ J⊥⊥ if and only if the images of a′′�b′′ and a′′♢b′′ in (ℓ1(S)∗∗/J⊥⊥,�)
and (ℓ1(S)∗∗/J⊥⊥,♢) are equal. For the first module topological center, the equality
is proved in [13, Theorem 2.6]. For the second module topological center, we have

Z
(2)
ℓ1(E)

(ℓ1(S)∗∗)/J⊥⊥

= {b′′ ∈ ℓ1(S)∗∗ : a′′�b′′ − a′′♢b′′ ∈ J⊥⊥, ∀a′′ ∈ ℓ1(S)∗∗}/J⊥⊥

= {b′′ + J⊥⊥ ∈ ℓ1(S)∗∗/J⊥⊥ : (a′′�b′′) + J⊥⊥ = (a′′♢b′′) + J⊥⊥, ∀a′′ ∈ ℓ1(S)∗∗}
= Z(2)(ℓ1(S)∗∗/J⊥⊥) = Z(2)((ℓ1(S)/J)∗∗) = Z(2)(ℓ1(GS)

∗∗) = ℓ1(GS),

where Z
(2)
t (ℓ1(GS)

∗∗) is the second module topological center of ℓ1(GS)
∗∗ which is

computed in [17]. �

Remark 4.1. It is well known that GS is finite if and only if ℓ1(GS)
∗∗ is Arens

regular and so the finiteness of GS is equivalent to the following equalities:

Z
(1)
ℓ1(E)

(ℓ1(S)∗∗)/J⊥⊥ = Z
(2)
ℓ1(E)

(ℓ1(S)∗∗)/J⊥⊥ = ℓ1(GS)
∗∗.

Theorem 4.2. Let S be an inverse semigroup with the set of idempotents E. Then
the following are equivalent.

(i) Gs is finite;
(ii) ℓ1(S) is ℓ1(E)-module Arens regular;
(iii) ℓ1(GS) is Arens regular;
(iv) ω is module Arens regular;
(v) ω̃ is Arens regular.

Proof. The equivalence of (i) and (ii) is the consequence of [15] and [1, Theorem
3.3]. The equivalence of other parts follows from Theorem 3.3 with A = ℓ1(S) and
A = ℓ1(E). �
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